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Abstract: Dendritic cells (DCs) are antigen-presenting cells that play a crucial role in initiating
immune responses by cross-presenting relevant antigens to initial T cells. The activation of DCs is
a crucial step in inducing anti-tumor immunity. Upon recognition and uptake of tumor antigens,
activated DCs present these antigens to naive T cells, thereby stimulating T cell-mediated immune
responses and enhancing their ability to attack tumors. It is particularly noted that DCs are able
to cross-present foreign antigens to major histocompatibility complex class I (MHC-I) molecules,
prompting CD8+ T cells to proliferate and differentiate into cytotoxic T cells. In the malignant
progression of hepatocellular carcinoma (HCC), the inactivation of DCs plays an important role,
and the activation of DCs is particularly important in anti-HCC immunotherapy. In this review, we
summarize the mechanisms of DCs activation in HCC, the involved regulatory factors and strategies
to activate DCs in HCC immunotherapy. It provides a basis for the study of HCC immunotherapy
through DCs activation.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver,
with an insidious onset and rapid progression of the disease. Most patients are diagnosed in
the advanced stages of the disease and have limited therapeutic options; surgical resection,
liver transplantation, local ablation, and other treatment modalities are no longer applicable,
and the prognosis is usually poor. Targeted therapy, as a systemic therapy, prolongs the
survival of patients, but its efficacy is still unsatisfactory due to the few therapeutic targets
and the tumors’ resistance to targeted drugs [1]. In the search for effective therapeutic
strategies, immunotherapy, which utilizes the immune system to kill tumor cells, has
attracted extensive attention from researchers as a novel therapy for advanced HCC. The
use of immune checkpoint inhibitors and dendritic cell (DC) vaccines has effectively
improved patient survival and is a promising therapy [2]. DCs are integral components of
the immune system, bridging innate and adaptive immunity by activating T cells, thereby
generating anti-tumor immunity and effectively improving patient prognosis [3].

The activation of DCs refers to the process wherein these cells transition from a resting
state to executing their functions under specific stimuli, which are crucial for initiating
and coordinating anti-tumor immune responses. DCs activation enhances their antigen-
presenting capabilities, and induces and augments T cell activation and proliferation,
while also activating NK cells (natural killer cells), thereby bolstering the overall immune
response against HCC. HCC patients often exist in an immunotolerant state; however,
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DCs activation can reverse this immunotolerance by stimulating immune cells and en-
hancing immune responses, thereby boosting the anti-tumor immune capabilities of HCC
patients [4]. Here, the research advances on the mechanisms of DCs activation in the
initiation and progression of HCC, the influencing factors, and activation strategies in im-
munotherapy are comprehensively reviewed, and the immunologic role of DCs activation
in HCC is analyzed and summarized. This review aims to provide new insights for HCC
immunotherapy research.

2. Dendritic Cell Subsets and Their Functions in Hepatocellular Carcinoma

DCs represent a heterogeneous group of immune cells that can be classified into
different subsets based on their surface markers, tissue distribution, and other factors.
The main subsets of DCs include plasmacytoid dendritic cells (pDCs) and conventional
dendritic cells (cDCs) [5]. DCs, as antigen-presenting cells, play a crucial role in initiating T
cell activation to exert anti-HCC immune effects. However, the unique anatomical location
of the liver leads to immune tolerance towards antigens from the gut [6], while the presence
of immune inhibitory molecules and cells in the tumor microenvironment inhibits the
immune function of DCs. Therefore, the function of DCs is dynamically altered during the
initiation and development of HCC.

pDCs are the primary producers of interferons (IFNs) and are mainly involved in an-
tiviral and anti-tumor immune responses [7]. However, in HCC, the quantity and function
of pDCs are often suppressed, resulting in insufficient immune surveillance and anti-tumor
immune responses in the tumor microenvironment. Studies have reported the crucial role
of pDCs in the postoperative recurrence of HCC, where the IFNα produced by pDCs drives
the recruitment of myeloid-derived suppressor cells via the liver cell IRF1/CX3CL1 signal-
ing pathway, creating an immunosuppressive environment that inhibits the tumor-killing
activity of CD8+ T cells and promotes the postoperative recurrence of HCC [8].

