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Abstract 

Aims/hypothesis: The plasma proteome holds promise as a diagnostic and prognostic tool that 

can accurately reflect complex human traits and disease processes. We assessed the ability of 

plasma proteins to predict type 2 diabetes mellitus (T2DM) and related traits. 

  

Methods: Clinical, genetic, and high-throughput proteomic data from three subcohorts of UK 

Biobank participants were analyzed for association with dual-energy x-ray absorptiometry 

(DXA) derived truncal fat (in the adiposity subcohort), estimated maximum oxygen consumption 

(VO2max) (in the fitness subcohort), and incident T2DM (in the T2DM subcohort). We used 

least absolute shrinkage and selection operator (LASSO) regression to assess the relative ability 

of non-proteomic and proteomic variables to associate with each trait by comparing variance 

explained (R2) and area under the curve (AUC) statistics between data types. Stability selection 

with randomized LASSO regression identified the most robustly associated proteins for each 

trait. The benefit of proteomic signatures (PSs) over QDiabetes, a T2DM clinical risk score, was 

evaluated through the derivation of delta (∆) AUC values. We also assessed the incremental gain 

in model performance metrics using proteomic datasets with varying numbers of proteins. A 

series of two-sample Mendelian randomization (MR) analyses were conducted to identify 

potentially causal proteins for adiposity, fitness, and T2DM. 

 

Results: Across all three subcohorts, the mean age was 56.7 years and 54.9% were female. In the 

T2DM subcohort, 5.8% developed incident T2DM over a median follow-up of 7.6 years. 

LASSO-derived PSs increased the R2 of truncal fat and VO2max over clinical and genetic factors 

by 0.074 and 0.057, respectively. We observed a similar improvement in T2DM prediction over 

the QDiabetes score [Δ AUC: 0.016 (95% CI 0.008, 0.024)] when using a robust PS derived 

strictly from the T2DM outcome versus a model further augmented with non-overlapping 

proteins associated with adiposity and fitness. A small number of proteins (29 for truncal 

adiposity, 18 for VO2max, and 26 for T2DM) identified by stability selection algorithms offered 

most of the improvement in prediction of each outcome. Filtered and clustered versions of the 

full proteomic dataset supplied by the UK Biobank (ranging between 600-1,500 proteins) 

performed comparably to the full dataset for T2DM prediction. Using MR, we identified 4 

proteins as potentially causal for adiposity, 1 as potentially causal for fitness, and 4 as potentially 

causal for T2DM. 

  

Conclusions/Interpretation: Plasma PSs modestly improve the prediction of incident T2DM over 

that possible with clinical and genetic factors. Further studies are warranted to better elucidate 

the clinical utility of these signatures in predicting the risk of T2DM over the standard practice of 

using the QDiabetes score. Candidate causally associated proteins identified through MR deserve 

further study as potential novel therapeutic targets for T2DM. 
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Introduction 

As its incidence rises, a critical need exists to improve our ability to risk stratify and prevent type 

2 diabetes mellitus (T2DM) [1]. Insulin resistance (IR) is characterized as a decreased sensitivity 

to insulin-mediated glucose uptake and is a known primary risk factor for T2DM [2, 3]. While 

more reliable identification of those with IR could prove useful for T2DM risk stratification, 

direct measures of IR remain both expensive and laborious to perform [4, 5] and surrogate 

measures correlate only modestly with direct measures of IR [6-8]. Truncal adiposity and poor 

cardiorespiratory fitness (CRF) are two additional potentially modifiable risk factors of T2DM 

through their effects on IR but similar to IR, are difficult to accurately measure using gold 

standard approaches such as dual energy x-ray absorptiometry (DXA) scans and 

cardiopulmonary exercise testing with a metabolic cart [9-12].  

 

In the last decade, high-throughput profiling of circulating plasma proteins has emerged as a 

powerful tool for both predicting and understanding the underlying biology of complex traits and 

incident disease [13]. The incorporation of plasma proteomic data to routinely available clinical 

information has also been shown to improve prediction of cardiometabolic traits in particular 

[14-16]. However, the ability of proteins to enhance prediction beyond that offered by more 

robust T2DM clinical risk prediction models such as the UK-based QDiabetes clinical risk score 

(which incorporates significant past medical history, past medication use, and other clinical 

variables in individuals) has yet to be tested [17].  

