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Recent years have raised evidence that the intestinal microbiota plays a crucial role in the pathogenesis of chronic inflammatory
bowels diseases. This evidence comes from several observations. First, animals raised under germ-free conditions do not develop
intestinal inflammation in several different model systems. Second, antibiotics are able to modulate the course of experimental
colitis. Third, genetic polymorphisms in a variety of genes of the innate immune system have been associated with chronic
intestinal inflammatory diseases. Dysfunction of these molecules results in an inappropriate response to bacterial and antigenic
stimulation of the innate immune system in the gastrointestinal tract. Variants of pattern recognition receptors such as NOD2 or
TLRs by which commensal and pathogenic bacteria can be detected have been shown to be involved in the pathogenesis of IBD. But
not only pathways of microbial detection but also intracellular ways of bacterial processing such as autophagosome function are
associated with the risk to develop Crohn’s disease. Thus, the “environment concept” and the “genetic concept” of inflammatory
bowel disease pathophysiology are converging via the intestinal microbiota and the recognition mechanisms for an invasion of
members of the microbiota into the mucosa.

1. Chronic Inflammatory Bowel Diseases

Two major forms of chronic mucosal inflammation can be
discriminated. In Crohn’s disease (CD) the whole gastroin-
testinal tract may be involved. However, the most frequent
site of inflammation is the terminal ileum, the last part
of the small bowel and the adjacent caecum. In CD the
inflammation affects all layers of the gut wall and frequently
an alteration of the adipose tissue covering the colon or small
bowel at the serosal side is found. Normal and involved areas
of the mucosa can be found along the gut (so called skip
lesions). This is in contrast to ulcerative colitis (UC). In
UC there is a continuous inflammation only of the mucosa
that always starts at the rectum. The extent of the disease
may vary and sometimes only the rectum or the sigma is
involved. In about 1/3 of the patients the whole colon will

be inflamed (pancolitis). However, in contrast to CD the
small intestine never is affected (the only exception is a so-
called back-wash ileitis in severe cases of UC in which some
inflammation extends to the last centimeters of the ileum).
So from morphological aspects both diseases can clearly be
discriminated (which, however, is not always the case in
clinical practice). In addition, it has been demonstrated that
there are clear differences with respect to pathophysiological
mechanisms. In CD a strong genetic susceptibility can be
found. A recent study again has shown the impact of genetic
factors on the pathogenesis of CD by demonstrating a
concordance in 63.6% among monozygotic twins, however,
only 3.6% among dizygotic twins [1]. This concordance
of monozygotic twins is much lower (around 6%) in UC
indicating that a genetic susceptibility plays a minor role in
this disease (Figure 1).
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Among the environmental factors, diet and host micro-
biota seem to play the most important roles for the
pathogenesis of the diseases. The diet affects the composition
of the intestinal flora, which then may influence the disease
course [2]. Some studies showed that a high uptake of
carbohydrates might be associated with an increased risk
for CD as well as UC [3–5]. However, results have not
been unequivocally confirmed. Of notice, very high sugar
uptake leads to insulin resistance finally resulting in a chronic
inflammatory state [6, 7]. Shoda et al. found that the dietary
changes in a Japanese population between 1966 and 1985
were associated with a strongly increasing risk for CD. In
this population, elevated uptake of total fat, animal fat, and
n-6 polyunsaturated fatty acids was paralleled by decreased
intake of n-3 polyunsaturated fatty acids [8], which have
been shown to exert anti-inflammatory effects [9]. This
finding could be confirmed for UC by a prospective study in a
European population [10]. Dietary components are also able
to affect the intestinal microbiota, which shows a different
composition in IBD patients as compared to healthy people
[11].

In IBD patients not only the quantity of commensal
bacteria in the intestine is reduced (about 10-fold lower
compared to control patients), but also the quality and
diversity of the commensal composition are altered [11–13].
Especially the number of the major classes of commensals,
Firmicutes and Bacteroidetes, is reduced [11, 12]. On the
other hand, the number of mucosal adherent bacteria, such
as invasive E. coli, or Proteobacteria, such as Enterobacteri-
aceae, is increased, resulting in a so-called state of “dysbiosis”
[11, 14, 15]. These pathogenic bacteria may then enhance
an inflammatory response of the host intestine and hereby
aggravate the intestinal inflammation.