cDCs are mainly divided into two major subsets: cDC1s and cDC2s [9]. cDC1s mainly
express CD141+ (BDCA3+), with BATF3 and IRF8 as their main transcription factors. In
contrast, cDC2s predominantly express CD1c+ (BDCA1+), with IRF4 and ZEB2 as their main
transcription factors [9]. cDC1s have potent antigen-processing and antigen-presentation
capabilities, and are capable of degrading foreign antigens into small fragments and cross-
presenting them to CD8+ T cells via major histocompatibility complex class I (MHC-1)
molecules. cDC2s, on the other hand, present antigens to CD4+ T cells via MHC-II-like
molecules. In addition to antigen presentation, DCs express costimulatory signals to
promote T cell differentiation and induce specific T cell immune responses against tumor
antigens [8,9]. Recently, it has been reported that cDC1s are also involved in the activation
of CD4+ T cells [10]. Migratory CD103 cDC1s are able to transport cellular antigens from
the periphery to the lymph nodes and have a strong ability to activate initial CD8+ T cells
in vitro, whereas CD11b cDC2s have a limited ability to process antigens, which leads to
the conclusion that cDC1s are the major subset of cDC1s that exert antitumor immunity
in vitro [11].

However, tumors tend to shape an immunosuppressive tumor microenvironment,
impairing or inhibiting the function of DCs. For example, the HCC-related antigen alpha-
fetoprotein (AFP) can impair DC function, promoting malignant tumor progression in
AFP-positive HCC patients [12]. Thus, DCs play an important role in anti-tumor immunity
and maintaining immune homeostasis, and enhancing the tumor-killing ability of DCs is
crucial for cancer therapy.

3. Activation of Dendritic Cells in Hepatocellular Carcinoma

The activation of DCs represents a crucial initial step in triggering immune responses;
they recognize pathogen-associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs) through cell surface pattern recognition receptors (PRRs),
leading to the activation of signaling pathways mediated by adaptor proteins such as TRIF
and MyD88, thereby inducing phenotypic and functional changes in DCs [11,13–15].
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PAMPs are evolutionarily conserved components (such as lipopolysaccharides, and
bacterial and viral nucleic acid components) found in pathogenic microorganisms, while
DAMPs are endogenous molecules released from damaged or dying cells, such as heat
shock proteins (HSPs) and high mobility group protein 1 (HMGB1). Toll-like recep-
tors (TLRs), a crucial class of pattern recognition receptors, perceive both PAMPs and
DAMPs [15–17]. TLR4, the first characterized TLR, activates DCs by recognizing lipopolysac-
charide (LPS) [18,19]. LPS has become a classic stimulus molecule for activating bone
marrow-derived dendritic cells (BMDCs) [20]. The signaling pathways involved in DC
activation mainly include the p38MAPK, ERK, JNK, PI3K/AKT, and NF-κB signaling path-
ways [21–23], among which, the PI3K/Akt pathway is crucial for the survival of DCs [24].
HMGB1 released by cancer cells after chemoradiotherapy can be recognized by TLR4
and activate DCs [25]. However, studies have reported that tumor-derived DNA, after
recognition by DCs, is sensed by cGAS-STING and activates DCs to secrete the cytokine
IFN-β [26]. The involvement of cGAS-STING in DC activation and secretion of IFN-β
has also been observed In HCC tumor models [27,28]. Surprisingly, a recent study on
multifunctional nanoparticles enhancing HCC immunity has supported the role of the
cGAS-STING signaling pathway. Metal–organic framework 801 (MOF-801) can act as a
STING agonist and is recognized by TLR4, activating the cGAS-STING/NF-κB signaling
pathway, thereby promoting DC maturation and IL-6 secretion [29].

Immature DCs can effectively capture and take up antigens in non-lymphoid tissues,
during which, the expression of the chemokine receptor CCR7 on the cell surface increases,
guiding DCs to migrate to lymphoid organs such as lymph nodes. In lymph nodes,
these DCs undergo a process of maturation or activation [30]. To be more precise, MHC
molecules (whose expression is increased) present antigenic peptides to naive T cells, which
is the first signal for T cell activation. Activated DCs also express various co-stimulatory
molecules such as CD80 and CD86, which bind to CD28 on T cells, providing the second
signal for T cell activation. Ultimately, activated DCs secrete large amounts of cytokines
such as IL-12, promoting T cell differentiation and providing the third signal for T cell
activation [31]. These three signals are indispensable for T cell activation, and the expression
of the associated molecules during signal transduction is a key feature of DC activation. The
expression levels of CD40, CD54, CD70, CD80, CD83, CD86, CCR7, and MHC molecules
are commonly used to assess the activation state of DCs in HCC immunotherapy [21,32–37].
The activation of DCs promotes their antigen-presenting ability, which is crucial for T cell
activation, induces the differentiation of T helper 1 (Th1) cells, recruits specific lymphocytes
in HCC, allows them to exert their immune function, and inhibits the malignant progression
of HCC [23,34,38–41]. Activated DCs secrete the pro-inflammatory factor IL-12, which
promotes the activation of NK cells and participates in the anti-HCC process [27].