 

Recently, our laboratory established plasma proteomic signatures of a direct measure of IR, 

which were obtained in two smaller-sized population cohorts [18]. We sought to expand on this 

work by leveraging clinical, genetic, and proteomic data within a substantially larger cohort, the 

UK Biobank (UKB). As the UKB currently lacks any direct measures of IR, we assessed the 

relative ability of proteins to predict two risk factors upstream of IR, truncal adiposity and CRF, 

as well as a downstream consequence of IR, T2DM. In predicting T2DM, we hypothesized that 

the inclusion of proteomic data would provide modest enhancement in prediction accuracy 

beyond that offered by the QDiabetes risk score and other traditional clinical and genetic data. 

 

Methods 

Study design and population 

The study design of the UK Biobank (UKB) has been previously described extensively [19]. At 

participants’ baseline visits, trained healthcare providers conducted verbal interviews and 

administered questionnaires to obtain information on health status, family history, 

sociodemographic and psychosocial factors, and lifestyle. Physical measures along with the 

collection of blood, urine, and saliva were also obtained at these visits. By integrating 

participants’ electronic health records (EHRs), health outcomes data including outpatient and 

inpatient International Classification of Disease, Tenth Revision (ICD-10) codes are also 

available within the database. The UKB received ethical approval from the Northwest 

Multicenter Research Ethics Committee and obtained informed consent from all participants at 

the time of recruitment. 

 

We analyzed three non-overlapping subcohorts of UKB participants who underwent high-

throughput proteomic profiling to study outcomes of truncal adiposity, fitness, and T2DM (ESM 

Fig. 1). First, individuals who underwent a DXA scan at the imaging visit comprised an 
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adiposity subcohort (n = 5,506). Next, individuals who completed cycle ergometer tests at the 

baseline visit comprised a fitness subcohort (n = 5,559). Finally, the remaining individuals who 

had proteomics data but did not undergo DXA scans or cycle ergometer tests comprised a T2DM 

subcohort (n=35,946). Individuals with prevalent T2DM, any history of prevalent or incident 

type I diabetes mellitus (T1DM), or missing or elevated A1c (≥48 mmol/mol [6.5%]) values 

were excluded from this study. Individuals in whom the QDiabetes score could not be computed 

were also excluded from the T2DM subcohort. 

 

Measurement of protein biomarkers 

Using the antibody-based Proximity Extension Assay by Olink, the UKB measured normalized 

protein expression (NPX) data for a total of 2,923 circulating proteins in plasma in a subset of 

UKB participants. The sample handling, processing, and quality control protocols implemented 

by the UKB have been previously described in a summary document 

(biobank.ndph.ox.ac.uk/ukb/ukb/docs/PPP_Phase_1_QC_dataset_companion_doc.pdf) and in 

two publications [20, 21]. We identified GLIPR1, NPM1, and PCOLCE as proteins with a high 

degree of missingness (> 50%) and excluded these from analysis. The remaining missing NPX 

values were imputed with their mean values. All NPX values were provided as log-transformed 

values by the UKB and then standardized by us prior to analysis. 

 

Measurement of outcomes 

Adiposity was defined as DXA scan-measured truncal fat tissue percentage (equal to trunk fat 

mass divided by total fat mass). Fitness was defined as an estimate of maximal oxygen 

consumption (VO2max). These estimates were previously generated and validated by Gonzales 

et al. using a multilevel modelling framework that incorporated participants’ heart rate responses 

during the fitness test [22]. More details on the DXA scan and fitness test protocols employed by 

the UKB can be found in the electronic supplementary material (ESM Methods). Incident 

T2DM was defined as any instance of an E11 ICD-10 code following participants’ baseline visits 

within UKB’s first occurrences data (UKB categories 2401-2417). This data is organized by 

ICD-10 codes and was generated by mapping primary care data (UKB category 3000), hospital 

inpatient data (UKB category 2000), death register records (UKB fields 40001 and 40002), and 

self-reported medical condition codes (UKB field 20002). 

 

Measurement of clinical variables 

We selected clinical variables to use as predictors in the analysis after reviewing known 

predictors of each trait within the literature. The following groups of clinical variables 

documented at baseline visits were included in our analyses: demographic characteristics (sex, 

age, self-reported ethnicity, and Townsend deprivation scores (TDSs)), past medical history, 

family history, medication use, health behaviors (prior alcohol use, ever smoked status, and 

physical activity levels), and physical measures (weight, body mass index (BMI), waist 

circumference, and systolic and diastolic blood pressure measurements). From blood and saliva 

samples obtained during baseline visits, we also included standard biochemistry markers, and 36 

standard polygenic risk scores (PRSs) generated from external genome-wide association studies 

[23, 24]. In the T2DM subcohort, QDiabetes, a clinical risk prediction model previously 

validated in UK-based populations for T2DM prediction, was also included as a clinical variable 

[17]. We computed this score using the QDiabetes 2018C function within the QDiabetes R 
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package. We standardized all clinical variables and PRSs prior to running analyses. A full list of 

clinical variables and PRSs used in each of the subcohorts are included in ESM Methods. 