2. The Role of the Microbiota in Animal Models
of Chronic Intestinal Inflammation

During the last few years significant advance has been
achieved in the understanding of the pathogenesis of inflam-
matory bowel diseases (IBDs). It became evident that bacte-
ria play an essential role for the initial trigger of the chronic
inflammation in Crohn’s disease (CD) and ulcerative colitis
(UC). Sartor et al. demonstrated that certain bacterial strains
such as bacteroides can induce or aggravate colonic inflam-
mation in models such as HLA-B27 rats or IL-10 knock-out
mice [16, 17]. Further it could be demonstrated in a number
of different mouse models of colitis that these animals were
prevented from colitis by raising them under germ-free
conditions [18, 19]. In several models, monoassociation with
just one bacteria was sufficient to be again able to induce
colitis [20]. The cecal bacterial load was clearly correlated
with the severity of disease in those animal models [21].
However, in different mouse strains different bacteria proved
to be most effective in inducing colitis making it unlikely
that one specific microbial pathogen would be the inducing
factor of CD or UC. The concept was developed that in
IBD the physiologic intestinal flora is no longer tolerated
[22, 23].

3. Susceptibility Genes for IBD and
the Role of the Microbiota

The insights obtained during genome wide association stud-
ies (GWASs) elucidating involved risk genes for IBD have
shed new light on the interaction of bacteria with the
mucosal immune system and the pathways by which the
intestinal microbiota may contribute to chronic mucosal
inflammation.

The intestinal mucosa has long been seen as an organ that
has mainly the function of nutrient digestion and resorption.
However, the mucosa is exposed to a myriad of microbial
antigens, uncountable potential pathogens, and even more
nonpathogenic bacterial molecules. Due to its enormous
surface area the barrier function of the intestinal mucosa may
be as important as its function in nutrient absorption. It is
obvious that there need to be effective defense mechanisms
when the barrier becomes locally leaky. Controlled local
inflammation after bacterial recognition may be regarded
as crucial component of the mucosal defense system [24].
Mechanisms initiating or limiting inflammation need to
be tightly regulated as they themselves might alter the
mechanical barrier function [24]. On an intracellular level,
pro- and anti-inflammatory signal transducers, regulatory
proteins and immune effector genes represent a well-
organized orchestra of agonists and antagonists. The inter-
play between each of the participating components needs
to be exactly regulated. Functional deficiency of only one of
the respective molecules may have tremendous consequences
for the entire organism. During the last years evidence was
found that specific single nucleotide polymorphisms (SNPs)
within several genes, which may cause dysfunction of their
respective protein products, are associated with the risk to
develop IBD.

Since 2001, GWAS revealed more than 30 genes that are
associated with IBD [25]. Among the identified targets are
genes that play an important role for immunological cell-
cell interaction and signalling, such as tumour necrosis factor
(TNF) [26], TNF-receptor 1 (TNFR1) [27], the interleukin-
23 receptor (IL23R) [28], or interleukin-12p40 (IL12B) [29,
30]. Perhaps even more important, there are genes that are
involved in the immune response to bacteria, such as the
nucleotide oligomerization domain 2 (NOD2) [30, 31], the
toll-like receptor 4 (TLR4) [32, 33], as well as the autophagy
genes autophagy-related like 1 (ATG16L1) and immunity-
related GTPase family M (IRGM) [28, 34, 35]. In addition,
regulatory genes, such as the protein tyrosine phosphatase
N2 (PTPN2) [29, 36] and the peroxisome proliferation-
activated receptor gamma (PPARγ) [37] as well as genes
that are involved in cell homeostasis, such as the membrane
transporters multidrug resistance gene 1 (MDR1) [38, 39]
and the organic cation transporter 1+2 (OCTN1+2) [40, 41]
have been found to be associated with the risk of chronic
mucosal inflammation.