4. Regulation of Dendritic Cells Activation in Hepatocellular Carcinoma

The environment in which tumors reside is known as the tumor microenvironment
(TME), which comprises HCC cells, immune components surrounding the tumor, and non-
immune stromal components, which all interact to mediate the growth of the HCC and the
balance of anti-tumor immune responses [42,43]. DCs, as antigen-presenting cells (APCs)
involved in cellular immune responses, are subject to complex and dynamic regulation by
the HCC tumor microenvironment. In addition to HCC cells themselves, both immune
and non-immune stromal components of the tumor can produce various cytokines that
participate in the tumor immune response. Cytokines, tumor-associated antigens, lectins,
exosomes, and regulatory T cells (Tregs) are all part of the HCC tumor microenvironment
and participate in the regulation of DC activation. Figure 1 shows the influencing factors
of DC activation in the immune microenvironment of HCC and illustrates the role of
components of the immune microenvironment in relation to DCs.
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of hepatocellular carcinoma. Created with BioRender.com.

4.1. Cytokines

Cytokines, a class of secretory proteins, participate in regulating immune responses,
tumor growth, and inflammation processes [44–47]. In HCC immunity, various cytokines
are involved in regulating the immune response, with some serving as key regulatory
factors that modulate DC activation [48–51]. IL-10, an immunosuppressive cytokine, has
been shown in multiple studies to downregulate DC surface co-stimulatory molecules
and MHC class II antigens. In vitro experiments with HCC have demonstrated that the
release of IL-10 inhibits DC maturation and activation [52]. IL-6 is produced by a variety
of cell types, including cancer cells, fibroblasts, immune cells, and endothelial cells [53],
and its expression is increased in a variety of cancers [54], especially in the serum of liver
cancer patients [55], and it is a cytokine that is closely associated with poor prognosis in
HCC and is involved in HCC progression [56,57]. Several studies have shown that IL-6
inhibits DC differentiation, resulting in reduced numbers and impaired function of mature
DCs, which is closely related to IL-6-mediated STAT3 activation [58–60]. IL-6-mediated
STAT3 activation is followed by decreased expression of DC maturation markers and the
subsequent inhibition of effector T cell activation [59,61]. Additionally, the induction of reg-
ulatory DCs generation by hepatic carcinoma-associated fibroblasts is also associated with
IL-6-mediated STAT3 activation; regulatory DCs produce indoleamine 2,3-dioxygenase,
which inhibits T cell function and promotes Treg expansion, exerting immunosuppressive
effects [53]. IL-12, as a cytokine that activates TH1 immune responses, participates in DC
activation. The induction of IL-12 expression by DCs significantly increases the proportion
of activated DCs, promotes the expression of co-stimulatory molecules, and induces potent
anti-HCC responses [62]. A study on HCC immunotherapy reported that a mixture of four
cytokines (IL-4, IFNγ, CD40L, and GM-CSF) co-cultured with immature DCs isolated from
the spleen enhanced the antigen-presenting ability of DCs and increased the expression of
maturation markers, indicating the powerful effect of these cytokines in activating DCs [34].

4.2. Tumor-Associated Antigens

Alpha-fetoprotein (AFP) is a tumor-associated antigen in HCC [40]. Previous studies
have found that it inhibits the maturation of DCs. Subsequent research indicated that HCC
tumor-derived AFP (tAFP) synergizes with low-molecular-weight (LMW) molecules in
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impairing DC differentiation and function, with LMW molecules being necessary for tAFP
to reduce the expression of DC maturation markers [63,64]. Additionally, AFP inhibits the
production of IL-12 by DCs [40], thereby impairing the activation of NK cells. Due to its
inhibition of DC maturation, AFP may also induce the killing of immature DCs by NK
cells [65]. Mitochondrial Translational Initiation Factor 2 (MTIF2) is highly expressed in
HCC and serves as a central tumor immune infiltration gene, inhibiting DC maturation by
reducing the release of DAMPs after 5-fluorouracil (5-FU) treatment [66].