 

Statistical analyses 

A flowchart of the study design and analysis plan is shown in Figure 1. We used least absolute 

shrinkage and selection operator (LASSO) regression to assess the relative ability of clinical 

variables, PRSs, and proteins to associate with adiposity, fitness, and T2DM. After randomly 

splitting each subcohort into training (70%) and test (30%) sets, all LASSO models were built 

using 10-fold cross validation. In each subcohort, we developed five LASSO models: a model 

with clinical variables alone, a model with PRSs alone, a model with proteins alone, a combined 

model in which PRSs were added to clinical variables, and a combined model in which proteins 

were added to clinical variables and PRSs. In the adiposity and fitness subcohorts, model 

improvement was defined as an increase in variance explained (R2) and in the T2DM subcohort, 

as an increase in the area under the curve (AUC) value. To assess the added incremental value of 

proteins beyond routinely available clinical variables and PRSs, we derived a delta (∆) AUC 

value and generated a corresponding 95% confidence interval by bootstrapping 1,000 samples. 

 

Next, we implemented the randomized LASSO stability selection (RLSS) algorithm using the R 

package stabs, which was initially presented by Meinhausen and Bühlmann and later improved 

upon by Shah and Samsworth [25, 26]. This algorithm was applied in training sets to generate a 

more robustly associated proteomic signature (PS) for each trait of interest. We used default 

parameters when applying this algorithm, which included a weakness value of 0.8, a cutoff value 

of 0.8, and a per-family error rate of two. To determine how much prediction was offered by 

these smaller sets of proteins, we measured the R2 of LASSO models run with the adiposity and 

fitness-associated PSs and the AUC of a LASSO model run with the T2DM PS in the test sets of 

each respective subcohort. Next, we again derived ∆ AUC values with 95% confidence intervals 

to determine the added benefit of these PSs in prediction of T2DM beyond that offered by the 

QDiabetes clinical risk score. 

 

To further assess correlation structure and the incremental gain in model performance with 

proteomic datasets of varying numbers of included proteins, we used two methods to reduce high 

protein-protein correlation within the full proteomic dataset provided by UKB. In a filtering-

based approach, we first computed a correlation matrix of all 2,920 plasma proteins and 

identified pairs of proteins with a correlation value > 0.3 and > 0.5. Next, we randomly removed 

one protein from each of these pairs to form two smaller datasets of approximately 600 and 

1,500 proteins. In the second clustering-based approach, we used principal component analysis 

(PCA) and K-means clustering to form 600 and 1,500 clusters of proteins. Next, we randomly 

selected one protein from each cluster to form two additional smaller datasets of 600 and 1,500 

proteins. Finally, using standard LASSO regression, we compared T2DM prediction 

performance of all four proteomic datasets by generating AUCs. 

 

We conducted a series of two-sample Mendelian randomization (MR) analyses to identify 

potentially causal plasma proteins for adiposity, fitness, and T2DM (ESM Fig. 2). We first 

performed genome-wide association studies (GWASs) for all 2,920 proteins in an independent 

cohort of 15,016 UKB participants to identify cis-protein quantitative trait loci (cis-pQTLs).  

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 15, 2024. ; https://doi.org/10.1101/2024.09.13.24313501doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313501
http://creativecommons.org/licenses/by-nd/4.0/


 

   
 

Effect estimates for truncal adiposity and VO2max were obtained by performing GWAS analyses 

of DXA-measured truncal fat percentage and VO2max estimates in a cohort of 33,348 UKB 

participants and a cohort of 62,402 UKB participants, respectively. Finally, effect estimates for 

T2DM were obtained from a meta-analysis of summary statistics published by the DIAMANTE 

(DIAbetes Meta-ANalysis of Trans-Ethnic association studies) consortium (ncases = 55,005 & 

ncontrols = 400,308) [27]. Details on the cohorts and methods used for all three GWAS analyses 

and on the DIAMANTE consortium’s meta-analyzed summary statistics can be found in ESM 

Methods.  

 

We used the inverse variance weighted (IVW) method as our primary method to conduct the 

series of two-sample MR analyses. There are three core assumptions which should be met in a 

MR analysis: 1) the genetic variants used as instrumental variables should be strongly associated 

with the outcome of interest, 2) the genetic instruments should not be associated with other 

confounder variables, and 3) the genetic instruments should impact the outcome of interest only 

via the exposure of interest. While MR analyses using cis-genetic variants are generally regarded 

to be assumption satisfied, we addressed these assumptions through additional analyses [28]. 

