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Abstract: Lower back pain is a leading cause of disability worldwide. The recovery of nucleus
pulposus (NP) progenitor cells (NPPCs) from the intervertebral disc (IVD) holds high promise for
future cell therapy. NPPCs are positive for the angiopoietin-1 receptor (Tie2) and possess stemness
capacity. However, the limited Tie2+ NPC yield has been a challenge for their use in cell-based
therapy for regenerative medicine. In this study, we attempted to expand NPPCs from the whole NP
cell population by spheroid-formation assay. Flow cytometry was used to quantify the percentage of
NPPCs with Tie2-antibody in human primary NP cells (NPCs). Cell proliferation was assessed using
the population doublings level (PDL) measurement. Synthesis and presence of extracellular matrix
(ECM) from NPC spheroids were confirmed by quantitative Polymerase Chain Reaction (qPCR),
immunostaining, and microscopy. Compared with monolayer, the spheroid-formation assay enriched
the percentage of Tie2+ in NPCs’ population from ~10% to ~36%. Moreover, the spheroid-formation
assay also inhibited the proliferation of the Tie2- NPCs with nearly no PDL. After one additional
passage (P) using the spheroid-formation assay, NPC spheroids presented a Tie2+ percentage even
further by ~10% in the NPC population. Our study concludes that the use of a spheroid culture
system could be successfully applied to the culture and expansion of tissue-specific progenitors.

Keywords: intervertebral disc (IVD); nucleus pulposus progenitor cells (NPPCs); angiopoietin-1
receptor (aka. Tie2); spheroid-formation assay; suspension culture

1. Introduction

The disability induced by lower back pain (LBP) is a global issue with a substantial social burden [1].
The main reason for LBP, apart from trauma to the intervertebral disc (IVD), is the degeneration of the
intervertebral disc (IVDD) caused by aging or genetic predisposition [2]. Disability induced by IVDD
means a reduction in the labor force participation rate and a tremendous decrease in life quality for
patients. However, the precise mechanism of IVDD is still not clear [3].

The IVD consists of three central tissues: (i) the nucleus pulposus (NP), (ii) the annulus fibrosus
(AF), and (iii) the cartilaginous endplate (CEP) [4]. The NP located in the center of the IVD is a
gelatinous tissue surrounded and kept in place by a criss-cross laminar fibre composing the AF
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tissue [4]. The health of the IVD depends on the well-being of all three tissue components [5]. If only
one of the three tissues partly degenerates, it will affect the health status of the entire IVD.

The NP cell (NPC) population was defined as heterogeneous because of the presence of
chondrocyte-like “nucleopulpocytes” and notochordal cells (NCs) within the NP tissue, and possibly
other yet unidentified cell populations [6–9]. It is known that these NCs become scarce and finally
disappear with the maturation of the IVD during growth [6]. Recently, a novel type of tissue-specific
progenitor cell has been identified and characterized in NP tissue [10–12]. These so-called tissue-specific
nucleus pulposus progenitor cells (NPPCs) [10–12] are multipotent and autochthonous. Sakai et
al., (2012) mainly detected two main characteristics of NPPC: (i) NPPCs prefer to form a spheroid
colony-forming unit (CFU-s) rather than a fibroblastic colony-forming unit (CFU-f) within a CFU-assay
in methylcellulose semi-solid medium [10–12], and (ii) NPPCs are positive for the cell surface marker
angiopoietin-1 receptor (aka. Tie2) [10–12]. Additionally, Sakai et al. found that the disaloganglioside
2 (GD2) is negative in dormant NPPCs and positive in proliferating NPPCs [10]. Although the NPPCs
do not disappear as drastically in adults as the NCs do; however, their numbers still decrease with age
and IVDD [10].

In clinics, the reality is that the amount of NP tissues obtained from patients are limited,
both in the number of donors and in the total cell numbers that scientists can extract from available
tissues. In this context, a previous study already compared three standard immunology-based sorting
techniques—fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), and a
mesh-based label-free cell sorting system (pluriSelect)—for sorting NPCs Tie2+ on the most profitable
method [12]. Although FACS seemed to be the most efficient method, the vast cell loss of all three
methods still limited the NPPC harvest [12]. Based on the low density of NPCs in the tissue and on the
low percentage of NPPCs within the entire NPC population, the research to characterize the NPPCs
and to develop strategies for regenerative IVD therapy remains challenging. Thus, cell expansion
protocols for these NPPCs are urgently warranted. In this study, we aimed to expand the heterogenic
NPC population and to increase the percentage of Tie2+ NPCs by using non-plastic adherent cultures.

Traditional cell culture for IVD research was first performed in monolayer to expand these cells in
higher numbers for subsequent 3D cell culture. Previous studies have been able to demonstrate that the
native phenotype can be better maintained by adjusting oxygen concentration and/or osmolality [13–16].
On the one hand, it was described that monolayer culture changed NPCs’ morphology and changed
the content of key components of the extracellular matrix (ECM). Previous research on 2D NPCs culture
showed that the gene expression of collagen type 2 (COL2) decreased significantly from passage (P)
1 to P2, and aggrecan (ACAN) decreased significantly from P0 to P1 [17]. Furthermore, 2D NPCs
culture revealed that the gene expression change seemed to happen at early P and then tended to
stabilize [17–19].

Moreover, the monolayer culture of NPCs showed an increased senescence and oxidative
stress [18,19]. Previous studies on NPCs achieved better outcomes in cell phenotype and ECM
production with 3D culture within a biomaterial scaffold compared to monolayer culture [20–23].
On the other hand, Tekari et al. (2016) [11] demonstrated that bovine Tie2+ NPCs lose their
phenotype after one week of plastic monolayer culture and are outcompeted by Tie2- cells in normoxia.
This de-differentiation could be modestly improved by lowering the oxygen content to 2% and by
adding growth factors such as fibroblast growth factor 2 (FGF-2) or growth and differentiation factor
5 (GDF-5) [11].