4.3. Complement Lectins

Ficolin-2, a complement lectin, is lowly expressed in the serum of cancer patients. It
plays a significant role in maintaining immune balance by binding to pathogens to activate
the complement system, participating in inflammation regulation, and activating immune
cells [67,68]. Ding et al. demonstrated that ficolin-2 activates DCs by binding to TLR4 on
DCs, thereby enhancing the proliferation of CD8+ T cells. The activation of immune cells
by ficolin-2 contributes to inhibiting malignant liver cancer progression, providing strong
support for ficolin-2 as an immunotherapeutic agent [69].

4.4. Exosomes

Exosomes are double-layered membrane vesicles secreted by cells, which contain
various lipids, proteins, and nucleic acids and play crucial roles in physiological and
pathological processes. Shi et al. found that the level of serum exosomes in HCC patients
was significantly higher than in normal individuals, and exosomes could promote DC
activation, increase the secretion of IL-2 and IL-12, and mediate T cell responses to exert
anti-tumor effects [70].

4.5. Tregs

Tregs are a type of immune cells and are primarily responsible for regulating and sup-
pressing immune responses to maintain immune system balance and self-tolerance [71,72].
They typically inhibit immune responses against tumor antigens, thereby promoting tumor
growth [73]. Some studies have shown that Tregs are overexpressed in HCC patients and
are often associated with poor prognosis [74–76] and mediating HCC immune escape [73].
Soluble fibrinogen-like protein 2 (sFGL2) secreted by Tregs in HCC downregulates the
expression of DC-related inflammatory markers on BMDCs by suppressing the phosphory-
lation of AKT and p38. Additionally, the increase in Tregs promotes the secretion of IL-35,
resulting in the suppression of immune cell numbers, including DCs, which may contribute
to the poor efficacy of HCC immunotherapy [23].

4.6. Hypoxia

Hypoxia is a significant characteristic of the tumor microenvironment due to the
rapid growth of tumor cells, which often leads to oxygen deficiency in tumor tissues [77].
Hypoxia affects DC activation through multiple mechanisms. TME hypoxia can induce the
upregulation of CD47 expression in HCC cells, mediated by hypoxia-inducible factor 1α
(HIF-1α). CD47 can interact with its receptor signal regulatory protein α (SIRPα) to inhibit
the phagocytic activity of DCs and promote tumor immune escape [27,78]. Furthermore, in
highly hypoxic regions of liver cancer, Tregs and cDC2s are significantly enriched, with
Tregs mediating the downregulation of HLA-DR expression on cDC2s, inhibiting the
antigen presentation ability of cDC2s [79].

5. DC Activation Strategies in HCC Immunotherapy

Immunotherapy based on DCs holds great promise in the treatment of HCC. The
activation of DCs facilitates the induction of immune responses against HCC cells, thereby
reversing the immunosuppressive tumor microenvironment, which is a crucial step in
immunotherapy. Currently, various strategies in HCC immunotherapy, including targeted
therapy, nanoparticle delivery, and vaccines, are employed to activate DCs for better tumor



Biomolecules 2024, 14, 1161 6 of 16

responses. The specific activation mechanisms and effects of these strategies are outlined
in Table 1. Meanwhile, Figure 2 demonstrates the strategies to activate DCs in HCC
immunotherapy in a visual way.
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5.1. DC Vaccines

