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Abstract: Plants are immobile and, to overcome harsh environmental conditions such as drought,
salt, and cold, they have evolved complex signaling pathways. Abscisic acid (ABA), an isoprenoid
phytohormone, is a critical signaling mediator that regulates diverse biological processes in various
organisms. Significant progress has been made in the determination and characterization of key
ABA-mediated molecular factors involved in different stress responses, including stomatal closure
and developmental processes, such as seed germination and bud dormancy. Since ABA signaling is a
complex signaling network that integrates with other signaling pathways, the dissection of its intricate
regulatory network is necessary to understand the function of essential regulatory genes involved in
ABA signaling. In the present review, we focus on two aspects of ABA signaling. First, we examine
the perception of the stress signal (abiotic and biotic) and the response network of ABA signaling
components that transduce the signal to the downstream pathway to respond to stress tolerance,
regulation of stomata, and ABA signaling component ubiquitination. Second, ABA signaling in plant
development processes, such as lateral root growth regulation, seed germination, and flowering time
regulation is investigated. Examining such diverse signal integration dynamics could enhance our
understanding of the underlying genetic, biochemical, and molecular mechanisms of ABA signaling
networks in plants.

Keywords: abscisic acid; abiotic stress signaling; ubiquitination; seed germination; E3 ubiquitin
ligase; stomatal regulation

1. Introduction

Abscisic acid (ABA) signaling (perception, signaling, and tolerance) in plants is a complex response
for which there are considerable knowledge gaps at the molecular level. ABA is a plant phytohormone
with a small lipophilic sesquiterpenoid (C15) structure [1]. It has a key role in stress adaptation
in addition to being critical in numerous biological processes, such as bud dormancy and seed
germination [2–6]. In the 1960s, pioneering studies on ABA (initially termed “abscisin” and “dormin”)
reported that it was accumulated in immature cotton balls that succumbed to ethylene-triggered
abscission and over-wintering buds [4,7,8]. Later, it was demonstrated that under such conditions
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and developmental stages, plants were experiencing drought stress [5,9–17]. Therefore, ABA is a
misnomer [18], even though it plays a role in leaf senescence and seed dormancy, potentially via
osmotic effects [19–21]. It has been observed that drought-stressed vegetative tissues of numerous
plants accumulate ABA (40-fold induction) within hours of osmotic stress and then it decreases after
rehydration. In addition, ABA has been considered a long-distance stress signal between shoots and
roots [22]. Therefore, the study of spatiotemporal expression of genes that control ABA metabolism’s
rate-limiting steps is essential for understanding how plants adapt to stress. Other than its role in
adaptation to abiotic stress, ABA has been shown to be a key regulator of pathogen virulence [23–27],
which could offer insights into the basis of the ABA-synthesizing ability of numerous bio- and
necrotrophic microbes [24,28–30].

Gene products acting in the vicinity of the cell wall or at the interface of the plasma
membrane/cytoskeleton/cell wall are considered the most likely elements to participate in initial
stress perception. For instance, gated aquaporins (plasma membrane intrinsic proteins (PIPs)) and
osmo-/ion channels at the cell wall–plasma membrane interface may be implicated in the upstream
perception [31–33]. The receptor of ABA remained unknown until 2009. Before then, several ABA
receptors had been reported [34–40]; however, further investigations did not substantiate any of them.
In 2009, two independent studies reported the steroidogenic acute regulatory protein (StAR)-related
lipid-transfer (START) domain of the significant Bet v1 (birch pollen allergen) superfamily of proteins
as candidate ABA receptors [41–44]. All 14 members of the protein family are called regulatory
components of ABA receptor, RCAR1–RCAR14, [41], or pyrabactin resistance 1 (PYR1) and PYR1-like
1–13 [42]. The discovery of PYR1-like components (PYLs) laid the foundation for the unraveling of
the ABA signaling mechanism in detail. Such findings opened the door for advancements in the
ABA signaling field and were appropriately recognized as scientific breakthroughs of the year [45,46].
Multiple structure studies have clarified the interactions at the molecular level comprising a signaling
cascade consisting of the PYL ABA receptors, the core ABA signaling pathway, Snf1-related protein
kinases 2 (SnRK2s), and type 2C protein phosphatases (PP2Cs). ABA binding induces PYL protein
interaction with the active site of PP2C and inhibits phosphatase activity by blocking the PP2C catalytic
site (SnRK2 substrate) [47–51]. Such findings shed light on the ABA signaling transduction pathway,
which could facilitate the unraveling of abiotic stress tolerance as well as various developmental
processes in plants.