First, we assessed the strength of our genetic instruments by calculating the proportion of 

variance explained and F statistics using previously established methods. The equations used to 

calculate both can be found in ESM Methods. We also ran additional sensitivity analyses, 

including the MR-Egger method and specifically, calculating the MR-Egger intercept to test for 

pleiotropy. All analyses were conducted using the TwoSampleMR package in R.  

 

Results 

We analyzed NPX data of 2,920 proteins in a total of 47,011 participants. Baseline 

characteristics for each subcohort are shown in Table 1. Across all three subcohorts, the mean 

age at recruitment was 56.65 years (SD, 8.22 years), 54.9% were female, and 94.2% were of 

European ancestry. In the T2DM subcohort, 5.8% developed incident T2DM over a median 

follow-up of 7.6 years. 

 

Truncal adiposity analyses 

Standard LASSO models built on clinical variables alone, PRSs alone, or the full proteomic 

dataset on its own explained 0.538, 0.037, and 0.642 of variance in adiposity, respectively (Fig. 

2a). A LASSO model combining both clinical variables and PRSs explained 0.583 of variance 

(R2) in adiposity. Thus, we found that a model incorporating the full proteomic dataset on its 

own performed notably better than a model built on clinical variables and PRSs. Incorporating 

the full proteomic dataset in addition to routinely available clinical variables and PRSs increased 

the R2 value from 0.583 to 0.657. The randomized LASSO stability selection (RLSS) analysis 

selected 29 proteins (Fig. 3a), and these proteins offered most of the improvement in prediction 

of adiposity (R2=0.623). A full list of the clinical variables, PRSs, and proteins selected by these 

LASSO models can be found in ESM Table 1. 

 

Cardiorespiratory fitness analyses 

Standard LASSO models built on clinical variables alone, PRSs alone, or the full proteomic 

dataset on its own explained 0.564, 0.001, and 0.602 of variance in estimated VO2max, 
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respectively (Fig. 2b). A LASSO model incorporating both clinical variables and PRSs had an 

R2 value of 0.591. We found that a protein-only model performed similarly in prediction of 

fitness to a model combining clinical variables and PRSs. Incorporating proteins in addition to 

routinely available clinical variables and PRSs increased the R2 value from 0.591 to 0.648. RLSS 

analysis selected 18 proteins (Fig. 3b) and similar to results from our adiposity analyses, this 

substantially smaller set of proteins explained the majority of fitness variance with an R2 value of 

0.556. A full list of the clinical variables, PRSs, and proteins selected by these LASSO models 

can be found in ESM Table 2. 

 

Type 2 diabetes mellitus analyses 

Consistent with prior reports, the QDiabetes clinical risk score performed very well on its own in 

predicting T2DM with an AUC of 0.865 (95% CI 0.851-0.880) (Fig. 4a). When additional 

clinical variables were added to the QDiabetes score, T2DM prediction improved with an AUC 

of 0.872 (95% CI 0.858-0.886). In comparison to this clinical-variable only model, a PRS-only 

model performed much worse with an AUC of only 0.666 (95% CI 0.645-0.687) while a model 

built with the full proteomic dataset on its own performed slightly worse with an AUC of 0.859 

(95% CI 0.845-0.873). When combining additional clinical variables not already in the 

QDiabetes score and PRSs with the QDiabetes score, we observed a modest increase in AUC to 

0.876 (95% CI 0.864-0.891). A standard LASSO regression model incorporating proteins 

performed similarly to the QDiabetes score alone with an AUC of 0.859 (95% CI 0.845-0.873). 

Incorporating proteins in addition to the QDiabetes score, other routinely available clinical 

variables, and PRSs resulted in a ∆ AUC of only 0.014 (95% CI 0.007-0.024).  

 

RLSS analysis selected 26 proteins (Fig. 3c), which offered most of the improvement in T2DM 

prediction explained by the full proteomic dataset with an AUC of 0.833 (95% CI 0.818-0.849) 

(Fig. 4b). When this proteomic signature was augmented with non-overlapping stability 

selection proteins associated with adiposity and fitness, T2DM prediction marginally improved 

with an AUC of 0.837 (95% CI 0.822-0.853). Incorporating these three proteomic signatures in 

addition to QDiabetes resulted in a ∆ AUC of 0.016 (95% CI 0.008-0.024). A full list of clinical 

variables, PRSs, and proteins selected by these LASSO models can be found in ESM Table 3.  