DC-based vaccines in HCC immunotherapy leverage their antigen-presenting prop-
erties to deliver HCC-associated antigens to the immune system, stimulating effective
anti-tumor immunity. To achieve this, several strategies have been developed to load
tumor antigens onto DCs. To overcome the limitation that peptides of tumor-specific
antigens require specific HLA molecules for presentation [80], several strategies have been
developed to load tumor antigens onto DCs to present multiple tumor antigens. These
strategies include loading DCs with tumor lysates/tumor cell RNA, transfecting DCs with
plasmid DNA/viral vector DNA/mRNA encoding known antigen genes, and fusion of
DCs with tumor cells [81–85]. However, these strategies are often combined with other
methods to stimulate DCs, such as adjuvants and drugs, to better activate DCs and exert
anti-tumor effects. HSPs, stress-induced molecular chaperones, can act as natural adju-
vants to efficiently present peptide partners to APCs via specific receptors. Moreover,
HSPs are able to effectively stimulate the secretion of cytokines and chemokines, inducing
DCs maturation. A completed phase I clinical trial assessed the safety and feasibility of
HSP70 mRNA-transfected DC therapy for unresectable or recurrent HCC treatment [86].
Subsequent phase I/II randomized controlled trials validated its safety and efficacy as an
adjuvant therapy after curative resection for HCC. The vaccine was safe, well-tolerated, and
resulted in significantly longer overall survival in the DC group compared to the control
group in the HCC subgroup expressing HSP70 [87]. Additionally, Wang et al. utilized
human-derived HSP-gp96 peptide complexes prepared from HCC SMMC-7721 cells as anti-
gens for pulsing DCs, promoting DCs activation, stimulating autologous T cell proliferation,
and inducing specific T cell generation [81]. Similarly, adding microbial HSP70 peptide
epitopes 407–426 and an anticancer agent (OK-432) to pulsed DCs effectively enhanced
DCs activity and the efficacy of DC vaccines [88]. However, the immune microenviron-
ment is a dynamic and holistic system. Activating DCs may lead to changes in other cells.
Annabelle Vogt et al. [62] pointed out DC transduction with IL-12-encoded adenovirus was
accompanied by an increase in immunosuppressive cells while activating Th1 immunity.
The increase in immunosuppressive cells may be to prevent excessive inflammation and
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autoimmunity. This can be improved by combination therapy with drugs regulating other
immunosuppressive cells. Currently, antigen-loaded DC vaccines have entered clinical
trial stages and are being combined with other immunotherapies for HCC treatment. The
first stage of a phase II trial (NCT03067493) assessed the safety of an antigen-loaded DC
vaccine combined with T cell immunotherapy. Among the 10 patients, no grade 3 or higher
treatment-related adverse events were reported, 70% of patients developed antigen-specific
T cell responses, and 71.4% of patients remained recurrence-free within two years after
curative treatment, demonstrating the safety and feasibility of this therapy [89]. PD-L1
is a ligand on tumor cells that binds to the PD-1 receptor on T cells and can inhibit T cell
proliferation and activation and participate in the immune escape of tumors. Therefore,
blockade of the PD-1 pathway by PD-1/PDL-1 inhibitors can restore the ability of T cells to
kill tumor cells [90]. Clinical trials conducted with PD-1/PDL-1 inhibitors have shown that
they are safe and effective for the treatment of HCC [91]. Currently, they are commonly
used as an adjuvant therapy for HCC. A recent study showed that a tumor lysate-pulsed
DC vaccine combined with a PD-L1 inhibitor had a stronger anti-tumor T-cell response
and better prognosis compared to monotherapy [92]. Therefore, PD-1/PDL-1 inhibitors
combined with DC vaccines for the treatment of HCC hold great promise.

5.2. Exosome-Related Immunotherapy

Tumor-secreted exosomes can serve as delivery tools to transport various tumor anti-
gens to DCs, triggering DCs activation and exerting potent tumor-specific killing effects. A
study on exosome stimulation of HCC immunity revealed that tumor-derived exosome
(TEX)-pulsed DCs exhibited a stronger immune response than cell lysate-pulsed DCs, signif-
icantly inhibiting tumor growth and reshaping the immune microenvironment (increased
levels of immune stimulatory factors, decreased levels of inhibitory factors). Surprisingly,
HCC TEXs not only cross-protect HCC cells from mice and humans but also exert effects
on pancreatic cancer cells, demonstrating their broad potential as antigen carriers [93].
Additionally, the addition of high-mobility group nucleosome-binding protein 1 (HMGN1)
as an adjuvant promotes the immunostimulatory effect of TEXs on DCs, while HMGN1
itself can promote the recruitment and activation of DCs [94]. TEXs painted with the
HMGN1 functional domain and DC-derived exosome vaccines painted with the HMGN1
functional domain both promote DCs activation, especially the latter, which can promote
the activation of endogenous DCs in HCC, thereby presenting antigens and inducing
tumor-specific T cell responses [37,95]. In summary, exosome-related immunotherapy is a
promising immunotherapy strategy.

5.3. Targeted Therapy

pDCs highly express TLR7 and TLR9. TLR7 and TLR9 agonists can stimulate pDCs to
sense infections and induce the phenotypic maturation of pDCs and expression of IFN-α.
However, consideration should be given to the immune limitations brought about by TLR
stimulation of pDCs. Therefore, it is crucial to develop activators that can avoid excessive
activation of pDCs while maintaining their immune function for the treatment of HCV
(hepatitis C virus)-related HCC [36]. In addition to Toll-like receptor agonists, the use of
receptor blockers is also a way to activate DCs.

CD47 is a protein that is overexpressed on multiple tumor cells, inhibiting the phago-
cytic function of DCs by binding to SIRPα [96]. Therefore, in HCC immunotherapy, the use
of CD47-blocking agents can disrupt its binding, restore the phagocytic function of DCs,
enhance their antigen processing and presentation capabilities, thereby activating DCs and
enhancing the immune responses [27].