The spheroid-formation culture is more suited for Tie2+ NPCs compared with simple monolayer
culture as Tie2+ NPCs in CFU-assays showed a preference for spherical morphology (CFU-s) in
methylcellulose semi-solid medium, and not a fibroblastic morphology (CFU-f) [10–12]. An assay
similar to the CFU-assay is the spheroid-formation assay (also called “colonosphere” assay), which is the
formation of spheroid-like solid aggregates of cells in the suspension environment [24–26]. Erwin et al.
(2013) showed that spheroids derived from canine NPCs in spheroid-formation assays were indeed
multipotent [27]. However, in their study, it seemed that a different type of NPPC population
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had been identified and characterized rather than the one presented in Sakai et al. (2013) [12].
Erwin et al. characterized these based on several genes which are known as “stemness” markers,
i.e., octamer-binding transcription factor 4 (OCT4), sex-determining region Y-box 2 (SOX2), NANOG,
PROM1 (the gene responsible for CD133 expression), Nestin and Neural cell adhesion molecule
(NCAM) [28–30].

In this study, human-derived primary NPC culture was tested on three different surfaces:
(i) “classic” (non-molecular treated polystyrene), (ii) a gelatin-coated surface for improved attachment,
and (iii) an ultra-low attachment surface. On the ultra-low attachment culture, a focus was given only
to the spheroid-forming cells; this is known as a spheroid-formation assay [24–26]. The argument
for enriching the culture by an attachment-improved surface compared to “classic” surface culture is
based on the research on other stem cell types, such as neuro stem cells, which prefer to proliferate
in suspension culture on an ultra-low attachment surface or in an attachment-improved monolayer
culture environment [26,31]. Attachment-improved culture surfaces also play a role in the protection
of the pluripotent capacity of stem cells; for example, in induced pluripotent stem cells (iPSCs) [32].
Coating flasks with gelatin has been described as a straightforward way to improve cell adherence.

In this study, we had two aims: the first aim was to investigate whether spheroid-formation
assays could increase the proliferation of Tie2+ NPCs in the whole NPC population compared to
monolayer culture on “classic” or attachment-improved surfaces. The second aim was to investigate
the implication of NPC spheroids formed on an ultra-low-attachment surface.

2. Results

2.1. Correlation between Tie2+ Cell’s Morphology and the Culture Surface

The NPCs’ morphology differed considerably based on the culture surfaces used in this study.
NPCs grew as a monolayer on the classic surface (Control group) as on the 0.1% gelatin-coating group
(Gelatin group) (Figure 1a). However, the group that differed the most was the one on the ultra-low
attachment surface (Spheroid group), where the NPCs formed spheroids (Figure 1a).
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Figure 1. (a) Phase-contrast microscopy pictures of NPCs grown on three different surfaces. Scale bar 
= 100 µm. Here, “Control” represents cells cultured in “classic” T75 flasks, “Gelatin” refers to cells 

Figure 1. (a) Phase-contrast microscopy pictures of NPCs grown on three different surfaces. Scale
bar = 100 µm. Here, “Control” represents cells cultured in “classic” T75 flasks, “Gelatin” refers to cells
cultured in 0.1% gelatin-coated T75 flasks, and “Spheroid” refers to cells from the spheroid formed assay
in ultra-low attachment T75 flasks; “a.u.” refers to arbitrary units. Scale bar = 100 µm. (b) Circularity
and (c) aspect ratio (major axis/minor axis) was measured using imageJ software between control and
gelatin groups. In (b,c), each dot represents one cell (n = 100), taken from three different donors and
marked in red, green, and blue for both groups respectively, Mann–Whitney U test, **** = p < 0.0001.
Lines represent means ± standard deviation (SD).
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Compared to the control group, the NPCs of the gelatin group were spindle-shaped and mostly
polygonal shaped. The circularity of the NPCs (Figure 1b) was significantly higher in the control group
compared to the gelatin group (Mann–Whitney U test, p < 0.0001) [33–35]. We assessed the cell length
as the major axis and the cell width as the minor axis. The aspect ratio (major axis/minor axis) of the
gelatin group showed that the NPCs cultured on the gelatin-coated surface presented an elongated
and stretched morphology compared to the control group grown on “classic” plastic surface [33–35]
(Figure 1c).

2.2. Colony Morphology Formed by NPCs in CFU-Assay

To follow-up on the study on NPPCs (NPCs Tie2+) by Sakai et al. [10], we looked into the potential
of resuspended NPCs to form CFU-s (Figure 2a) and CFU-f (Figure 2b) on methylcellulose, as described
previously [10–12]. Cell colonies with the phenotype of mixed CFU-s and CFU-f were identified as
CFU-s/f (Figure 2c). To better visualize the cells’ morphology, the NPCs were stained with calcein
acetoxymethyl (calcein AM). We observed that the circularity of CFU-s and CFU-f were significantly
different (p < 0.0001) (Figure 2d) [33–35]. In culture on methylcellulose medium, cell clones were
showing a CFU-s/f morphology characterized by two distinct populations in terms of circularity
(Figure 2b).
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Figure 2. Phase-contrast microscopy images (10x) of three types of colony-forming units (CFU):
(a) spheroid-type (CFU-s), (b) fibroblastic type (CFU-f), and (c) semi-spheroid-and-fibroblastic type
(CFU-s/f); the NPCs were stained with Calcein-AM; scale bar = 100 µm (d) Cell’s circularity of
different types of clones; “a.u.” refers to arbitrary units. Each dot represents one cell (n = 120),
taken from three donors of patients marked in red, green, blue; Kruskal–Wallis (K-W) signed rank test,
p = 0.0013 (CFU-s vs. CFU-s/f), *** = p-value < 0.001, **** = p-value < 0.0001. Lines in (d) represent
means ± standard deviation (SD).
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2.3. Correlation between Tie2 Positive NPC Proliferation and the Culture Surface