Numerous reviews have explored the specific aspects of ABA responses in detail [42,52–60],
including the relationship between ABA signaling and abiotic stress responses, calcium signaling,
MAPK signaling, and ubiquitination. In addition, abiotic stress tolerance has been reviewed extensively,
although with less emphasis on seed development and lateral root formation, and no reviews have
focused on the overall ABA signaling network [42,52–60]. ABA signaling is a complex network that
works in tandem with other signaling pathways. Therefore, it is important to present an overall
network taking into account recent advancements to fill the gaps that have not been addressed to
date. In this review, we integrated signaling pathways that align with the ABA signaling pathway,
which displays a complex network, being active during both plant abiotic stress tolerance and plant
development. We also added recent findings to the existing ABA signaling network in plants.

2. Ubiquitination in ABA Signaling

Protein post-translational modification by ubiquitination has been studied during various aspects
of stress responses, plant development, and growth [61,62]. Since ABA is a major phytohormone and
plays a vital role in plant growth and stress responses, the regulation of its signaling components must
be subjected to ubiquitination. Reports have emerged regarding E3 ligase-mediated ubiquitination
of ABA signaling components [60]. The E3 ubiquitin ligases discussed in this review are indicated
using dark red square boxes in Figure 1B,E. ABA receptors (PYR/PYL/RCAR) in plants are regulated
by degradation via the ubiquitin-26S proteasome system. Damaged DNA binding protein 1 associated
1 (DDA1) from Cul4-based E3 ligase complexes and a single subunit, the RING-type E3 ligase RING
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FINGER OF SEED LONGEVITY1 (RSL1), are involved in the process [63,64], which suggests that, in the
ABA signaling pathway, RSL1 acts as the negative regulator by regulating the ABA receptor through
ubiquitination. Two plant U-box protein family members, PUB12 and PUB13, interact with ABI1.
ABI1 is induced in pub12/pub13 mutants compared within wild types irrespective of ABA presence;
however, it can ubiquitinate ABI1 only in the presence of both PYR1 and ABA, which indicates that the
interaction between PYR1 and ABI promotes ABI1 degradation by PUB12/13 [65]. An E3 ubiquitin
ligase, PLANT U-BOX PROTEIN10 (PUB10), modulates ABA signaling in Arabidopsis. PUB10-OX
plants phenocopied myc2, whereas the pub10 plants phenocopied MYC2-OX plants in response to ABA,
indicating the regulation of MYC2 (a jasmonic acid (JA) signaling component) by PUB10 (Figure 2) [66].
A KEEP ON GOING (KEG) E3 ligase with a truncated RING domain also acts as a bait for the CIPK26
interaction because it acts as the negative regulator in ABA signaling [67,68]. ABA also induces the
degradation of KEG by self-ubiquitination, resulting in the accumulation of ABI5 [69]. KEG also
ubiquitinates and degrades ABF1 and ABF3 by interacting directly with them [70]. The results of the
studies above suggested that ABF1, ABF3, and ABI5 were the substrates for E3 ligase KEG.