5.4. Nanocarrier-Based Immunotherapy for HCC

Chemotherapy drugs, radiotherapy, local ablation, oncolytic agents, and certain com-
pounds can be categorized as immunotherapy, but their mechanisms primarily involve
damaging HCC cells, leading to the release of endogenous adjuvants and tumor antigens,
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indirectly activating DCs and inducing anti-tumor immune responses [32,33,97–99]. After
the local ablation of the HCC, TNF-α and IL-1β in the patient’s serum can act as new
adjuvants to promote the maturation of myeloid dendritic cells [97]. Therefore, combining
DC-related immunotherapy with local ablation may reverse tumor immunosuppression,
potentially offering an effective treatment strategy for HCC.

Nanocarriers are nanoscale materials capable of carrying and releasing biologically
active substances such as drugs, antigens, and genes. By modulating their structure,
composition, and surface properties, nanocarriers can exert protection, control release,
and target delivery of drugs or active substances, making them more easily recognized
and engulfed by APCs, thus playing an important role in HCC immunotherapy [100–102].
Previously, RNA-pulsed DC vaccine preparation required long cycles and high costs. But
the emergence of lipid nanoparticles loaded with HCC RNA greatly shortened the vaccine
production time while protecting RNA stability and delivering RNA to DCs, inducing DCs
activation and anti-tumor activity both in vivo and in vitro [103].

The delivery of antigens and Toll-like receptor agonists by nanoparticles can activate
the maturation of DCs, promote potent T cell responses, and inhibit the malignant pro-
gression of HCC [104,105]. After radiotherapy and microwave ablation, tumors release
“danger signals”. Mannose-derived carbon dots and mesoporous silica nanoparticles can
capture these signals, enhance antigen presentation by DCs, and increase immune cell
infiltration [106,107]. A recent study showed that a nanoparticle drug that captures tumor-
associated antigens (TAAs) released after thermal ablation delivers antigens and drugs
promoting DC maturation to tumor-infiltrating dendritic cells (TIDCs), stimulating TIDC
activation and maturation, thereby presenting antigens to T cells to activate anti-tumor
immunity [108]. Creating an immune-stimulating microenvironment is crucial for DCs
activation. A nanovaccine carrying cGAMP and adsorbed TAAs was designed to trigger
persistent immune responses, assisting radiofrequency ablation therapy [109]. In addi-
tion to loading antigens, nanocarriers deliver drugs that induce immunogenic cell death
(ICD) of HCC cells [110], activating DCs by releasing DAMPs and TAAs, and reversing
the immunosuppressive tumor microenvironment to promote an immune-supportive mi-
croenvironment [4,111,112]. Furthermore, nanoparticles amplified by autophagy have
been reported to promote tumor immunity. Exploiting the sensitivity of tumor tissue
to autophagy after radiofrequency ablation breaks the protective effect of low levels of
autophagy on tumor cells, relieving their immune suppression and inducing ICD of tumor
cells, thereby promoting DCs maturation [113]. Surprisingly, metal–organic framework
801 (MOF-801) not only serves as a delivery vehicle but it also, when combined with other
drugs as a STING agonist, activates the NF-κB signaling pathway to reprogram tumor-
associated macrophages and accelerate DCs maturation [29]. In summary, nanocarriers
have a short preparation time, good targeting, and can load multiple active substances
to activate DCs, induce potent and durable anti-tumor immunity, and reshape the tumor
microenvironment, showing broad prospects in the treatment of HCC. Notably, the DCs
in HCC immunotherapies that we discussed above were mainly obtained by adding GM-
CSF and IL-4 to PBMCs or mouse bone marrow cells in culture, which are also known as
MoDCs (monocyte-derived dendritic cells) or BMDCs [114]. They are phenotypically and
functionally different from naturally occurring cDCs and are similar only under specific
conditions. A growing number of studies have shown that in vitro-obtained DCs have
lower activity and function compared to naturally occurring DCs (nDCs), and moDCs do
not cross-present as well as nDCs [115]. pDCs and cDCs are considered nDCs, and among
the several DC subsets currently available, cDC1 has a greater ability to cross-present
antigenic antigens and a strong ability to activate CD8+ T cells in vitro. In addition to
this, pDCs are effective in cross-presenting exogenous antibodies to CD8+ T cells despite
their low uptake of antigens, and myeloid DCs are able to induce a Th1 response through
TLR-mediated stimulation to produce IL-12. Similarly, pDC-derived type I IFNs can act as
Th1-inducing cytokines and participate in Th1 differentiation. In conclusion, pDCs show
strong potential in activating anti-tumor immunity [116].
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Table 1. Activation strategies for dendritic cells and their effects in hepatocellular carcinoma
immunotherapy.