The percentage of NPPCs (Figure 3a) that were Tie2+ NPC reached 10 ± 5% (mean ± SD) in the
control group after ten days of culture. In the gelatin group, the percentage of Tie2+ cells was 4 ± 5%
and 36 ± 16% (mean ± SD) in the spheroid group (Figure 3a). The Tie2+ NPC yield of the spheroid
NPCs in the spheroid group increased significantly (more than three-fold) compared to the monolayer
NPCs in the control group (p = 0.0422) and the gelatin group (p = 0.0005). Lastly, the percentage of
Tie2+ cells in the gelatin group was ~6% lower compared to the control group.
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Figure 3. Plot of individual values of Tie2+ cells’ yield in the human NPC population. (a) Tie2-PE
median of fluorescence intensity (MFI) of living single NPCs relative to control; (b) population
doubling level (PDL) of Tie2+ NPCs and Tie2- NPCs; (c) and quantification of number of CFUs with
resuspended NPCs relative to control in different flask types, (d) Number of clones with cells ≥ 10
cells per 1000 cells seeded in methycellulose medium after ten days. Here, “control” represents cells
cultured in “standard” T75 flasks, “gelatin” represents cells cultured in 0.1% gelatin-coated T75 flasks,
and “spheroid” represents cells from the spheroid forming assay in ultra-low attachment T75 flasks,
“number of clones relative to control” represents the number of clones formed per 1000 cells of the
cells cultured in gelatin/spheroid group relative to control group; N (donors) = 7 in (a,b), and N = 6 in
(c,d). Kruskal–Wallis signed-rank test with Dunn’s multiple comparison test. p = 0.0422 (a, control vs.
spheroid), 0.0005 (a, gelation vs. spheroid), 0.028 (b), 0.0308 (d). * = p-value < 0.05, *** = p-value < 0.001.
Lines in (a–d) represent means ± standard deviation (SD).

The medians of fluorescence intensity (MFI) of living single cells in the gelatin and spheroid group
were compared with the control group (assigned to 1.0) (Figure 3b). The MFI of the gelatin group was
significantly decreased compared to the control (p = 0.028) (0.7 ± 0.2 fold) (mean ± SD) and the MFI of
the spheroid group was slightly increased compared to the control (1.2 ± 0.5 fold).

The population doubling level (PDL) per P (Figure 3c) was calculated to study whether enriching
the Tie2+ NPC yield of the spheroid NPCs attributed to either the improved proliferation of Tie2+ NPCs
or inhibition of Tie2- NPCs. On the one hand, the PDLs of the spheroid group (6.1 ± 4.5) (mean ± SD)
are similar to Tie2+ NPCs in the control group (6.2 ± 3.8) (mean ± SD) (p > 0.999, Kruskal–Wallis
(K-W) signed-rank test), the gelatin group (3.9 ± 4.2) (mean ± SD) (p > 0.999, K-W signed-rank test).
On the other hand, the spheroid-formation assay inhibited the PDL of Tie2- NPCs from 3.6 ± 1.2 to
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0.8 ± 2.2 (mean ± SD), compared to control (p = 0.1547, K-W signed-rank test) and 3.9 ± 1.0 to 0.8 ± 2
(mean ± SD), compared to gelatin groups (p = 0.0694, K-W signed-rank test).

The number of clones with cells ≥ 10 cells per 1,000 cells that were seeded in methylcellulose-based
medium was counted as CFU-s, CFU-s/f, and CFU-f, respectively (Figure 3d). The number of each
clone type on gelatin and the spheroid groups were also compared to the control group (assigned to
1.0). We found that the NPCs from spheroid groups showed a significantly higher capability for CFU-s
(p = 0.0308) formation compared to the control group.

In the conclusion of the above results, the spheroid-formation assay on an ultra-low attachment
surface enriched the Tie2+ NPC yield of the whole population and monolayer culture on a gelatin-coated
surface decreased the Tie2+ NPC yield, compared to the monolayer culture on both “classic” surfaces.
The proliferation of Tie2- NPCs was almost inhibited in the spheroid-formation assay compared to
monolayer culture. As a result, inhibiting the proliferation of Tie2- NPCs enriched the Tie2+ NPC yield
of the NPCs of spheroid-formation assay.

2.4. Spheroid Reformed after Papain Digestion Increased the Yield of Tie2+

To assess the feasibility of NPCs to be passed from suspension culture to an ultra-low attachment
surface, we digested the spheroids and assessed the spheroid-formation assay again. At the same
time, we found for the first time the formation of spheroids from NPCs similar to 1st-generation
spheroids (Figure 4a). After digesting the 1st-generation spheroids to single cells, and subsequently
culturing them on an ultra-low attachment surface, the single-resuspended NPCs were able to reform
2nd-generation spheroids (Figure 4b).

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 17 

 

(K-W) signed-rank test), the gelatin group (3.9 ± 4.2) (mean ± SD) (p > 0.999, K-W signed-rank test). 
On the other hand, the spheroid-formation assay inhibited the PDL of Tie2- NPCs from 3.6 ± 1.2 to 
0.8 ± 2.2 (mean ± SD), compared to control (p = 0.1547, K-W signed-rank test) and 3.9 ± 1.0 to 0.8 ± 2 
(mean ± SD), compared to gelatin groups (p = 0.0694, K-W signed-rank test). 

The number of clones with cells ≥ 10 cells per 1,000 cells that were seeded in methylcellulose-
based medium was counted as CFU-s, CFU-s/f, and CFU-f, respectively (Figure 3d). The number of 
each clone type on gelatin and the spheroid groups were also compared to the control group 
(assigned to 1.0). We found that the NPCs from spheroid groups showed a significantly higher 
capability for CFU-s (p = 0.0308) formation compared to the control group. 