The functional consequences of the respective SNPs have
only been investigated to a limited extent. It is likely of course
that these genetic variants alter functional properties of a
specific protein resulting in a disturbed function and, finally,
in an inadequate immune reaction.
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Figure 1: The intestinal epithelial barrier. The human gastrointestinal tract contains myriads of microorganisms. From oral to anal the
number of bacteria is increasing tremendously. Especially the colon and the colonic epithelial cells are challenged by a heavily and continuous
exposure to bacteria and antigens. The healthy epithelium represents a highly selective barrier that separates the body, especially the cells
of the intestinal immune system, from the gut content. Therefore, it inhibits the passage of bacterial products and potential antigens and
regulates the nutrient uptake as well as the resorption and secretion of ions and water. The integrity of the intestinal epithelium is maintained
by a tightly controlled orchestra of regulatory mechanisms, such as the secretion of mucus, the production of defensins and cytokines, or
intercellular connections.

4. Pattern Recognition Receptors—to
TOLLerate or NOD

As discussed, bacteria and bacterial components play a cru-
cial role for the onset and perpetuation of chronic intestinal
inflammation. Thus, the appropriate response to bacterial
stimuli plays a key role for the maintenance of intestinal
homeostasis. Two groups of pattern recognition receptors
(PRRs), the Toll-like receptors (TLRs), and the nucleotide
oligomerization domains (NODs) have been demonstrated
to be essentially involved in bacterial recognition, induction
of antimicrobial factors, activation and modulation of innate
as well as adaptive immune responses, and in the mainte-
nance of intestinal epithelial barrier function.

Though both of the PRR subgroups are ubiquitously
expressed within the gastrointestinal tract, TLRs are pri-
marily localised in intestinal epithelial cells (IECs) [42] and
intestinal lamina propria macrophages [43, 44]. Most TLRs,
such as the lipopolysaccharide (LPS)-receptor TLR4 [32, 43,
45, 46], detect their ligands at the cell surface. In the healthy
intestine, TLR4 serves to keep the tolerance of the intestinal
immune system to commensal bacteria [42], to maintain
mucosal homeostasis [47], and to prevent allergic reaction
to food antigens [48]. In active IBD, TLR4 expression is

significantly increased in IEC as well as in lamina propria
mononuclear cells (LPMNCs) [43, 45]. Several mutations
within the TLR4 gene locus have been associated with IBD
[32, 33] and an increased susceptibility to IBD has been
identified for coexistent mutations within the TLR4 and
the NOD2 gene [49]. Activation of TLR4 results in the
activation of various signal transducers, such as nuclear
factor kappa B (NF-κB), signal transducer and activator of
transcription 1 (STAT1), mitogen-activated protein kinases
(MAPKs) or PPARγ, with pro- as well as anti-inflammatory
effects. As a functional consequence, TLR4 stimulates the
expression of cytokines, such as TNF, IL1β, and IL6 via
NF-κB or STAT1 [50]. In contrast, increased TLR4-induced
PPARγ activity results in subsequent uncoupling of NF-κB
target genes as a part of a negative feedback mechanism
and therefore limits inflammation [51, 52]. Studies in mice
support the hypothesis that TLR4 mutations elevate the
receptor function and promote intestinal inflammation via
excessively activated cytokine-secretion [53, 54], possibly due
to an increased activity of the receptor in response to physi-
ological LPS concentrations. Additionally, mutations within
the TLR4 gene locus can also lead to a functional loss of TLR4
that worsens DSS-induced colitis in mice by disturbing the
intestinal homeostasis and barrier function [47, 53]. Thus,
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Figure 2: NOD2 and intestinal immune response. The NOD2 contains an effector-binding domain (CARD), a self-oligomerization domain
(NOD), and a ligand recognition domain (LRR). The three CD-associated SNPs are located within or near the LRR domain. NOD2 is
primarily localised in intestinal epithelial cells and macrophages. Upon binding to its ligand, bacterial MDP, NOD activates the transcription
factor NF-κB, what mainly results in the expression of the antimicrobial defensins and various cytokines that trigger the antimicrobial
response.

dysfunction of TLR4 in both directions aggravates intestinal
inflammation.