 

Clustering and filtering analyses 

We assessed and compared the prediction performance of four smaller subsets of proteins 

formed through filtering-based or clustering-based approaches to that of the full proteomic 

dataset provided by UKB [AUC of 0.865 (95% CI 0.851-0.880)] (ESM Fig. 3). A subset formed 

through a filtering-based approach with a correlation threshold of > 0.3 (600 proteins included) 

performed the worst with an AUC of 0.815 (95% CI 0.798-0.832). Despite consisting of 

approximately the same number of proteins (645 vs. 600), a subset formed through a clustering-

based approach with the creation of 600 clusters performed better with an AUC of 0.845 (95% 

CI 0.830-0.861). Finally, subsets formed through a filtering-based approach with a correlation 

threshold of > 0.5 and through a clustering-based approach with the creation of 1,500 clusters 

performed comparably to the full proteomic dataset with AUCs of 0.851 (95% CI 0.798-0.832) 

and 0.845 (95% CI 0.830-0.861), respectively.  

 

Two-sample Mendelian randomization analyses 
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To identify potentially causal proteins for adiposity, fitness, and T2DM, we conducted a series of 

two-sample Mendelian randomization (MR) analyses. Of 2,920 proteins, we identified genome-

wide significant cis-protein quantitative loci (cis-pQTLs) for 1,745 based on a significance 

threshold of 5 x 10-8. The minimal F statistic of instrumental variables used in each analysis was 

20.6 (ESM Tables 4-6). Effect estimates for adiposity and fitness were obtained by running 

GWAS analyses using the REGENIE software (ESM Fig. 4a-d) while effect estimates for 

T2DM were obtained from meta-analyzed summary statistics provided by the DIAMANTE 

consortium. We identified 3 proteins as potentially causal for truncal adiposity, one protein as 

potentially causal for fitness, and 4 proteins as potentially causal for T2DM based on FDR < 

0.05 (Fig. 5a-c). For several proteins in which the initial number of associated SNPs was low 

(nSNPs < 3), we were not able to obtain results for sensitivity analyses. For proteins with a 

higher number of initial associated SNPs, however, we found that results from the IVW method 

generally aligned with results from other sensitivity analyses (ESM Fig. 8-10). Full results for 

each two-sample MR analysis including results from sensitivity analyses and annotations of 

whether each protein tested was selected by a standard LASSO model or RLSS analysis can be 

found in the supplementary materials (ESM Tables 4-6).  

 

Discussion 

We aimed to develop and assess the prediction performance of proteomic signatures for two risk 

factors upstream of IR, truncal adiposity and CRF, as well as a downstream consequence of IR, 

T2DM, using high-throughput proteomic profiling data provided by the UKB. In doing so, we 

tested whether proteomic data would enhance prediction accuracy of all three traits beyond that 

offered by an existing clinical risk prediction model, as well as traditional clinical and genetic 

factors. From our results, we highlight three principal sets of findings. 

 

First, protein-only models derived by standard LASSO regression explained greater variance in 

both truncal adiposity and CRF compared to models restricted to clinical variables and PRSs. 

Models that combined proteins with clinical variables and PRSs also improved the R2 of both 

traits beyond that offered by models restricted to only clinical variables and PRSs. These 

findings suggest that proteins add incremental benefit to clinical variables and PRSs for 

prediction of both traits. Further, in settings in which routine clinical information may not be 

available, proteomic signatures similar to those we identified for truncal adiposity and CRF 

could serve as surrogate measures for both traits. 

 

Second, we found that a protein-only model derived by standard LASSO regression performed 

similarly for incident T2DM prediction to the QDiabetes score which notably, performed 

exceedingly well on its own. A model that combined other clinical variables and PRSs with the 

QDiabetes score modestly enhanced T2DM prediction, while the subsequent addition of proteins 

resulted in a further modest improvement. Unlike most other T2DM risk scores, the UK-based 

QDiabetes score incorporates a wealth of data on past medical conditions and even current use of 

medications known to increase T2DM risk. As such, the score has previously demonstrated 

excellent performance in UK-based populations such as its validation cohort and in the UKB [17, 

29]. Given the already strong performance of the QDiabetes score on its own, our observation of 

only modest improvements in T2DM prediction with the addition of other clinical variables and 

multi-omic datasets is not unexpected.  
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With this set of findings, however, we note a few additional considerations. First, others have 

previously demonstrated that metrics such as the AUC are often too under-powered to accurately 

quantify improvement in prediction model performance with the addition of novel biomarkers 

[29]. These limitations are further exacerbated when the baseline set of risk predictors already 

demonstrates exceptional performance. Thus, in the context of predicting a highly prevalent 

condition such as T2DM, it is certainly plausible that the marginal increases we demonstrate in 

AUC for T2DM prediction may not fully reflect the advantages offered by multi-omic datasets. 

