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IRF1 is critical for the TNF-driven interferon
response in rheumatoid fibroblast-like
synoviocytes
JAKinibs suppress the interferon response in RA-FLSs
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Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent synovial inflammation. The major
drivers of synovial inflammation are cytokines and chemokines. Among these molecules, TNF activates fibroblast-like
synoviocytes (FLSs), which leads to the production of inflammatory mediators. Here, we show that TNF regulates the
expression of the transcription factor interferon regulatory factor 1 (IRF1) in human FLSs as well as in a TNF transgenic
arthritis mouse model. Transcriptomic analyses of IRF1-deficient, TNF-stimulated FLSs define the interferon (IFN)
pathway as a major target of IRF1. IRF1 expression is associated with the expression of IFNβ, which leads to the
activation of the JAK-STAT pathway. Blocking the JAK-STAT pathway with the Janus kinase inhibitor (JAKinib) baricitinib
or tofacitinib reduces the expression of IFN-regulated genes (IRGs) in TNF-activated FLSs. Therefore, we conclude that
TNF induces a distinct inflammatory cascade, in which IRGs are key elements, in FLSs. The IFN-signature might be a
promising biomarker for the efficient and personalized use of new treatment strategies for RA, such as JAKinibs.

Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory

autoimmune disease that primarily affects the synovium
of diarthrodial joints. Rheumatoid synovitis is character-
ized by the expansion of resident fibroblast-like synovio-
cytes (FLSs) and infiltration of immune cells into the
synovial membrane1,2. Cytokine- and chemokine-
mediated crosstalk between activated immune cells and
FLSs sustains local inflammation and imprints disease-
specific cellular signatures3. Whole-genome expression

profiling of rheumatoid synovial tissue samples depicts a
potential role for interferon-regulated genes (IRGs) in the
pathogenesis of RA. Among the IRGs, several genes that
drive RA disease progression, such as the transcription
factor (TF) STAT1, the chemokines CXCL9 and CXCL10,
and the cytokine TNFSF13B, which is also called B-cell
activating factor (BAFF), can be found4,5. The over-
expression of IRGs can be detected in up to 65% of RA
patients6. Individuals with an interferon (IFN) signature
have a significantly higher risk of developing RA7,
underlining the major role of IRGs in the pathogenesis of
RA. The IFN signature has also been discussed as a
potential biomarker, since clinical studies have demon-
strated strong associations between IRGs and the clinical
response to biological disease modifying antirheumatic
drugs (bDMARDS)8–11. In RA patients, it has been shown
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that TNF is a strong inducer of IRGs12. Especially in FLSs,
we previously demonstrated that the TNF-induced sig-
nature contains more than 50% of the IRGs13. However,
the signaling circuit that allows TNF to induce the
expression of IRGs in FLSs is largely unknown.
Previous studies highlighted a key role for the TF IRF1

in TNF-induced gene expression in monocytes and
endothelial cells14,15. Since IRF1 knockdown prevents
murine collagen-induced arthritis16, and IRF1 is expressed
in activated FLSs17, we hypothesized that IRF1 might
contribute to the TNF response in RA-FLSs. Through a
comprehensive approach encompassing transcriptomics
and biochemistry, our study indeed revealed that
IRF1 specifically drives the IFN signature in RA-FLSs via
STAT1. Accordingly, blocking the JAK-STAT pathway
with a JAK inhibitor (JAKinib), baricitinib or tofacitinib,
suppressed the TNF-induced expression of proin-
flammatory IRGs. Thus, our study contributes novel
insights into the synovial response to TNF and shows that
JAKinibs target the TNF-induced IFN response in RA.

Material and methods
Patients and synovial tissue samples
Synovial tissue samples were obtained from RA (ful-

filling the American College of Rheumatology/European
League Against Rheumatism (ACR/EULAR) classification
criteria for RA18) or osteoarthritis (OA) patients under-
going joint replacement or synovectomy. All patients
provided written informed consent prior to synovial tissue
donation. This study was approved by the ethics com-
mittee of the Medical University of Vienna.

hTNFtg arthritis mouse model
TNF transgenic mice that overexpress human TNF

(Tg197 strain, C57BL/6 genetic background) were ori-
ginally generated by the group of George Kollias (Fleming
Institute, Athens, Greece19). Mice were maintained under
conventional housing conditions (humidity 50%, 22 °C,
12-h light/12-h dark cycle). All experiments were per-
formed with female mice. Age-matched nontransgenic
female littermates were used as controls. All experiments
were approved by the local ethical committee and the
Federal Ministry of Science, Research and Economics.