A recent study showed that TLR4 specifically activates
the transcription factor X-box-binding protein-1 (XBP1),
which is part of the unfolded protein response (UPR) cascade
that is initiated in response to endoplasmatic reticulum
(ER) stress of the cell [55]. The UPR consists of three
signalling pathways, namely inositol-requiring enzyme 1 α
and β (IRE1α and β) whose activation leads to increased
XBP-1 function, protein kinase-like ER kinase (PERK), and
activating transcription factor 6 (ATF6). The UPR then is
responsible for folding, processing, export, and degradation
of proteins during ER stress. An SNP within the XBP-1 gene
has also been associated with IBD and loss of the protein
is followed by Paneth-cell deficiency and increased levels of
TNFα and flagellin in mice [56]. Further, XBP-1 is required
for an appropriate response of TLR-4 to its ligands [55].
These observations indicate that ER stress may contribute to
the pathogenesis of IBD, that is, by genetically caused XBP-1
dysfunction. On the other hand, ER stress seems also to be a
common consequence of chronic inflammatory conditions
in the intestine. This latter hypothesis is supported by
observations showing that the ER stress response is induced
in IL-10 deficient mice and in animals featuring an aberrant
mucin assembly [57, 58].

5. NOD2—from Microbiota to Defence

NOD2 represents probably the best investigated and most
well-established CD susceptibility gene [30, 31]. NOD2
consists of a C-terminal leucine-rich repeat domain (LRR),
which is responsible for the antigen recognition, an inter-
mediate nucleotide-binding domain (NBD) for oligomeriza-
tion and signal transduction, and two protein-interaction
domains, the caspase-activating and recruitment domains
(CARDs). NOD2 is strongly expressed in colonic epithelial
cells and Paneth cells in the small intestine as well as in
intestinal macrophages in the small and large intestine. So
far, only one ligand has been identified, namely muramyl-
dipeptide (MDP) [59, 60], a wall component of gram-
negative as well as gram-positive bacteria that is transported
by the brush border transporter, human peptide transporter
1 (hPepT1), across the apical cell membrane [61]. NOD2
recognizes its ligand in the cytosol and, subsequently, directly
interacts with its target molecules causing an activation of
the innate immune system [62]. Activation of NOD2 in
the uninflamed intestine results mainly in the induction of
three different downstream effects. First, the activation of
the transcription factor NF-κB, followed by an increased
expression of proinflammatory cytokines, such as TNF or
IL1β. Secondly, the induction of caspase-mediated apoptosis
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Figure 3: The innate immune system during intestinal inflammation. A defect in the intestinal epithelium, possibly genetically driven,
causing tissue destruction, increased epithelial permeability and inflammation permits bacteria and their antigens, such as LPS and MDP,
to penetrate through the epithelial monolayer. (1) The bacterial wall component, peptidoglycan, is cut by intracellular endosomes to MDP,
that can activate the NALP3 inflammasome. As a consequence, pro-IL1β and pro-IL18 are processed to active molecules, what triggers
proinflammatory conditions in the epithelium. (2) LPS binding to its receptor, TLR4, results in the activation of NF-κB and, subsequently,
in increased expression of cytokines, such as TNF, IFNγ, or IL6. (3) MDP activates NOD2 directly, causing increased NF-κB activity. In
addition to elevated cytokine levels, NOD2 also induces the expression of antimicrobial peptides, such as defensins. (4) Bacteria, such as E.
coli or Listeria monocytogenes, can activate the autophagosome that plays a key role for inactivating invasive bacteria and other pathogenic
components. The autophagy machinery is also regulated by NOD2 activity. (5) Cytokines, such as IFNγ, have been shown to increase
the activity of PTPN2 that, in turn, downregulates proinflammatory signalling. Dysfunction of PTPN2 results in an impaired epithelial
barrier function and elevated secretion of proinflammatory cytokines. (6) Malfunction of the innate immune response mechanisms in
the gastrointestinal tract, possibly genetically triggered, causes tissue destruction, increased apoptosis of intestinal epithelial cells, elevated
epithelial permeability, and, finally, establishes a chronic inflammatory state in the intestine.

[46], and thirdly, an increase in the expression level of
antimicrobial peptides, such as the human defensins [63, 64].