In the conclusion of the above results, the spheroid-formation assay on an ultra-low attachment 
surface enriched the Tie2+ NPC yield of the whole population and monolayer culture on a gelatin-
coated surface decreased the Tie2+ NPC yield, compared to the monolayer culture on both “classic” 
surfaces. The proliferation of Tie2- NPCs was almost inhibited in the spheroid-formation assay 
compared to monolayer culture. As a result, inhibiting the proliferation of Tie2- NPCs enriched the 
Tie2+ NPC yield of the NPCs of spheroid-formation assay. 

2.4. Spheroid Reformed after Papain Digestion Increased the Yield of Tie2+ 

To assess the feasibility of NPCs to be passed from suspension culture to an ultra-low attachment 
surface, we digested the spheroids and assessed the spheroid-formation assay again. At the same 
time, we found for the first time the formation of spheroids from NPCs similar to 1st-generation 
spheroids (Figure 4a). After digesting the 1st-generation spheroids to single cells, and subsequently 
culturing them on an ultra-low attachment surface, the single-resuspended NPCs were able to reform 
2nd-generation spheroids (Figure 4b). 

 
Figure 4. (a) Percentages of Tie2+ cell’s in whole human NPC population of 1st-generation spheroids 
and 2nd-generation spheroids; N (donors) = 6, Mann–Whitney U test, p = 0.0152. * = p-value < 0.05. (b) 
CFU-assay of NPCs suspended from 1st-generation spheroids and 2nd-generation spheroids, the 
number of clones per 1000 cells of 2nd-generation spheroids was expressed relative to 1st-generation 
spheroids. CFU-s stands for spheroid-like shape colonies, CFU-f stands for plastic-adherent 
fibroblast-like colonies, CFU-s/f represents colonies with a phenotype of mixed characteristics from 
CFU-s and CFU-f; “a.u.” refers to arbitrary units; N (donors) = 4. Lines in (a,b) represent means ± 
standard deviation (SD). 

The NPCs suspended from 1st-generation spheroids and 2nd-generation spheroids were 
assessed for their Tie2+ percentage and CFU-assay. On the one hand, the percentage of Tie2+ NPCs 
in resuspended NPCs from 1st-generation spheroids NPCs was 30 ± 8.7% (mean ± SD). The 
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respectively (Figure 4a). The Tie2+ NPC yield increased by 13% after passaging 1st spheroids and 
reforming 2nd spheroids (p = 0.0152; Figure 3c). On the other hand, the percentage of cells from the 
2nd-generation spheroids was 2.2 ± 0.2 (mean ± SD) times higher than CFU-s colonies of the 1st-
generation spheroids. The number of CFU-s/f colonies from the 2nd-generation spheroids were 
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Figure 4. (a) Percentages of Tie2+ cell’s in whole human NPC population of 1st-generation spheroids
and 2nd-generation spheroids; N (donors) = 6, Mann–Whitney U test, p = 0.0152. * = p-value
< 0.05. (b) CFU-assay of NPCs suspended from 1st-generation spheroids and 2nd-generation
spheroids, the number of clones per 1000 cells of 2nd-generation spheroids was expressed relative
to 1st-generation spheroids. CFU-s stands for spheroid-like shape colonies, CFU-f stands for
plastic-adherent fibroblast-like colonies, CFU-s/f represents colonies with a phenotype of mixed
characteristics from CFU-s and CFU-f; “a.u.” refers to arbitrary units; N (donors) = 4. Lines in
(a,b) represent means ± standard deviation (SD).

The NPCs suspended from 1st-generation spheroids and 2nd-generation spheroids were
assessed for their Tie2+ percentage and CFU-assay. On the one hand, the percentage of Tie2+

NPCs in resuspended NPCs from 1st-generation spheroids NPCs was 30 ± 8.7% (mean ± SD).
The percentage of Tie2+ NPCs in resuspended NPCs from the 2nd spheroid was 43 ± 6% (mean ± SD),
respectively (Figure 4a). The Tie2+ NPC yield increased by 13% after passaging 1st spheroids
and reforming 2nd spheroids (p = 0.0152; Figure 3c). On the other hand, the percentage of
cells from the 2nd-generation spheroids was 2.2 ± 0.2 (mean ± SD) times higher than CFU-s
colonies of the 1st-generation spheroids. The number of CFU-s/f colonies from the 2nd-generation
spheroids were significantly decreased compared to the 1st-generation spheroids. Passaging NPCs
with the spheroid-formation assay increased the Tie2+NPC’s yield by a factor of ~3.6 (Figure 3a),
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and the 2nd-generation spheroids had an even higher percentage of Tie2+ NPCs compared to the
1st-generation spheroids.

2.5. Extracellular Matrix of NPC Spheroids

The ECM composition of NPC spheroids was assessed by immune-histology. The ECM of the NP
mainly consists of ACAN and collagen type 2 COL2; both were confirmed on fixed NPC spheroids
(Figure 5). The ECM was mainly distributed between cells composing the spheroids.
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the absence of primary antibody and secondary antibody control with DAPI (blue). Scale bar = 50 µm.