Immunohistochemistry (IHC) of synovial tissue samples
Synovial tissue samples (patient characteristics are

shown in Supplementary Table 1) were fixed in paraf-
ormaldehyde and then embedded in paraffin. Paraffin-
embedded sections were treated with Tris-EDTA (pH 9).
To reduce nonspecific protein binding, the sections were
incubated with goat serum. Synovial IRF1 expression was
detected with a polyclonal rabbit anti-IRF1 antibody (Cell
Signaling Technology). A nonimmune immunoglobulin of
the same isotype and concentration as the primary

antibody (anti-rabbit IgG (R&D Systems)) served as a
control. After incubation with a biotinylated goat anti-
rabbit antibody (Vector), the sections were incubated with
Vectastain Elite reagent and visualized using 3,3-diami-
nobenzidine (Vector). The sections were counterstained
with hematoxylin (Merck). The expression of IRF1 was
assessed using semiquantitative scoring (0= no staining,
3= high staining).
IHC was also performed on hind paw tissue from 15-

week-old hTNFtg mice and wild-type (WT) littermates.
Hind paws were fixed in 7% formaldehyde for 6 h, fol-
lowed by decalcification in 14% EDTA buffer (pH 7.2) for
4–6 days. Paraffin-embedded sections were used for
immunohistochemical staining for synovial IRF1 expres-
sion using the antibodies and protocol mentioned above.

Isolation and culture of FLSs
FLS single cell suspensions were obtained by digesting

minced synovial tissue samples with collagenase type II
(Merck). FLSs were cultured in DMEM (Thermo Fisher
Scientific) supplemented with 10% fetal bovine serum
(FBS; HyClone), 1% penicillin/streptomycin (P/S), and
nonessential amino acids (both Thermo Fisher Scientific).
FLSs beyond passage 4 were used. The following cyto-
kines and inhibitors were used as indicated: TNF (10 ng/
ml, R&D Systems), baricitinib (250 nM, Selleckchem) and
tofacitinib (250 nM, Selleckchem).

Western blot analysis
FLSs were lysed with RIPA buffer (Thermo Fisher Sci-

entific) supplemented with the Halt™ phosphatase inhi-
bitor cocktail (Thermo Fisher Scientific) and a protease
inhibitor mix (Sigma-Aldrich). The protein lysates were
fractioned on polyacrylamide gels, followed by electro-
transfer to nitrocellulose membranes, which were blocked
with either 5% BSA or 5% nonfat dry milk and then
incubated with primary antibodies (Cell Signaling Tech-
nology: anti-IκBα, anti-IRF1, anti-BAFF, anti-p-STAT1,
and anti-STAT1; Sigma-Aldrich: anti-ACTIN). After an
incubation with HRP-conjugated secondary antibodies
(Cell Signaling Technology), specific bands were detected
with the BIORAD Clarity ECL Western substrate.
Reprobing was performed using ReBlot Plus Strong
Solution (Merck).

Synovial micromass cultures
Micromass organ cultures were prepared as previously

described20. FLSs were resuspended in ice-cold Matrigel
Matrix (BD Biosciences). The cell/ECM suspension was
placed on Poly-HEMA-coated culture dishes (Sigma-
Aldrich) and overlaid with culture medium (DMEM
supplemented with 5% FBS, 1% ITS liquid media sup-
plement (Sigma-Aldrich), 0.125% bovine serum albumin
(BSA; Calbiochem), 0.008 g ascorbic acid (Thermo Fisher
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Scientific), 1% NEAA (Thermo Fisher Scientific) and 1%
P/S). At the time points indicated, the micromasses were
fixed in paraformaldehyde and then embedded in paraffin.
Paraffin-embedded sections were treated with a citrate
buffer (pH 6, BAFF) or Tris-EDTA (pH 9, IRF1). To
reduce nonspecific protein binding, the sections were
incubated with the goat serum. The following antibodies
were used: anti-IRF1 (Cell Signaling Technology) and
anti-BAFF (Enzo Life Sciences). Nonimmune immu-
noglobulins of the same isotype and concentration as the
primary antibody (anti-rabbit IgG, Novus Biologicals; rat
IgM, Thermo Fisher Scientific) served as controls.

siRNA-mediated expression knockdown
FLSs were cultured in Opti-MEM (Thermo Fisher Sci-

entific) and transfected with SMARTpool: ON-
TARGETplus siRNA pools (Horizon Discovery) using
Lipofectamine (Thermo Fisher Scientific)21.