Ultimately, other large-scale studies and more ideally, a prospective cohort study may be needed 

to best assess this benefit. Lastly, when looking to health systems that lack a cohesive integration 

of EHR databases and scenarios in which practitioners do not have access to the significant 

amount of clinical data needed to compute the QDiabetes risk score, the comparative 

performance of our protein-only model suggests that proteins may serve as a suitable alternative 

in the future. 

 

Third, we demonstrate that smaller sets of proteins perform comparably to the full proteomic 

dataset provided by the UKB for prediction of all three traits. Across all three traits, substantially 

smaller sets of proteins selected by a stability selection algorithm accounted for most of the 

prediction performance offered by the full dataset. Aside from aiding in feature reduction, this 

method yields additional benefits by selecting more “stable” proteins which have a greater 

likelihood of being generalizable to other populations. Further, a future where robust proteomic 

signatures similar to those we describe may be selected for absolute quantification is foreseeable 

given the recent advent of custom quantitative PEA panels such as the CVD-21 tool [30]. We 

also show that using smaller datasets created by filtering and clustering perform comparably to 

the full dataset for T2DM prediction. Taken together, our findings suggest that the significant 

costs and time associated with measuring nearly 3,000 proteins may be avoided in future 

implementations of plasma proteomic profiling without meaningfully affecting prediction 

performance. 

 

Recently, others have shown that employing a cross-trait integration of PRSs can improve risk 

prediction of a given target trait [31]. Indeed, we found that the inclusion of 36 PRSs spanning a 

wide range of conditions led to a modest improvement in T2DM prediction. Moreover, for 

prediction of each trait, we observed a pattern of PRSs for autoimmune conditions such as 

rheumatoid arthritis, celiac disease, and systemic lupus erythematosus along with various cancers 

often being selected by LASSO. The role of pro-inflammatory pathways with subsequent release 

of cytokines and adipokines in cardiometabolic disease and particularly in T2DM is an active 

area of research interest [32]. Our findings suggest that background polygenic risk for immune-

related conditions may heighten risk of incident T2DM development. Of note, we also found that 

a PRS for T1DM was selected by LASSO models predicting T2DM. A recent study within the 

Million Veteran Program (MVP) database showed that individuals with T2DM who carry a high 

genetic risk for T1DM are more likely to have T1DM characteristics including diabetic 

ketoacidosis, hypoglycemia, and earlier need for insulin therapy [33]. With potential clinical 

implications for patients who exhibit characteristics of both T1DM and T2DM, these findings 

underscore a growing need to better understand the shared genetic background between both 

phenotypes. 
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Several proteins were repeatedly selected by standard LASSO models across all three traits of 

interest. In standard LASSO models predicting truncal adiposity and CRF, both FABP4 and LEP 

carried large beta coefficients, but in opposing effect directions for each trait (positive for truncal 

adiposity and negative for CRF). FABP4 is mainly expressed by adipocytes and macrophages 

and has been hypothesized to play a role in lipolysis [34]. Other studies using circulating plasma 

proteomics have also identified FABP4 as a potential biomarker for related cardiometabolic traits 

such as IR, obesity, and atherosclerosis [35, 36]. LEP, or leptin, is a known satiety hormone 

which exhibits increased expression in the setting of obesity and has been associated with IR 

independent of total body fat mass [37]. Of the proteins selected by standard LASSO models 

predicting T2DM, GDF15 has previously been associated with a host of diseases within the 

cardiometabolic spectrum [38]. With known functions in the suppression of food intake and 

inflammation, GDF15 has become an appealing drug target in the management of obesity, 

T2DM, and CVD [39].  

 

Aside from incident disease prediction, high-throughput proteomic profiling can further our 

understanding of the underlying biology of disease and aid in the identification of novel drug 

targets. Towards the latter aim, we used two-sample MR to infer potential causality of proteins 

for all three traits of interest. Of proteins with potential causal associations for truncal adiposity, 

DLL1 has previously been shown to modulate the fate of white and brown adipocytes in mouse 

models [40]. We also identified LRRC37A2 as potentially causal for CRF. Of note, a variant in 

the LRRC37A2 gene was previously identified as a functional candidate in a GWAS of CRF 

within UKB participants [41]. Finally, in our two-sample MR analysis of T2DM, we 

corroborated previously known protein-diabetes associations including associations between 

diabetes with MANSC4, SHBG, and AMY2B [42, 43].  