Interestingly, NOD2 expression is increased in intestinal
biopsies from CD patients. This may be caused by the
proinflammatory cytokines TNF and interferon gamma
(IFNγ) that are able to induce NOD2 expression in IEC [65].
This indicates that the innate immune system can increase its
alertness for bacterial translocation or invasion. Mutations
within the NOD2 gene have only been associated with CD,
but not UC, and are present in about 40% of CD patients.
Especially three specific mutations have been linked to an
elevated susceptibility to CD [30, 31]. In particular, SNP8,
SNP12 (both representing missense mutations), and SNP13

(a frame-shift mutation) are independently correlated with
an early onset and an ileal localisation of the disease [66,
67]. The CD-associated mutations are located within the
LRR domain of NOD2 and surprisingly cause a decreased
activation of NF-κB in response to MDP in vitro [59, 60].

These observations suggest that mutant NOD2 is not
able to activate NF-κB adequately, what might result in
a pathological and insufficient immune response of the
intestinal epithelium to microbial contact and stimula-
tion. Interestingly, and contrary, intestinal lamina propria
macrophages from CD patients feature a highly induced
expression of NF-κB-dependent, proinflammatory media-
tors, such as IFNγ, TNF, and IL1β [46]. These observations
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are corroborated by studies in MDP-stimulated macrophages
from NOD2 mutant mice. The animals feature increased
and constitutive NF-κB activation, increased IL1β secretion,
and elevated apoptosis rates [68]. Additionally, in biopsies
from CD patients, far more intracellular and epithelial-
adherent bacteria are detectable as compared to biopsies
derived from healthy controls [69]. These findings provide
a possible mechanism how a defective NOD2-variant could
cause a dysregulated immune response in the intestinal
epithelium and therefore essentially contribute to the onset
of CD; Stimulation by MDP causes overwhelming activation
of a defective NOD2 variant in intestinal macrophages.
Subsequent overactivation of NF-κB results in increased
secretion [46] of proinflammatory mediators, such as TNF
and IFNγ that lead to increased expression of NOD2 in
IEC. However, due to the mutation, the epithelial isoform
of NOD2 is not able to detect and respond to the bacterial
stimuli adequately, what results in an inappropriate level of
cytokine secretion, uncontrolled inflammatory conditions, a
reduced amount of secreted antimicrobial peptides, such as
human defensins, and, finally, in an insufficient response to
intestinal bacteria (Figure 2).

6. The Microbiota and Graft versus Host Disease

Additionally, recent data also indicate a pivotal role of
the IBD-associated NOD2 SNPs in the pathogenesis of
graft versus host disease (GvHD), one of the most dele-
terious complications after allogenic, haematopoietic stem
cell transplantation (HSCT). Holler et al. demonstrated an
increased risk for the development of GvHD and an elevated
treatment-related mortality when the donor or the host was
carrying the IBD-associated mutations within the NOD 2
gene [70, 71]. A further study, analyzing the effects of each
of the NOD2 SNPs separately, indicated that the clinical
manifestation of GvHD might be critically dependent on
the presence of SNP13 in the donor [72]. In contrast, it
appeared in a different investigation that the risk for the
onset of GvHD is reduced when only the donor is carrying
the NOD2 variants [73]. A mechanistic explanation, how
NOD2 mutations could contribute to increased risk for the
development of GvHD and to elevated treatment-related
mortality in HSCT patients, could be presented by the
finding that NOD2 plays an important role for the regulation
of host antigen-presenting cells (APCs). NOD2 dysfunction
in host APC causes an increased proliferation and activation
of donor T-cells finally resulting in the onset of GvHD,
bacteraemia, and, at least in a mouse model, increased
intestinal inflammation [74, 75].

7. Human Defensins—The Innate
Antimicrobiant

As outlined above, the number of epithelial surface bacteria
is increased in CD. These observations lead to the hypothesis
that the antimicrobial defence mechanisms in the intestine
of CD patients could be impaired. The small intestine,
especially the ileum, also represents the home of the Paneth