RNA isolation
RNA was isolated from RA-FLSs using an RNeasy

purification kit (Qiagen) according to the manufacturer's
protocol. Total RNA was isolated from the frozen front
paw tissue of hTNFtg and wild-type littermates by
mechanical homogenization using a standard Trizol
purification protocol.

Quantitative real‐time polymerase chain reaction (qPCR)
RNA was reverse transcribed into cDNA using an

Omniscript RT kit (Qiagen). RNA concentrations were
determined using a Nanodrop spectrophotometer. qPCR
was performed using a Fast Start SYBR Green I kit
(Roche). The results were quantified by the 2−ΔΔC(t)
method, using GAPDH expression levels for normal-
ization. The primer sequences for human primers were as
follows: CXCL9 FW: ATCAGCACCAACCAAGGGACT,
RV: GCTTTTTCTTTTGGCTGACCTG; CXCL10 FW:
ATTTGCTGCCTTATCTTTCTG, RV: TCTCACCCTT
CTTTTTCATTGTAG; CXCL11 FW: GAAGGATGAAA
GGTGGGTGA, RV: AAGCACTTTGTAAACTCCGAT
G; TNFSF13B: FW: GGAGAAGGCAACTCCAGTCAGA
AC, RV:CAATTCATCCCCAAAGACATGGAC; and GA
PDH FW: TGATGACATCAAGAAGGTGGTGAAG, RV
TCCTTGGAGGCCATGTGGGCCAT.
The following mouse primers were used: GAPDH FW

TGGCATTGTGGAAGGGCTCATGAC, RV: ATGCCAGT
GAGCTTGCCGTTCAGC; and IRF1 FW: CCCACAGAAG
AGCATAGCAC, RV: AGCAGTTCTTTGGGAATAGG.

RNA sequencing
RNA was isolated as described above. The amount of

total RNA was quantified using a Qubit Fluorometric
Quantitation system (Thermo Fisher Scientific), and the
RNA integrity number (RIN) was determined using the

Experion Automated Electrophoresis System (Bio-Rad).
RNA-seq libraries were prepared with a TruSeq Stranded
mRNA LT sample preparation kit (Illumina) using both
Sciclone and Zephyr liquid-handling robotics (Perki-
nElmer). Library concentrations were quantified with the
Qubit Fluorometric Quantitation system (Thermo Fisher
Scientific), and the size distribution was assessed using the
Experion Automated Electrophoresis System (Bio-Rad).
For sequencing, samples were diluted and pooled into
NGS libraries in equimolar amounts. Expression-profiling
libraries were sequenced with Illumina HiSeq 3000/4000
instruments in the 50-base-pair-single-end mode.

RNA sequencing data analysis
Raw sequencing data were processed with Illumina2-

bam (http://github.com/wtsi-npg/illumina2bam) to gen-
erate unaligned BAM files. Sequence reads were mapped
onto the human genome release hg38 (GRCh38) with
Ensembl transcript annotation version 87 using tophat
version 2.1.122 with bowtie version 2.2.923. Reads were
counted with featureCounts24. Gene expression values
(reads per kilobase exon per million mapped reads
(RPKM)) were calculated with Cufflinks version 2.225. The
differential expression between two paired sample groups
was calculated with edgeR26. The filtering for differentially
expressed genes was performed with a p-value of 0.05
(FDR corrected) and minimal fold-change of 2. For GO
enrichment analysis of a gene set, GOstats version
2.46.027 was used. Cytoscape version 3.6.0 and the plugin
Enrichment map (v3.0.0) were used for network
visualization28.

ELISA
A CXCL10 ELISA kit was purchased from Thermo

Fisher Scientific. ELISAs were performed according to the
manufacturer’s protocol.

Statistical analysis
Unpaired and paired t-tests were used for comparing

groups and paired samples, provided that the data
exhibited a Gaussian distribution. For data that were not
normally distributed, the Mann–Whitney U test or the
Wilcoxon signed-rank test was performed. For graphing
and statistical analysis, we used Graph Pad Prism
6 software.