 

A primary strength of our study is the well-documented stability and reproducibility of the Olink 

platform [44]. By using a robust clinical risk score such as QDiabetes, we add meaningful 

findings on whether the incorporation of multi-omics data can enhance existing prediction 

capabilities for T2DM. Notable limitations of our study include the lack of genetic diversity 

within the UKB. Additionally, our two-sample MR analyses were restricted to individuals of 

European ancestry only. Future studies in more diverse populations are necessary to avoid the 

further perpetuation of health disparities in this line of research. Finally, while others have also 

shown that plasma proteins can improve cardiometabolic health prediction, we acknowledge 

potential limitations in using proteins measured in the plasma as opposed to adipose, skeletal 

muscle, or pancreatic tissues to infer potential causality for our traits of interest [15] . 

 

In summary, our findings suggest that plasma proteomic profiling enhances prediction of two 

risk factors upstream of IR, truncal adiposity and CRF, and provides modest improvements in 

prediction of T2DM, a downstream consequence of IR. Further large-scale studies in more 

diverse populations are indicated to better elucidate the advantages multi-omics data could 

provide for T2DM prediction beyond that offered by the QDiabetes clinical risk score. We also 

show that the use of substantially smaller proteomic datasets does not significantly compromise 

prediction performance in comparison to the full proteomic dataset provided by the UKB. 

Finally, we add a list of potentially causal proteins for truncal adiposity, CRF, and T2DM using 

expanded proteomic data from the UKB to the existing literature. 
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Protein Abbreviations 

− FABP4: Fatty acid-binding protein, adipocyte 

− LEP: Leptin 

− GDF15: Growth/differentiation factor 15 

− DLL1: Delta-like protein 1 

− LRRC37A2: Leucine-rich repeat-containing protein 37A2 

− ABO: Histo-blood group ABO system transferase 

− PAM: Peptidyl-glycine alpha-amidating monooxygenase 

− MANSC4: MANSC domain-containing protein 4 

− SHBG: Sex hormone-binding globulin 

− AMY2B: Alpha-amylase 2B 

− TYRO3: Tyrosine-protein kinase receptor TYRO3 

− NCR3LG1: Natural cytotoxicity triggering receptor 3 ligand 1 

− TSPAN8: Tetraspanin-8 
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Tables and Figures 

 

Table 1. Demographics and clinical characteristics of the study population in each 

subcohort 

n Adiposity 

subcohort  

(n = 5,506) 

Fitness 

subcohort 

 (n = 5,559) 

T2DM 

subcohort    

 (n = 35,946) 

Female (%) 2,936 (53.3) 2,958 (53.2) 19,905 (55.4) 

Age at baseline visit 54.3 (7.9) 56.8 (8.2) 57.0 (8.2) 

Self-reported ethnicity group (%)       

   White 5,320 (96.6) 5,034 (90.6) 33,910 (94.4) 

   African 28 (0.5) 91 (1.6) 369 (1.0) 

   South Asian 45 (0.8) 109 (2.0) 437 (1.2) 

   Chinese 11 (0.2) 25 (0.4) 99 (0.3) 

   Mixed 38 (0.7) 61 (1.1) 205 (0.6) 

   Other 64 (1.2) 235 (4.2) 902 (2.5) 

BMI (kg/m2) 26.4 (4.1) 27.0 (4.3) 27.4 (4.7) 

Waist circumference (cm) 87.4 (12.2) 89.3 (12.7) 90.1 (13.1) 

SBP (mmHg) 134.0 (16.9) 136.5 (17.3) 138.1 (18.2) 

DBP (mmHg) 81.0 (9.6) 81.7 (9.7) 82.4 (9.8) 

LDL (mmol/mol) 3.6 (0.8) 3.6 (0.8) 3.6 (0.9) 

HDL (mmol/mol) 1.8 (0.4) 1.5 (0.4) 1.4 (0.4) 

TG (mmol/mol, median [IQR]) 1.4 [0.4, 2.3] 1.4 [0.4, 2.4] 1.5 [0.4, 2.6] 

Cholesterol (mmol/mol) 4.7 (0.9) 4.7 (0.9) 4.7 (1.0) 

HbA1c (mmol/mol) 34.4 (3.5) 35.1 (3.8) 35.3 (3.9) 

Blood pressure lowering 

medication (%) 

414 (7.5) 572 (10.3) 3,966 (11.0) 

Cholesterol lowering medication 

(%) 

388 (7.0) 566 (10.2) 3,494 (9.7) 

Past medical history of HTN (%) 970 (17.6) 1,347 (24.3) 9,725 (27.1) 

Past medical history of CVD (%) 106 (1.9) 184 (3.3) 1,434 (4.0) 

Family history of T2DM (%) 996 (18.1) 1,172 (21.1) 7,264 (20.2) 