cells with their main innate antimicrobial effector molecules,
the human defensins (HDs) 5 and 6. Therefore, it seems
plausible that a diminished expression or function of the HD
contributes to an impaired innate host defence to bacteria
and to the onset of disease. So far, ten HDs have been
identified that are separated into two groups, six α-defensins
and four β-defensins, being the α-defensins HD5 and HD6
the most important in the intestinal mucosa [76]. On a
functional level, the defensins exert bactericidal activity, since
they are able to form micropores in the bacterial wall result-
ing in collapse and death of the bacterium [77]. In the small
intestine, HD5 and HD6 are mainly expressed in the Paneth
cells at the base of the crypts of Lieberkühn, whereas the α-
defensins 1-4 are produced by lamina propria neutrophils
[78, 79]. In the colon, the human β-defensins (HBD-1-
4) are produced and secreted by IEC and lamina propria
plasma cells [63]. The constitutively expressed HD5 and HD6
are believed to contribute essentially to the maintenance
of intestinal epithelial barrier function by protecting the
intestinal stem cells that are located in the vicinity of the
Paneth cells [80]. Wehkamp et al. demonstrated a decreased
expression of HD5 and HD6 in patients with ileal CD
compared to control patients [81]. They further elucidated
that CD patients featuring NOD2 mutations showed even
lower levels of HD5 mRNA compared to CD patients
with wild-type NOD2. These findings indicate that NOD2
mutants are closely related to altered (decreased) levels of
the human defensins and subsequent impaired antimicrobial
activity in the small intestine, since NOD2 is also highly
expressed in Paneth cells, and NOD2 mutations are also
associated with ileal disease. However, the defensin promoter
region lacks a binding site for the main transcription factor
that is activated by NOD2, NF-κB [82].

8. The Inflammasome—A Sensor for
Invasive Bacteria?

One of the biggest advantages of the innate immune system
is its ability to respond rapidly and persistently to pathogenic
conditions. Though the innate immune system is genetically
programmed and reacts always similar to a stimulating agent,
it plays a crucial role not only for early host defence but
also for the activation of the adaptive immune system and
for the induction of acquired immune responses. A key role
herein plays the NOD-like receptor (NLR) family. Members
of that protein family can form the so-called inflammasomes.
These multiprotein complexes activate caspase-1 resulting
in the expression and secretion of inflammatory mediators,
such as IL1β or IL18. One of the best described members
of the respective family is the Pyrin domain containing
NLR3 (NALP3). The NALP3 inflammasome is composed
of NALP3, caspase-1, and the adaptor molecule ASC [83].
The final assembly of the inflammasome leads to the self-
activation of caspase-1 resulting in the activation of the
proinflammatory cytokines IL-1β and IL-18 [84–86]. Among
the activators of NALP3 are vaccine adjuvants, such as alum
[87–90], bacteria, such as Listeria monocytogenes [91, 92]
and MDP. In addition to the widely known NOD2-NF-κB-
mediated activation of IL1β, MDP is also able to induce the
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interleukin level via increasing the activity of caspase-1 and
NALP3 in human monocytes, suggesting that NALP3 acts as
an additional MDP sensor [93, 94]. Mouse studies revealed
that activation and secretion of IL1β is dependent on the
activity of both of the regulatory factors, NOD2 and NALP3
[95]. These findings are corroborated by studies using
monocytes from CD patients showing that a dysfunction
mutation within the NOD2 gene prevents MDP-induced
upregulation of IL1β [96, 97], whereas a gain of function
mutation within the NALP3 gene in Muckle-Wells patients
as well as a respective mutation in mice causes overexpression
of IL1β [68, 93]. In addition, in vitro studies showed that the
NALP1 inflammasome is also sensitive to MDP and might be
involved in MDP-induced IL1β expression [98, 99]. Though
the knowledge of the exact role of the NALP inflammasomes
in the immune system is just rudimentary so far and needs to
be further elucidated, these findings suggest that the NALPs
might be essentially involved in the pathogenesis of intestinal
inflammation.