2.6. Correlation between RNA Expression of NPCs and the Culture Surface

The analysis of the relative gene expression of cells cultured on different surfaces of “classic”,
gelatin-coated, and ultra-low attachment for 10 days was performed (Figure 6). The spheroid formation
increased the ACAN gene expression (p = 0.0124) and COL2 (p = 0.2363) expression compared with
control group. The COL1 gene expression in the spheroid (1.9 ± 0.7) and the gelatin group (1.8 ± 2.4)
was similar and slightly higher than the control group (assigned to 1.0). The relative gene expression of
NANOG and OCT4 within spheroids were the highest among the three groups and significantly higher
than the gelatin group (NANOG, p = 0.0079; OCT4, p = 0.0352). The relative gene expressions of TEK
and KRT19 in the spheroid group were similar to the control group. The result showed that the cells
cultured on an attachment-improved surface did not alter in gene expression compared to the cells
cultured on “classic” surface. The ECM-related and stemness-related genes tended to be upregulated
with the spheroid formation on the suspension environment compared to the cells on monolayer.
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Figure 6. qPCR of genes of cells cultured for ten days on different surfaces. Relative gene expression
was normalized to the control (relative assigned to 1.0), which was “classic” T75 flask culture for ten
days. Figure legend: “gelatin” represents cells cultured in 0.1% gelatin-coated T75 flasks, and “spheroid”
represents cells from the spheroid formed assay in ultra-low attachment T75. ACAN stands for aggrecan,
COL1 represents collagen type 1, COL2 stands for collagen type 2, NANOG stands for Homeobox
transcription factor Nanog, OCT4 stands for octamer-binding transcription factor, TEK stands for
TEK receptor tyrosine kinase (Tie2), and KRT19 stands for Keratin 19; “a.u.” refers to arbitrary units;
N (donors) = 5. Kruskal–Wallis signed-rank test with Dunn’s multiple comparison test. p = 0.0124
(ACAN), 0.0079 (NANOG), 0.0352 (OCT4). * = p-value < 0.05, ** = p-value < 0.01. Lines represent means
+ standard deviation (SD).

3. Discussion

3.1. The Spheroid-Formation Culture History and Its Implications in Stem Cells

In 1992, Reynolds and Weiss described one of the earliest spheroid-formation assays [36].
They compared the neural stem cells from mice’s striatum cultured or in suspension culture
or “classic” attachment culture with media supplemented with epidermal growth factor
(EGF). Interestingly, the mice’s striatum cells did not proliferate if cultured as monolayer.
However, suspension culture improved the proliferation of cell spheroids but increased the senescence
of non spheroid cells. Self-renewal was observed with the single cells from resuspension and reassembly
of spheroids. In their study, the cells resuspended from spheroids were able to differentiate into
both neurons and glial cells in monolayer culture. Only these resuspended cells could then undergo
proliferation in monolayer culture. Additionally, the immunocytochemistry of the neural cells during
suspension culture and monolayer culture displayed significant differences. As a result, the authors
showed that spheroid formation in suspension culture improved the proliferation of neural stem cells.
Spheroid formation was also used to isolate stem cells [36]. Furthermore, spheroid-formation culture
has become the mainstream way to culture neural stem cells [26].

The implications of spheroid-formation assay are involved in many different types
of stem cells from other tissues. Three important aspects are key in stem cell research:
isolation, proliferation, and maintenance of their stemness. The spheroid-formation assay is already
widely used in cancer stem cells isolation or enrichment [25,37], lethal screen subtype [37], and the
drug-resistant subtype [38]. Two recent studies showed that spheroid formation could protect the
multipotency of adipose-derived stem cells [24,39]. The key question is whether spheroid formation is
essential for the maintenance of Tie2+ NPPCs.
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3.2. The Effects of Spheroid-Formation Culture in NPCs

Previous, studies have confirmed that 3D cell culture is beneficial for the phenotype of
“nucleopulpocytes” [7,40,41]. Recently, niche biomaterials were developed for nucleopulpocytes that
allow maintaining the progenitor status of cells in general by incorporating laminin [42]. The suspension
culture in this research showed that the spheroid assay inhibited the proliferation of Tie2− NPCs,
and as a consequence purified the whole NPC population closer to a consistent Tie2+ NPC population.
In terms of preserving the cell’s stemness, the yield of NPCs Tie2+ in spheroid culture was about
three-fold higher than in monolayer cells cultured on the “classic” surface. Moreover, NPCs from
spheroids in the suspension-culture on ultra-low attachment surfaces formed about three times more
CFU-s colonies than spheroids from monolayer on “classic” surfaces. However, the Tie2+ NPCs’
PDL did not increase compared to monolayer culture on both “classic” and attachment-improved
surfaces. As the aim of expanding NPCs Tie2+ from primary NPCs before the sorting of NPCs Tie2+,
the spheroid assay decreases the NPCs Tie2−, this will reduce the sorting time cost and the stress to
Tie2+ cells caused by FACS sorting.

3.3. Can NPPCs Be Used in Cell Transplantation?

We hypothesized that the fibrotic phenotype of NP on IVDD could partially be caused by an
increase of fibroblastic cells, which formed CFU-f in these primary cultures. One characteristic of
degenerated NP tissues is that these become more fibrotic compared to young and healthier tissue.
From the observation of the morphology of the colonies of CFU-assay, there are three different colony
types distinguishable: CFU-s and CFU-f, and CFU-s/f with mixed characteristics of both. To recall,
both CFU-s and CFU-f types are most likely derived from NPC Tie2+. The formation of CFU-f in
purified Tie2+cells supported this hypothesis [12]. To confirm this, Tie2 lineage analysis should be
performed in further research. CFU-f differentiated into the non-NPC phenotype. Sakai et al., (2013) [8]
stated that CFU-f’s are derived from non-NP phenotypes. We can only speculate here that the NP tissue
fibrosis observed in IVDD could be related to the transition from progenitors into CFU-f phenotype.
The CFU-f phenotype population differentiated from Tie2+ NPCs might express Tie2 (aka. TEK gene)
at a very low level compared to the NP phenotype cells, but the confirmation of this hypothesis
should by further tested by RNA in situ hybridization. This could explain why spheroid NPCs with
higher percentages of Tie2+ NPCs have a higher CFU-s formation ability. Still, at the whole NPCs
population-level have similar MFI of Tie2+ antibody and TEK gene expression levels compared with
the classic monolayer culture.

We expected that the transplantation of NPCs Tie2+ could be used for the regeneration of IVDs.
Further research should investigate the CFU-f phenotype population and the role of CFU-f population
in IVDD. Before the mechanism is not understood why CFU-s might transform into CFU-f from NPPCs,
the cell therapy with injecting of Tie2+ NPCs is possibly far from being applicable to the clinics.