DC Therapy DC Activation Method Principle Effects

DC vaccines
Dendritic cells pulsed with

gp96-peptide complexes
(in vitro) [81]

Antigenic stimulation
Increased expression of MHC class
II, CD80, CD86, CD40, and CD83;

generation of specific CTLs

mHSP70 407-426 and OK-432
tumor cell lysate-pulsed DCs

(in vitro and in vivo) [88]

OK-432 promotes DC
maturation; mHSP70 407-426
can improve DC maturation

through enhancing the
interaction between CD40 and

CD40L

Activation of DCs; increased
production of Th1-type cytokines;

induction of lymphocyte
proliferation and high levels of CTL
production; effective inhibition of

tumor growth

Tumor-lysate pulsed DCs
were transduced with

IL-12-encoding adenoviruses
(in vitro and
in vivo) [62]

IL-12 promotes the expression
of CD83 and co-stimulatory

molecules

Induced robust Th1 immune
responses and tumor cell apoptosis

Exosome-related
immunotherapy

TEX-pulsed DCs (in vitro and
in vivo) [93] Antigenic stimulation

Increased number of T lymphocytes;
significant inhibition of tumor

growth; increased levels of IFN-γ;
decreased levels of IL-10 and TGF-β

HMGN1-attached tumor
exosomes (in vitro and

in vivo) [95]

HMGN1 promotes the
maturation and activation of

DCs

Promoted DCs activation,
generated memory T cells and

enhanced anti-tumor immunity

A DEX vaccine loaded with
P47-P, AFP212-A2, and
N1ND-N (in vivo) [37]

HMGN 1 promotes DC
recruitment and activation

DC uptake and cross-presentation
of tumor neoantigens triggered
robust tumor-specific immune

responses

Receptor agonists TLR7 and TLR9 agonists
(in vitro) [36]

Stimulation of pDCs to sense
infections induces pDCs

phenotypic changes

IFN- α, CD86, CD40, and HLA-DR
were upregulated

Receptor blockers CD47 blocking agents
(in vitro and in vivo) [27]

Blocking the binding of CD47
to signal-regulated protein α

restores phagocytosis in
dendritic cells and activates

them

Activation of the cGAS-STING
pathway promoted CD103+ DCs
secretion of CXCL9 and IL-12 and

activation of NK cells

Local ablation PEI/RFTA (in vitro) [97]
Promotes a pro-inflammatory

environment in the serum
after PEI/RFTA treatment

Increased serum levels of TNF-a
and IL-1β; promoted transient

activation of MDCs in peripheral
blood and stimulation of CD4+ T

cells

Chemotherapy drugs

Hyperbaric oxygen and
teniposide combination

therapy (in vitro and
in vivo) [99]

Hyperbaric oxygen
significantly enhances

teniposide-induced
cGAS-STING-dependent type
I tumor interferon and NF-κB

signal transduction

Activation of DCs and
tumor-infiltrating CTLs enhanced

sensitivity to anti-PD-1
immunotherapy

Radiotherapy Irradiation (in vivo) [32,33] Irradiation leads to the release
of tumor-associated antigens

Activation of DCs and T cells; the
expression of CD86 and MHC class

II increased; and the number of
CD11c+ DCs and CD8+T cells

increased

Oncolytic agents WNV live attenuated vaccine
(in vitro and in vivo) [117]

Tumor antigen release is
induced by oncolytic viruses

Activation of DCs and CD8 + T cells;
inhibition of tumor proliferation
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Table 1. Cont.