Results
TNF-induced IRF1 expression in RA-FLSs
In line with previous observations5, we found IRF1 to be

highly expressed in the synovium in RA patients, but not in
osteoarthritis (OA) patients (Fig. 1a) when we analyzed IRF1
expression by IHC. Further analyses revealed that IRF1
expression was distinctly elevated in fibroblast-like cells
from both the synovial lining and sublining layers (Fig. 1b).
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Similarly, IRF1 was highly expressed in the inflamed syno-
vium in human TNF transgenic (hTNFtg) mice (Fig. 1c, d)
that constitutively overexpress human TNF, and conse-
quently develop spontaneous arthritis. These data suggest a
major role for TNF as a regulator of IRF1.
To confirm that TNF directs IRF1 expression in FLSs,

we isolated FLSs from RA patients and stimulated these
cells with TNF. We observed a strong upregulation of
IRF1 expression upon TNF stimulation after 30 min, and

this increase was maintained for up to 3 h (Fig. 1e). To
address the effects of chronic TNF stimulation, we
employed an in vitro 3-D synovial tissue culture model
system, which was previously shown to display many
in vivo functions of the synovial membrane20. To this end,
RA-FLSs were cultured in a floating Matrigel matrix
sphere and stimulated with TNF for 7 days. Similar to the
expression pattern in RA synovial tissues (as shown in Fig.
1a), increased levels of IRF1 in the TNF-stimulated
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Fig. 1 TNF-induced IRF1 expression in RA-FLSs. a Representative immunostaining for IRF1 (brown staining) in rheumatoid arthritis (RA) and
osteoarthritis (OA) synovial tissue samples (upper panel). Staining with an isotype-matched control antibody (CTRL) is presented in the lower panel.
b Synovial tissue samples from 12 RA and 8 OA patients evaluated for IRF1 expression using a semiquantitative score (0= no staining, 3= high
staining). Lining: Mann–Whitney U test, **p= 0.0016; Sublining: Student’s t-test, ****p < 0.0001. c Quantitative RT-PCR analysis of the IRF1 mRNA levels
in hind paws obtained from wild-type (WT) and hTNFtg mice. Mann-Whitney U test, ***p= 0.0008. d Immunohistochemical detection of IRF1 (brown
staining) in hind paw tissue from WT and hTNFtg mice. e Western blot analysis of TNF-stimulated (10 ng/ml) RA-FLSs. Blots representative of at least
five independent experiments with FLSs from different donors are shown. f RA-FLSs cultured in micromass organ cultures for 7 days in the presence
or absence of TNF (10 ng/ml). Micromasses were fixed, sectioned, and stained with hematoxylin and a specific antibody against IRF1 (brown staining).
Representative images from three independent experiments performed with FLSs from three RA patients are shown (upper panel). Staining with an
isotype-matched control antibody (CTRL) is presented in the lower panel
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synovium-like tissue samples compared with unstimu-
lated controls were revealed by IHC (Fig. 1f). These data
define TNF as a regulator of IRF1 in RA-FLSs and provide
an explanation for why IRF1 is abundantly expressed in
the rheumatoid synovium, which is characterized by TNF
overexpression29.

The TNF-driven IFN response in FLSs depends on IRF1
To address the genome-wide contribution of IRF1 to

the TNF-mediated response in RA-FLSs, we transfected
RA-FLSs with siRNA pools targeting IRF1. The trans-
fected RA-FLSs were stimulated with TNF for 3 h
(Fig. 2a, b). Transcriptional changes were determined by
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3 h. RNA was isolated and processed for transcriptomic profiling. b Representative immunoblots of IRF1 expression in RA-FLSs after siRNA transfection
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genes. Dots in the lower right quadrant (red box) represent genes with expression upregulated by TNF, but impaired by the siRNA-mediated
knockdown of IRF1 expression. Dashed blue lines indicate a twofold change in gene expression. d Network analysis of GO term (biological process,
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genes within the bottom right quadrant (red box) in the scatter-plot (Fig. 2c). Circle size shows the relative amount of significant genes associated
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RNA sequencing (Fig. 2, Supplementary Fig. 1). As
expected, the comparison of TNF expression between
stimulated and unstimulated cells revealed a strong
upregulation of the expression of proinflammatory cyto-
kines (e.g., IL6 and IL1B), chemokines (CXCL8, CXCL9,
CXCL10, and CXCL11), tissue-degrading enzymes
(MMP1 andMMP10) and genes (e.g., VCAM, PTGS2, and
TLR2) that are associated with synovial inflammation. As
highlighted in Fig. 2c, silencing IRF1 markedly diminished
the expression of 121 TNF-upregulated genes, which
revealed a genome-wide role for IRF1 as a transcriptional
activator in FLSs. Most of these genes, such as the anti-
viral genes RSAD2 and IFIT2; the proinflammatory
CXCR3-binding chemokines CXCL9, CXCL10, and
CXCL11; the B-cell activating factor TNFSF13B (BAFF)
and IFNβ, represent IRGs.
Consistently, molecular function enrichment analyses of