To establish a tissue transplant donor, we need to identify the cells and their respective ECM.
NPC spheroids lack ECM support conversely to the traditional 3D culture of NPCs within a scaffold.
The lack of similarity to any in vivo environment and absence of ECM will reduce the proliferation rate
in a majority of cell types [43]. Based on the research of Sakai et al. (2012), the CFU-s colonies formed
with Tie2+ NPCs in methylcellulose semi-solid media could spontaneously generate ECM with collagen
type 2 and aggrecan. With the expression of ACAN and collagen type 2 (COL2), NPCs spheroids
showed a relatively physiological phenotype compared to monolayer on plastics.

4. Materials and Methods

4.1. NPC Isolation

Human NP tissues from patients undergoing spinal surgery were obtained with approval
from the local ethical committee (Ref. 2019-00097). All of the patients provided written consent.
The donor details are shown in Table 1 The distinction of NP, CEP, and AF tissues was performed
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by experienced spine surgeons, i.e., by C.E.A. and S.H. However, for this study, only NP
tissues were included. The cells isolation process followed a two-step digestion protocol with
1.9 mg/mL pronase (Roche, Basel, Switzerland) for one hour and followed by 65 U/mL collagenase
II (Worthington, London, UK) overnight. The clearance of debris was done by filtration through a
100 µm cell strainer (Falcon; Becton & Dickinson, Allschwil, Switzerland). Total cell numbers and
viability were assessed on the next day by using the Neubauer-improved chamber with trypan blue.

Table 1. Donor list with of gender, age, Pfirrmann grade, tissue weight, and the number of isolated cells.

No. Gender Age Pfirrmann Grade * Location Tissue Wet
Weight (g)

Number of
Isolated Cells

1 female 37 1 T12/L1 0.39 125,000
2 male 39 1 T11/T12 1.58 500,000
3 male 19 1 T12/L1 0.6 200,000
4 male 28 1 L4/L5 1.5 200,000
5 male 28 1 L1/2 1.29 500,000
6 male 40 1 L1/L2 1.33 180,000
7 male 40 2 T11/T1 2.14 500,000
8 male 23 1-2 T11/12 0.63 50000

* The grading was performed by two experienced spine surgeons, i.e., by C.E.A. and S.H.

4.2. NPCs Seeding on Different Surfaces

To study the impact of different culture surfaces on the proliferation of Tie2+ NPCs in the
whole NPC population, three different culture surfaces were studied: (i) the “classic” cell culture
plastic that was used as a control group, in comparison to (ii) the attachment-improved surface with
0.1% gelatin-coating (gelatin group), and (iii) the ultra-low-attachment culture plastic (=spheroid
group). NPCs from the control and gelatin groups were cultured in monolayer, and the whole NPC
population of these two groups was assessed for Tie2+ NPC yield and CFU assay. In the spheroid
group, only the spheroid-NPC population was harvested and assessed for Tie2+ NPC yield and
CFU-assay. The experimental design is shown in Figure 7. The “classic” surface flask was from
TPP™ (#cat 90076, Trasadingen, Switzerland). The culture surface of the “classic” control group has a
non-molecular treated polystyrene surface with optomechanical treatment. The 0.1% gelatin-coated
flask was prepared at least one day before seeding. Coating gelatin (cat# 04055, Fluka, a sub-brand of
Sigma) from porcine skin was used. The gelatin coating protocol was followed according to the spheroid
research by Redondo-Castro et al. (2018) [44]. The gelatin was dissolved in distilled water overnight.
Afterwards, the 0.1% gelatin was then autoclaved and stored at 4 ◦C and was used within two weeks.
Before coating, the 0.1% gelatin was warmed in a water bath at 37 ◦C. The flasks were coated with
0.1% gelatin overnight and washed with Phosphate-buffered saline (PBS). The ultra-low attachment
surface flask was from Corning (#cat 3814 Wiesbaden, Germany), and ~200,000 NPCs were seeded
into each flask. The culture media was low glucose Dulbecco’s Modified Eagle Medium (LG-DMEM)
(#cat 11-885-084 Gibco, Life Technologies, Basel, Switzerland) media with 10% FCS (cat# F7524,
Sigma-Aldrich, Buchs, Switzerland) and 1% Penicillin/Streptomycin/Glutamine (P/S/G) (cat# 10378016
Gibco) supplemented with 2.5 ng/mL fibroblast growth factor 2(FGF-2) (Peprotech, UK, London) to
maintain the progenitor phenotype [44].
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4.3. NPC Freezing and Thawing

NPCs were expanded up to P1 on polystyrene flask T150 or T300 (TPP™, VWR, Dietikon
Switzerland) with LG-DMEM media with 10% FBS and 1% P/S/G. The NPCs were resuspended in
10 mL Trypsin-EDTA Solution (0.25%) (1×) for 5 min. The enzyme digestion was stopped by adding
10 mL of culture media. NPCs were washed with 10mL cold PBS by centrifugation (500× g for 5 min).
The total cell count was performed with a Neubauer-improved hemocytometer. One million NP
cells/mL were suspended in freezing media, and frozen at - 80 ◦C in a freezing container (“Mr. Frosty”
cat#5100-0001; Thermo Fisher Scientific, Waltham, Massachusetts, USA) filled with 2-propanol.
The freezing media consisted of the same culture media and supplemented with 10% Dimethyl
sulfoxide (DMSO). After two days, the frozen NPCs were transferred from −80 ◦C to −150 ◦C for long
term storage. Prior to the experiments, NPCs were quickly thawed at 37 ◦C and were then washed
with 10 mL 4 ◦C-cold PBS by centrifugation (500× g for 5 min) and counted before seeding.