DC Therapy DC Activation Method Principle Effects

Compounds Cryptotanshinone (in vitro
and in vivo) [98]

Increases the supply of tumor
antigens available to the

immune system

Inhibition of HCC cell proliferation;
activation of DCs and macrophages;

increased CD8T cell infiltration

Nanoparticle-based
immunotherapy for

HCC

Lipid nanoparticles loaded
with HCC RNA (in vitro and

in vivo) [103]
Antigen presentation

Promoted DC maturation and
induced specific CTL production;

effectively inhibited growth of HCC
in mice

DOX/
ICG-loaded BHM

nanoparticles (in vitro and
in vivo) [111]

Induces ICD in tumor cells

Promoted DC activation and
CD8+T cell and CD4+T lymphocyte

infiltration; improved
immunosuppressive TME

SSZ-loaded
CH-OD(CH-OD-SSZ)
hydrogel (in vitro and

in vivo) [4]

Induces ICD in tumor cells
and increases expression of

DAMPs to induce DC
maturation in a co-culture

model

Increased expression of CD80 and
CD86; Repolarization of

macrophages to M1-like phenotype;
TIME remodeling; enhanced

anti-tumor immunity

H-ferritin nanocages loaded
with doxorubicin

(in vivo) [112]
Induces ICD in tumor cells

Promoted the activation and
maturation of DCs to exert a
powerful tumor-killing effect

A virus-like silicon vaccine
with a unique spike

topological structure (in vitro
and in vivo) [104]

Co-delivery of neoantigen and
TLR9 agonist to DCs

Activated DCs that promote robust
CD8+ T cells and central memory T
cells responses to inhibit orthotopic

HCC tumor growth

MOF-CpG-DMXAA
(in vivo) [29]

Activates the
cGAS-STING–NF-κB

signaling pathway

Reprogrammed TAMs; promoted
the maturation of DCs; increased
infiltration of CD4+ and CD8+ T

cells; decreased expression of Tregs;
and generation of potent
tumor-killing immunity

DC: dendritic cell; MHC class II: major histocompatibility complex class II; CTLs: cytotoxic T lymphocytes; DCs:
dendritic cells; mHSP70 407-426: microbial HSP70 peptide epitope 407–426; OK-432: a penicillin-inactivated strep-
tococcus pyogenes; Th1: T helper 1; IL-2: interleukin-2; TEX: tumor-derived exosome; IFN-γ: interferon-gamma;
IL-10: interleukin-10; TGF-β: transforming growth factor β; HMGN1: high-mobility group nucleosome-binding
protein 1; DEX: DC-derived exosomes; P47-P: HCC-targeting peptide; AFP212-A2: α-fetoprotein epitope; N1ND-
N: high-mobility group nucleosome-binding protein 1; TLR7: Toll-like receptor 7; TLR9: Toll-like receptor 9;
pDCs: plasmacytoid dendritic cells; pDC: plasmacytoid dendritic cell; IFN-α: interferon alpha; NK cells: natural
killer cells; PEI: percutaneous ethanol injection; RFTA: radiofrequency thermal ablation; IL-1β: interleukin-
1beta; MDCs: myeloid dendritic cells; NF-κB: nuclear factor kappa-B; PD-1: programmed death-1; WNV: West
Nile virus; HCC: hepatocellular carcinoma; CTL:cytotoxic T lymphocyte; DOX: doxorubicin; ICG: indocyanine
green; BHM: bovine albumin/hyaluronan; ICD: immunogenic death; TME: tumor microenvironment; SSZ:
sulfasalazine; CH-OD: chitosan hydrochloride and oxidized dextran; DAMPs: damage-associated molecular
patterns; MOF-CpG-DMXAA: nanoparticles assembled from cytosine-phosphate-guanine oligodeoxyribonu-
cleotides, 5,6-dimethylheteroanthrone-4-acetic acid, and metal–organic framework 801; TAMs, tumor-associated
macrophages.

6. Conclusions and Future Perspectives

In this review, DCs activation and the influencing factors in HCC microenvironments
were analyzed and summarized, and the activation strategies for DCs in the context of HCC
immunotherapy were outlined, which are instrumental in guiding research on DC-based
immunotherapies for HCC. Despite the notable achievements of DC vaccines in HCC im-
munotherapy, their high cost and lengthy preparation time pose challenges, increasing the
risk of tumor immune escape and potentially leading to the proliferation of tumor immuno-
suppressive cells. Encouragingly, the emergence of exosomes and emerging nanocarriers
brings hope for DC-based immunotherapy, facilitating easier antigen loading, effectively
activating DCs, and eliciting robust and enduring tumor immunity, while also reversing
the immunosuppressive tumor microenvironment. Furthermore, nanotechnology can be



Biomolecules 2024, 14, 1161 11 of 16

combined with traditional therapeutic modalities triggering immunogenicity or other im-
munotherapies to evoke potent anti-tumor immunity. In conclusion, the activation of DCs
plays an important role in the induction of innate immunity and adaptive immunity against
HCC. By optimizing DCs activation measures in HCC immunological microenvironments,
novel breakthroughs in HCC immunotherapy are anticipated.
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