the 121 TNF-regulated, IRF1-dependent genes revealed
an overrepresentation of pathways involved in IFN and
viral responses (Fig. 2d, e). Overall, these results suggest
that IRF1 is critical for the TNF-driven IFN response
in FLSs.

IRF1 is critical for the TNF-induced expression of CXCR3-
binding chemokines and TNFSF13B
To confirm the RNA sequencing data, we analyzed the

expression of IFN-dependent chemokines and
TNFSF13B. Consistent with the transcriptomic data, we
observed diminished expression of CXCL9, CXCL10,
CXCL11 and TNFSF13B in TNF-treated, IRF1-silenced
FLSs on the mRNA level as assessed by qPCR (Fig. 3a) and
on the protein level as shown by western blotting (Fig. 3b)
or ELISA (Fig. 3c). To test whether the IRF1-induced
regulation of IRGs upon TNF stimulation is dependent on
de novo synthesis of IRF1, we exposed FLSs to cyclo-
heximide (CHX) prior to TNF stimulation (Fig. 3d).
Indeed, the addition of CHX, which blocks protein
synthesis without affecting RNA transcription, completely
abrogated the TNF-induced expression of CXCL11 and
TNFSF13B. As a control, we determined the expression of
RIPK2, which is induced without new protein synthesis.
As expected, RIPK2 transcription was not affected by
CHX treatment. These data support the importance of the
TNF-driven de novo synthesis of IRF1 for the regulation
of IRGs.

The TNF-induced IFN response in FLSs is dependent on
IFNβ
TNF-induced, IFN-regulated gene expression in mac-

rophages relies on the sequential activation of IRF1 and
IFNβ, which induces the phosphorylation of the TF
STAT1 upon binding to the type I IFN-receptor
(IFNAR)15. We therefore performed time-kinetic ana-
lyses of IRF1 and p-STAT1 expression in TNF-stimulated

FLSs. As shown in Fig. 4a, early expression of IRF1 was
followed by the phosphorylation of STAT1. IRF1 knock-
down by siRNA completely blocked STAT1 phosphor-
ylation, which underlines the dependency of STAT1
phosphorylation on IRF1 expression (Fig. 4b). To explore
whether IFNβ contributes to STAT1 activation and IRG
expression in RA-FLSs, we silenced IFNβ with specific
siRNA pools. Knocking down IFNβ expression was asso-
ciated with decreased STAT1 activity (Fig. 4c). The RA-
FLSs expressed lower amounts of TNFSF13B (Fig. 4c, d),
CXCL9, CXCL10, and CXCL11 in the absence of IFNβ
(Fig. 4d, e). Similar results were obtained when IFN
activity was blocked with an anti-IFNβ neutralizing anti-
body (Supplementary Fig. 2). STAT1 phosphorylation and
IRG expression in the TNF-treated FLSs were also
decreased when we targeted IFNAR by using either spe-
cific siRNA pools (IFNAR1, Fig. 4f and Supplementary
Fig. 3) or a blocking antibody specific for IFNAR (Sup-
plementary Fig. 4). These data suggest that the TNF-
mediated upregulation of IRF1 expression induces the
expression of IFNβ, which in turn activates the tran-
scription factor STAT1 to induce the expression of IRGs
in RA-FLSs.