4.4. NPC Digestion and Spheroid Isolation

The single cells were removed with a 30 µm cell strainer (cat# 43-50030-03, pluriStrainer®,
pluriSelect Life Science, Leipzig, Germany). The spheroid-like NPCs were cultured on an ultra-low
attachment surface, and the monolayer NPCs were cultured on the “classic” surface and gelatin-coated
(attachment-improved) surface. NPCs on these three types of surfaces were resuspended with
the same digestion media according to the protocol of the spheroid research by Koito et al. [45].
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The digestion media consisted of Hank’s Balanced Salt Solution (HBSS; lacking Ca2+, Mg2+)
buffer with 10 mM HEPES (N-2-HydroxyEthylPiperazine-N-2-Ethane Sulfonic acid) buffer solution
(cat# 15630, Gibco, Thermo Fisher Scientific Inc., Basel, Switzerland), 0.8 mg/mL L-cysteine (cat# 20119,
Fluka) and 20 I.U./mL papain (cat# P3125, Sigma). HBSS buffer was then further diluted in PBS
with 9.5 mg/mL HBSS (cat# H2387, Sigma), 35mg/mL NaHCO3 (cat# 31437, Sigma) and 1% P/S/G.
L-Cysteine (Fluka) was added freshly and adjusted to pH 7.4, after adding the papain (Sigma). To test
the efficiency of different digestion enzymes, equal numbers of spheroids were transferred to 6-well
plates (cat# 92006, TPP™) after incubation in papain solution ~2 mL (20 I.U./mL) for 5 min.

The total cell count was performed with a Neubauer-improved hemocytometer (cat# 0640110,
Marienfeld, Karlsruhe, Germany). The population growth was estimated by the cumulative population
doubling level (PDL) according to Formula (1):

PDL = log
(

Nt

N0

)
/log2 (1)

where N0 = initially seeded cell number and Nt = cell number at time point t.

4.5. Tie2+ NPC Characterization by Flow Cytometry and Colony Formation Assay

In this study, the preferred expansion method was quantified by measuring the percentage of
Tie2+ NPCs (Tie2+) within the NPC population, and the number of colony-forming units (CFUs) per
1000 NPCs [10].

The NPPC surface marker was stained with the Tie2-PE antibody (1:20) (cat# FAB3131P R&D,
Muttenz Switzerland). Dead cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) at a
concentration of 0.1 µg/mL. The flow cytometry (CytoFLEX S 5350, Indiana, United States) was used
to analyze and quantify the Tie2+ NPC yield. The flow cytometry data were analyzed with FlowJo
software, version 10.4.2 for Mac OS X (Treestar, Ashland, Oregon, USA) (Supplementary Figure S1).

Next, 1,000 single NPCs were seeded in 1 mL of a methyl-cellulose-based medium (STEMCELL
Technologies, Inc., Grenoble, France) in a 35 mm Petri dish (TPP, VWR). The colonies then formed.
Those colonies that were more than or equal to ten cells in total were counted (by X.Z.) under a light
microscope (Leica DM IL, Leipzig, Germany).

4.6. Immunofluorescence Staining

The NPC spheroid’s extracellular matrix was stained on frozen cryosections. After isolation of
spheroids by 30 µm cell strainers (pluriSelect), the spheroids were collected on the bottom of 50 mL
Falcon centrifuge tube (cat#21008-178; VWR) with centrifuge at 500 g for 5 min. The spheroids were
moved into 1.5 mL Eppendorf tubes (cat#21008-103; VWR) and centrifuge at 500× g for 5 min to
remove media. The spheroids were moved into the tube with Optimal Cutting Temperature (O.C.T.)
compound, #cat 4583, Sakura, Alphen aan den Rijn, Netherlands). After freezing in liquid nitrogen,
the frozen spheroids were stored at −150 ◦C. The frozen sections were cut using a cryostat (Microm HM
560, Thermo Fisher Scientific). The frozen section was then fixed by 4% paraformaldehyde (PFA)
for 20 min at room temperature. The sections were extensively washed with Tris-buffered saline
(TBS) (#cat 15504-020, Thermo Fisher Scientific) containing 0.025% v/v Tween 20 (#cat P1379, Sigma).
To prevent unspecific staining the slides were then covered by blocking buffer (3% goat serum TBS) for
30 min at RT. Then, the primary antibodies of aggrecan (ACAN) (1:50) (cat# TA336492, Origene, Muttenz,
Switzerland), and of type two collagen (each at a 1:50 dilution) (cat# sc-7764, Santa Cruz Biotechnology,
Inc., Santa Cruz, California, USA) were incubated overnight at 4 ◦C. After extensive washing with
TBS added 0.025% v/v Tween 20 (= TBS-Tween20), the secondary antibodies (both at concentrations of
1:200 diluted) Alexa Fluor® 555 Rabbit Anti-Goat IgG (H+L) (cat# 1722388), and Alexa Fluor 488 Goat
anti-Rabbit SFX Kit (cat# A-11008) (both from Thermo Fisher Scientific, Inc., Reinach, Switzerland) were
incubated for three hours at room temperature in the dark. After extensive washing with TBS-Tween20,
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the slides were mounted in DAPI containing glycerol-based embedding medium (#cat ab104139,
Abcam, Cambridge, UK). The ECM fluorescence image was taken with a Nikon Eclipse 800 microscope
(Nikon, Tokyo, Japan).

4.7. Morphology of Cells

To better visualize the morphology of cells, live cells were pre-stained with 2µM Calcein-AM for
10 min at 37 ◦C. Cell’s morphology was then quantified by ImageJ v1.53c on the microscopic pictures
using “cell body circularity” [33,46]. An example of how the cells outlines were defined by manual
segmentation can be found in the Supplementary Materials file S2.

4.8. qPCR

Three groups of RNA expressions of human genes were confirmed of the NPCs within three types
of culture surfaces and the cells before seeding (day 0). The first group consists of the ECM related
genes, i.e., aggrecan (ACAN), collagen type 1 (COL1), and collagen type 2 (COL2). The second group
has genes related to IVD phenotype (KRT19) and NPPCs phenotype (TEK for Tie2). The third group
consists of the genes that are related to cell stemness (Nanog and Oct4).