9. Autophagy Genes—More Than
Just Cleaning the Cell?

Autophagy represents an essential intracellular process that
is responsible for the turnover of protein aggregates, the
removal of damaged organelles, and the elimination of
intracellular microbes. Therefore, autophagy can also be
regarded as a part of the innate immune system [100]. Recent
GWAS showed a significant association of the autophagy
gene, ATG16L1 and IRGM with CD [28, 29, 36, 101]. So
far, only little is known about the role and function of the
autophagy genes in the intestinal epithelium. The Thr300Ala
substitution polymorphism within the ATG16L1 gene is
associated with an ileal CD phenotype, similar as the CD-
associated NOD2 mutations [65, 102] and a specific E. coli
strain, adherent-invasive E. coli [103, 104], which are able to
survive and to replicate within intestinal macrophages [105].
A recent study demonstrated that loss of either ATG16L1
or IRGM contributes to increased replication and survival
of the specific E. coli strains in vitro [106], a finding
that is in good accordance with the results of previous
studies demonstrating prolonged survival of Salmonella
typhimurium in human epithelial cells [107, 108]. Moreover,
ATG16L1 seems to play a major role for the correct function
of the intestinal Paneth cells that also represent one of the
main intestinal localisations of NOD2 and the main source
of the human defensins. Cadwell et al. have recently revealed
abnormalities in the Paneth cell granule exocytosis pathway
and in the gene transcription profile in ATG16L1-deficient
mice as well as in tissue specimen derived from CD patients
carrying the CD risk allele [109]. Surprisingly, the ATG16L1
mutation caused, among others, an increased expression
of genes involved in PPARγ signalling. Of special interest
with respect to the pathophysiology of CD is the finding
that the exocytosis pathway of mutant-carrying Paneth cells
is disrupted. Since the Paneth cells secrete the important
antimicrobial defensins, these findings could essentially con-
tribute to an aberrant innate immune response to microbial

stimuli in the gastrointestinal tract and therefore play a
pivotal role for the onset of chronic intestinal inflammation.
Recent studies also suggest that ATG16L1 is involved in the
regulation of inflammasome activity [110] and interacts with
NOD2 at the sites of bacterial cell invasion [111, 112].

10. PTPN2—A Likely Key Regulator of
Intestinal Inflammation

A recently identified IBD-associated gene locus encodes
for PTPN2 [29, 36]. By dephosphorylating and thereby
inactivating its targets, the regulatory protein PTPN2 modu-
lates and regulates proinflammatory signal transduction as
induced by cytokines such as TNF, IFNγ, or IL6. Among
its targets are the signal transducers and activators of
transcription 1+3 (STAT1+3) [113–115], mitogen-activated
protein kinases (MAPKs) [116], the epidermal growth factor
receptor (EGFr) [117, 118], and the insulin receptor [119].
PTPN2 knock-out (PTPN2−/−) mice feature excessively
high levels of TNF, IL12B, and IFNγ. The importance
of PTPN2 for the regulation of inflammation in vivo is
further corroborated by the observation that PTPN2−/−
mice are not able to survive longer than 3 to 5 weeks, finally
dying on a progressive systemic inflammatory syndrome
[120, 121]. Of special interest with respect to CD is the
fact that PTPN2−/− mice develop severe diarrhoea and
weight loss, both of them representing common symptoms
in human CD. Additionally, PTPN2−/− mice represent sys-
temic hyperresponsiveness to TLR4 ligand, LPS, resulting in
increased production of IFNγ and nitric oxygen (NO) [120,
122] that are also major pathogenetical factors in CD. These
observations suggest that PTPN2 might play an important
role for the adequate reaction of the innate immune system
to bacterial stimuli. The possible importance of PTPN2 for
human disease has been underlined by a recent study using
IFNγ-treated IEC [123]. Here, it has been demonstrated
that PTPN2 downregulates IFNγ-induced proinflammatory
STAT1 signalling. From a functional perspective, loss of
PTPN2 permitted IFNγ to increase the expression of the
pore-forming protein, claudin-2, resulting in a dramatic
decrease of the intestinal epithelial barrier function. These
data, in addition to the previously identified role for PTPN2
in regulating immune signalling, provide the rationale
background for a functional role of the regulatory protein
PTPN2 in the pathogenesis of IBD, assumingly by regulating
cytokine signalling and innate immune responses as well as
in preserving the intestinal epithelial barrier function.

11. Conclusions

The innate immune system plays a pivotal role for the control
of the intestinal mcirobiota. On the other hand, the human
microbiota regulates the innate immune system (Figure 3).
Our increasing understanding of the molecular mechanisms
that modulate the innate immune response to bacterial and
antigen in the intestine are also raising about the complex
signalling and networking. Further understanding of the
pathways how the intestinal microbiota contributes to the
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pathophysiology of chronic intestinal inflammation will help
us to develop new therapeutic strategies.
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