Baricitinib and tofacitinib inhibit the expression of CXCR3-
binding chemokines and TNFSF13B
The activation of STAT1 by IFNβ depends on the Janus

kinases (JAKs) JAK1 and Tyk230. Therefore, we tested
whether JAKinibs, which are approved for the treatment
of RA, can prevent the TNF-induced activation of STAT1
and the expression of downstream target genes. Indeed,
both inhibitors diminished the expression of CXCL9,
CXCL10, CXCL11, and TNSF13B in TNF-activated FLSs
(Fig. 5a, b). Correspondingly, we observed decreased
activation of STAT1 (Fig. 5b) in FLSs upon JAKinib
treatment.
To explore the effects of JAKinibs on a tissue-like

environment, we employed a 3-D synovial culture system.
Tissue-bound FLSs exposed to TNF abundantly expressed
TNFSF13B, as assessed by IHC. Both baricitinib and
tofacitinib inhibited the expression of TNFSF13B, con-
sistent with the results obtained from the 2-D cell cultures
(Fig. 5c). Together these data support the conclusion that
JAKinibs inhibit the TNF-induced, IRF1-mediated acti-
vation of the JAK-STAT pathway and the subsequent
expression of IRGs (Fig. 5d) in RA-FLSs.

Discussion
FLSs are increasingly recognized as major drivers of

synovial inflammation, and joint destruction in RA2,31.
Various proinflammatory cytokines can affect FLSs.
Among proinflammatory cytokines, TNF strongly stimu-
lates FLSs to produce cytokines and chemokines, which
augment and perpetuate inflammatory cell recruitment
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and activation32,33. Thus, FLSs represent a promising
target for the treatment of RA. However, compared with
those in other cells, such as macrophages or lymphocytes,
the pathways in FLSs that allow their participation in
synovial inflammation are poorly defined. In this study,
we showed increased IRF1 expression in inflamed human
and mouse synovial tissue. Based on these data, we
hypothesized that IRF1 is critical for the TNF response in
FLSs. Transcriptomics, indeed, depicted IRF1 as a
genome-wide activator of the TNF-induced expression
signature in FLSs. Specifically, we found that several IRGs

implicated in RA pathogenesis are controlled by IRF1.
Increased levels of the CXCR3-binding chemokines
(CXCL9, CXCL10, and CXCL11) can be found in the
rheumatoid synovium. These chemokines are thought to
sustain leukocyte recruitment to the inflamed synovial
tissue. Moreover, CXCL10 has been shown to promote
FLS invasiveness in an autocrine/paracrine manner34.
Aside from chemokines, TNFSF13B was suppressed in the
absence of IRF1. TNFSF13B, also known as BAFF, is
abundantly expressed in RA synovial tissue. TNFSF13B is
important for B-cell proliferation and differentiation as
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human RA-FLSs treated with TNF in the absence or presence of cycloheximide (CHX, 20 μg/ml). Each experiment was performed in technical
triplicates (error bars, SEM of triplicates). Expression in the treated cells is presented relative to that in the unstimulated cells
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well as autoantibody production35. All these data under-
score the importance of IRF1 as a key TF in synovial
inflammation in RA.
Our biochemical studies revealed that IRF1 expression

represents the first step of a temporally defined signaling
circuit that almost exclusively controls the TNF-induced
IFN response in FLSs. Knocking down IRF1 expression
prevented the TNF-induced transcription of IFNβ and the
subsequent activation of the TF STAT1. Consistently,
both the lack of IFNβ and the loss of IFNAR function

prevented the TNF-induced phosphorylation of STAT1.
Our studies reveal a TNF-based signaling circuit that has
also been observed in other cell types. In both macro-
phages and endothelial cells, TNF stimulation results in
the expression of IRF1 and IFNβ to sustain the expression
of proinflammatory chemokines via STAT114,15. Thus,
these observations suggest that this distinct pathway
exists in the principal cellular components of the stromal
tissue compartment. This conclusion is of particular
interest, since stromal cells, such as fibroblasts,
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macrophages and endothelial cells, define the micro-
environment in which inflammatory reactions take place.
Especially in RA, activated stromal cells contribute to
chronic inflammation and tissue damage by orchestrating
the continuous recruitment, activation and retention
of leukocytes36. Targeting the TNF-IRF1-
IFNβ-STAT1 signaling circuit, which propels the
expression of leukocyte-recruiting (e.g., CXCL9-CXCL10)
and leukocyte-activating (e.g., TNFSF13B) inflammatory
mediators, would therefore interrupt the persistent
vicious crosstalk between immune cells and synovial
stromal cells. These data support the concept of IFN-