Figure 1. Overview of the abscisic acid (ABA) signaling pathway. (A) Inactivation of SnRKs, CIPKs,
and CDPKs under normal growth conditions (light orange box). PP2C (red oval box) plays an important
role in the inactivation of SnRKs, CIPKs, and CDPKs. Inactive MAP3K17/18 (orange oval box) and
AREB/ABF (Abscisic Acid Response Element/Abre-Binding Factor) (yellow oval box) undergo protein
degradation. (B) Initial perception of environmental and developmental cues. ABA signaling is
transduced in Ca2+-independent (light blue box) as well as Ca2+-dependent (light orange box) manners.
Active SnRKs, CIPKs, and CDPKs (dark blue oval box) play important roles in downstream signal
transduction. (C) Stomatal regulation via ABA signaling in response to stress and healthy conditions.
Under stress conditions, stomatal regulation (purple arrow→) is carried out by active SnRK2.6/OST1
(blue oval box) through the regulation of downstream ion channel genes (green oval boxes), such as
SLAH3, SLAC1, and KAT1. This regulation helps stomata remain closed to avoid loss of excessive
water under adverse conditions. Under normal conditions, SnRK2.6/OST1 inactivated by PP2C cannot
regulate the downstream genes; thus, stomata remain open. (D) Response to stress tolerance via the ABA
signaling pathway. The stress tolerance mechanism (black arrow→) is regulated in Ca2+-independent
as well as Ca2+-dependent manners. The MAP kinase cascade (orange oval box) pathway carries the
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signal for the response to abiotic stress tolerance. It delays ABA gene expression. Contrarily, signal
transduction via only AREB/ABF (yellow oval box) shows early expression of ABA related genes,
resulting in an early response to stress tolerance. (E) Involvement of ABA signaling in the plant
developmental process. Downstream ABA signaling involved in different developmental processes
(red arrow →) such as seed germination (light green oval and square boxes), lateral root growth
(light blue oval and square boxes), and regulation of flowering time (yellow oval and square boxes).
ABI5 emerges as a critical ABA signaling component in the regulation of the plant developmental process.
ABA signaling integrates with light signaling (black dark oval box) to regulate plant development.
The brown tack facing up (⊥) indicates the role of ubiquitination in ABA signaling. These E3 ubiquitin
ligase elements in ABA signaling guide the inactive protein to undergo degradation. The question
mark (?) indicates the unknown pathway.

Figure 2. A simplified schematic diagram showing synergistic and antagonistic interactions between
the ABA signaling pathway and other hormonal signaling pathways during abiotic and biotic stress.

ABD1, DWA1, and DWA2, which are associated with Cul4-based E3 ubiquitin ligases, were
reported to be responsible for ABA signaling through the degradation of ABI5 by regulated
ubiquitination in the nucleus via the ubiquitin-26S proteasome system [71–73]. Single mutants,
abd1, dwa1, and dwa2, and a double mutant, dwa1/dwa2, display ABA-hypersensitive phenotypes during
seed germination and seedling growth [72,73], which indicates ABI5 acts as a target for ABD1, DWA1,
and DWA2, Cul4-based E3 ubiquitin ligases, which leads to the negative regulation of ABA signaling
in the nucleus. ABI3 INTERACTING PROTEIN2 is a functional RING-type E3 ligase that interacts with
an unstable protein, ABI3, and is degraded via the ubiquitin-26S proteasome system [74]. Different
types of E3 ligases with dual roles have been reported participating in the regulation of ABA signaling;
however, the knowledge about their substrates and studies related to their association with ABA
signaling is an ongoing process.