Ever smoked status (%) 3,218 (58.4) 3,291 (59.2) 21,569 (60.0) 

Self-reported alcohol intake (%)       

   Never or missing 265 (4.8) 454 (8.2) 3,136 (8.7)  

   One to three times a month or 

special occasions  

1,007 (18.3) 1,231 (22.1) 8,129 (22.6) 

   Once or twice a week 1,425 (25.9) 1,393 (25.1) 9,479 (26.4) 
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   Three or four times a week 1,546 (28.1) 1,329 (23.9) 7,906 (22.0) 

   Daiy or almost daily 1,263 (22.9) 1,152 (20.7) 7,296 (20.4) 

Physical activity category (%)       

   Missing 850 (18.4) 1,169 (21.0) 8,576 (23.9) 

   Low 855 (15.5) 671 (15.3) 5,144 (18.8) 

   Moderate 2463 (44.7) 2,298 (52.3) 13,616 (49.7) 

   High 1338 (24.3) 1,421 (32.4) 8,610 (31.5) 

Total truncal fat tissue percentage 37.2% (9.6%) - - 

VO2max estimate (mL/kg/min)   28.4 (6.8)   

Incident T2DM - - 2,077 (5.8) 

Follow-up time in years - - 7.6 (3.9) 

 

All continuous measurements were documented in mean (SD) unless otherwise specified. 

Abbreviations: IQR: interquartile range, BMI: body mass index, SBP: systolic blood pressure, 

DBP: diastolic blood pressure, LDL: low-density lipoprotein, HDL: high-density lipoprotein, 

TG: triglyceride, HbA1c: hemoglobin A1c, HTN: hypertension, CVD: cardiovascular disease, 

T2DM: type 2 diabetes mellitus, VO2max: maximal oxygen consumption 
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Figure 1. Study design and analysis workflow 

 
Abbreviations: DXA: dual-energy x-ray absorptiometry, T2DM: type 2 diabetes mellitus, 

T1DM: type I diabetes mellitus, A1c: hemoglobin A1c, VO2max: maximal oxygen consumption 
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Figures 2a-b. Variance explained (R2) of clinical variables, polygenic scores, and plasma 

proteins in the adiposity and fitness subcohorts 

 
Footnote: (a) Models performed using training and test sets in the adiposity subcohort. (b) 

Models performed using training and test sets in the fitness subcohort. SS proteins shown in red 

refer to proteins selected by a randomized LASSO regression model with stability selection 

algorithm. Abbreviations: LASSO: least absolute shrinkage and selection operator, R2: variance 

explained, PRSs: polygenic risk scores, SS: stability selection 
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Figure 3a-c. Proteins selected by a randomized LASSO with stability selection algorithm 

for adiposity, fitness, and type 2 diabetes mellitus 

 
Footnote: (a) Proteins selected by RLSS algorithm in the adiposity subcohort. (b) Proteins 

selected by RLSS algorithm in the fitness subcohort. (c) Proteins selected by RLSS algorithm in 

the T2DM subcohort. Proteins listed in blue were positively associated with the outcome of 

interest while those listed in orange were negatively associated. Abbreviations: RLSS: 

Randomized LASSO regression with stability selection algorithm. 
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Figures 4a-d. Area under the curves (AUCs) of clinical variables, polygenic scores, and plasma proteins in the type 2 diabetes 

mellitus subcohort 

 
Footnote: (a, b) Models performed in training and test sets of the T2DM subcohort using the full proteomic dataset. (c, d) Models 

performed in training and test sets of the T2DM subcohort using proteins selected by a randomized LASSO regression model with a 

stability selection algorithm. Colors shown on the receiver operating curves correspond with colors shown on the forest plots. 

Abbreviations: LASSO: least absolute shrinkage and selection operator, T2DM: type 2 diabetes mellitus, AUC: area under the curve, 

PRS: polygenic risk scores, SS: stability selection
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Figure 5a-c. Potentially causal proteins for adiposity, fitness, and type 2 diabetes mellitus 

identified through two-sample Mendelian randomization 

 
Footnote: (a) Forest plot of potentially causal proteins for truncal adiposity based on FDR < 0.5. 

(b) Forest plot of a potentially causal protein for cardiorespiratory fitness based on FDR < 0.5. 

(c) Forest plot of potentially causal proteins for T2DM based on FDR < 0.5. Abbreviations: 

SNP: single nucleotide polymorphism, 95% CI: 95% confidence interval, T2DM: type 2 diabetes 

mellitus 

 

 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 15, 2024. ; https://doi.org/10.1101/2024.09.13.24313501doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313501
http://creativecommons.org/licenses/by-nd/4.0/