targeted therapies in RA patients. Ongoing phase 2 trials
with anifrolumab are currently investigating the potential
of type I IFN blockade in RA patients with a high inter-
feron signature (NCT: 034356019). In macrophages,
tofacitinib has been shown to suppress TNF-mediated
STAT1 activation and chemokine expression37. Tofaciti-
nib inhibits STAT1-driven CXCL10 expression in RA-
FLSs38. In this study, we found that JAKinibs that are
currently approved for the treatment of RA, namely,
baricitinib and tofacitinib, suppress the expression of all
three CXCR3-binding chemokines. Intriguingly, we found
that the JAKinibs suppressed the expression of

p-STAT1 (Y701)

ACTIN

ACTIN

TNFSF13B

Ctrl
TNF

TNF+B
ari

cit
ini

b

TNF+T
ofa

cit
ini

b

Unstimulated TNF TNF+Baricitinb TNF+Tofacitinib

CTRL

TNFSF13B TNFSF13B TNFSF13B TNFSF13B

CTRL CTRL CTRL

C

A

B

CXCL9

TNF

2x104

1x104

Fo
ld

 in
du

ct
io

n

0

**
*

TNF+B
ari

cit
inb

TNF+T
ofa

cit
ini

b

**
*

**
*

**
*

TNF

TNF+B
ari

cit
inb

TNF+T
ofa

cit
ini

b
TNF

TNF+B
ari

cit
inb

TNF+T
ofa

cit
ini

b
TNF

TNF+B
ari

cit
inb

TNF+T
ofa

cit
ini

b0

CXCL10 CXCL11 TNFSF13B2x104

1x104

Fo
ld

 in
du

ct
io

n

Fo
ld

 in
du

ct
io

n

Fo
ld

 in
du

ct
io

n

D

IRF1 IFNβ STAT1

JAKinibs

IRGs

TNF

FLS

0

400

200

0

7000

3500

Fig. 5 JAKinibs inhibit the expression of CXCR3-binding chemokines and TNFSF13B. a RA-FLSs (n= 7) were pretreated with DMSO, baricitinib
(250 nM) or tofacitinib (250 nM) for 1 h and then stimulated with TNF (10 ng/ml) for 6 h. Gene expression was determined by qPCR. Expression in the
treated cells is presented relative to that in the unstimulated cells. Values are shown as the mean ± SEM. *p < 0.05, **p < 0.01; Wilcoxon matched-pairs
test. b RA-FLSs were pretreated with DMSO, baricitinib (250 nM) or tofacitinib (250 nM) for 1 h and then stimulated with TNF (10 ng/ml) for 24 h.
Western blots representative of at least four experiments with different RA-FLS cell lines are shown. c RA-FLSs were cultured in micromass organ
cultures for 8 days. After serum starvation overnight, the FLSs were treated with DMSO (Unstimulated), TNF (10 ng/ml)+DMSO, TNF (10 ng/ml)+
baricitinib (250 nM) or TNF (10 ng/ml)+ tofacitinib (250 nM) for 24 h. Micromasses were fixed, sectioned and stained with hematoxylin and a specific
antibody against TNFSF13B (brown staining). Images representative of four independent experiments performed with FLSs from four different RA
patients are shown. d The schematic representation of the TNF-induced pathway in FLSs is shown (JAKinib= Janus Kinase inhibitor; IRG= interferon-
regulated gene)

Bonelli et al. Experimental & Molecular Medicine (2019) 51:75 Page 9 of 11

Official journal of the Korean Society for Biochemistry and Molecular Biology



TNFSF13B, indicating that JAKinibs target B-cell-FLS
crosstalk, which might therefore provide an additional
mode of action. Our findings also provide evidence for a
hitherto unrecognized quality of JAKinibs, namely, partial
interference with TNF signaling pathways.
Together, these studies highlight the importance of the

TNF-driven, IRF1-mediated regulation of the IFN path-
way as a major contributor to FLS-mediated inflammation
in RA. Considering the high number of nonresponders to
disease-modifying antirheumatic drugs (DMARDS), a
better understanding of the pathomechanisms and the
informed use of biomarkers, such as the IFN signature,
will ultimately lead to a more stratified treatment
approach for RA patients.
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