To assess whether the monolayer culture will influence the phenotype of NPCs, we compared the
relative gene expression between the cells one day 0 before seeding and at day ten of the monolayer
culture on a “classic” surface (control group).

The RNA of spheroid NPCs was extracted with the NucleoSpin RNA XS kit followed by
DNA digestion (cat# 740902.10/.50/.250, Machinerey-Nagel, Oensingen, Switzerland). The RNA
from the cells cultured on a monolayer was first resuspended in 20 I.U./mL papain (cat# P3125,
Sigma) in Hank’s Balanced Salt Solution (HBSS; lacking Ca2+, Mg2+) buffer with 10 mM
HEPES (N-2-HydroxyEthylPiperazine-N-2-Ethane Sulfonic acid) buffer solution (cat# 15630,
Gibco, Thermo Fisher Scientific Inc., Basel, Switzerland), 0.8 mg/mL L-cysteine (cat# 20119, Fluka)
and 20 I.U./mL papain (cat# P3125, Sigma), and then the RNA was extracted with the GenElute™
Mammalian total RNA purification kit including DNA digestion (cat# RNB100 Sigma-Aldrich,
Buchs, Switzerland). The RNA of all samples was assessed with reverse transcription with
high capacity cDNA Kit (cat# 4368814, Thermo Fisher). The qPCR was performed in duplicates
(CFX96 Touch, Bio-Rad, Cressier, Switzerland) with mixed cDNA and (250 nM) forward and reverse
primers (Microsynth, Balgach, Switzerland) in iTaq™ universal SYBR® Green Supermix (Bio-Rad).
The relative gene expression was calculated using the 2−∆∆Cq method with two reference genes,
i.e., 18S and GAPDH, respectively. The data were normalized to the control group, which were cells
cultured on “classic” surface flasks. The primers can be seen in Table 2.

Table 2. Primers list.

Name. Description Primer Forward Primer Reverse

18S Ribosomal 18s RNA gene CGA TGC GGC GGC GTT ATT C TCT GTC AAT CCT GTC CGT GTC C

GAPDH Glyceraldenyde-3-phosphate
dehydrogenase ATC TTC CAG GAG CGA GAT GGA GGC ATT GCT GAT GAT

ACAN Aggrecan core protien CAT CAC TGC AGC TGT CAC AGC AGC ACT ACC TCC TTC
COL1 Collegen type 1 GTG GCA GTG ATG GAA GTG CAC CAG TAA GGC CGT TTG
COL2 Collegen type 2 AGC AGC AAG AGC AAG GAG AA GTA GGA AGG TCA TCT GGA
KRT19 Keratin 19 TGT GTC CTC GTC CTC CTC GCG GAT CTT CAC CTC TAG C
TEK TEK receptor tyrosine kinase TTA GCC AGC TTA GTT CTC TGT GG AGC ATC AGA TAC AAG AGG TAG GG

NANOG homeobox protein NANOG AGA ACT CTC CAA CAT CCT GAA CCT CCT GCG TCA CAC CAT TGC TAT
OCT4 octamer-binding transcription factor 4 GAG AGG CAA CCT GGA GAA TT CCA CAC TCG GAC CAC ATC

4.9. Statistics

Statistical analysis was performed using Prism 7.0d for Mac OS X (GraphPad, La Jolla, CA, USA).
Statistical significance was determined using the Mann–Whitney U test (two groups) and Kruskal–Wallis
(K-W) signed-rank test followed by a Dunn’s multiple comparison test (three groups). Values are given
as means ± SD. A p-value <0.05 was considered to be significant.
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5. Conclusions

• This study showed that the expansion of NPCs in the 2D monolayer is not favorable for the Tie2+

NPC phenotype.
• The gelatin modification did not show any advantage for Tie2+ NPC proliferation compared with

the control and spheroid group. The attachment-improved surface did not show the improvement
of cultured whole NPCs population compared with standard plastic surface.

• Spheroid-formation assay enriched the Tie2+ population of NPCs from ~10% on monolayer
culture to ~36% in suspension culture.

• Generation of 2nd generation spheroid-formation assay by reassembly of NPC spheroids increased
the Tie2+ NPC population yield even further from about ~30% to ~43%.

• We introduced a new culture protocol in which Tie2+ NPCs can be maintained and Tie2- NPCs
can be inhibited in suspension culture.

• NPC spheroids resulted in more purified Tie2+ NPCs compared to monolayer. However, more research
would be required to see if the Tie2+ population could be even further purified with increased
passaging into 3rd or even 4th-generation spheroids.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/24/
9423/s1.
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ACCUMAX Accumax cell detachment solution
AF Annulus fibrosus
bFGF Fibroblast growth factor-basic
CEP Cartilage endplates
CFU Colony forming unit
CFU-s Spheroid colony-forming unit
CFU-f Fibroblastic colony-forming unit
CFU-s/f Spheroid/fibroblastic colony formation unit
Calcein-AM Calcein acetoxymethyl
DAPI 4′,6-diamidino-2-phenylindole
DMSO Dimethyl sulfoxide
ECM Extracellular matrix
EGF Epidermal growth factor
EDTA Ethylenediaminetetraacetic acid
LG-DMEM Low glucose Dulbecco’s Modified Eagle Medium
HUVEC human umbilical vein endothelial cells
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IVD Intervertebral disc
IVDD Intervertebral disc degeneration
MFI Medians of fluorescence intensity
NC Notochordal cell
NP Nucleus pulposus
NPC Nucleus pulposus cell
NPPC Nucleus pulposus progenitor cell
Oct4 Octamer-binding transcription factor 4
PBS Phosphate-buffered saline
P/S/G Penicillin/Streptomycin/Glutamine
PFA Paraformaldehyde
RT Room temperature
Sox2 Sex-determining region Y-box 2
TBS Tris-buffered saline
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