3. ABA Signaling under Stress

3.1. Calcium Signaling Integration with ABA Signaling Pathway and Stomatal Regulation

In plants, abiotic stress positively triggers the levels of ABA and reactive oxygen species (ROS) [75]
such as H2O2 [76–79]. High H2O2 levels trigger cytosolic calcium concentration via nitric oxide
(NO) [80,81]. Downstream signaling cascades regulate transcriptional responses to abiotic stress
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tolerance and stomatal regulation (Figure 1B–D) [53]. Many reports point to direct interactions between
ABA and calcium signaling systems at different levels (Table 1). For such interactions between
ABA and calcium signaling, ABI1 (clade A protein phosphatases 2Cs) appear to function as master
regulators [53,58,82]. In normal growth conditions (basal ABA level), Ca2+ and SnRK2/3/6/7/8/CDPK
activity are inhibited by ABI1/PP2C. This inhibition prevents downstream signaling [83,84] (Figure 1A).
In the presence of ABA (during stress or developmental stages), ABI1/PP2C activity is inhibited by
ABA, which induces RCARs and elevated levels of H2O2, and in turn the conversion of ABA signals
into appropriate cellular responses where SnRKs (2/3/6/7/8)/CDPK phosphorylate the downstream
targets [53]. This is the classical ABA signaling pathway; however, recent findings have suggested
that it is not that simple. It is potentially integrated with multiple signaling pathways, such as
the calcium pathway. Ca2+, along with ABA, represents a most versatile secondary messenger in
eukaryotes and is involved in crucial aspects of signaling [85–88]. Stress signals that trigger cellular
ABA levels can also invoke prominent cellular Ca2+ signals in plants, which are perceived downstream
by calcineurin B-like proteins (CBLs)/CBL-interacting protein kinases (CIPKs) [89,90] (Figure 1B).
The calcium sensor CBL-CIPK regulates a variety of downstream targets, such as regulation of
stomata and ion channels [91–93]. Ca2+- dependent protein kinases (CDPKs) have functions similar
to those of CBL/CIPKs in ABA signaling [84,94–97]. OPEN STOMATA 1 (OST1), an SnRK2 protein,
has been reported as functioning as a critical regulator in the ABA signaling module [98]. The ost1
mutant displays a stomatal closure defect under drought stress. Positional cloning of OST1 revealed
its similarity to SnRK2.6 [99]. The ost1/snrk2.6 double mutant affects stomatal closure under both
stress-driven ABA signaling and normal growth conditions. The ABA signaling pathway is regulated
by the direct interaction of SnRK2.6/OST1 and PP2CA/ABI1 (Figure 1C) [100].

Table 1. List of the target genes that are regulated by ABA as well as Ca2+ signaling.

Gene Name Accession
Number Main Function

Regulated by
Ca2+-Dependent ABA

Signaling

Regulated by
Ca2+-Independent

ABA Signaling
Reference

ABI5 AT2G36270 bZIP TF CIPK11/26, activates by
phosphorylation

SnRK2s’
phosphorylation
activation; PP2Cs’
dephosphorylated

inactivation

[67,101,102]

ABF1/4 AT1G49720/
AT3G19290 bZIP TF CPK4/11, activates by

phosphorylation

SnRK2s’
phosphorylation
activation; PP2Cs’
dephosphorylated

inactivation

[101,103]

AKT1 AT2G26650 Potassium ion
channel

CBL1/9/CIPK23, activates by
phosphorylation

HAI2 and PP2CA,
regulate AKT1 [104–106]

AKT2 AT4G22200 Potassium ion
channel

CBL4/CIPK6, localized in
the plasma membrane

PP2CA, regulates
AKT2 [107,108]

KAT1 AT5G46240 Potassium channel
Inhibited by the SnRK2s and

involved in the stomatal
closure

Inhibition by SnRK2s
is inhibited by ABI1,

involved in the
stomatal opening

[109,110]

NPF6.3 AT1G12110 Nitrate transporter

CBL1/9CIPK23, deactivates
under high nitrate

conditions and increases the
nitrate sensitivity

ABI2 involved in the
dephosphorylation or

deactivation of
CBL1/CIPK23

[111,112]

SLAC1 AT1G12480 Plasma membrane
anion channel

Induced by the SnRK2s and
involved in stomatal closure

Induction by SnRK2s is
inhibited byABI1,

involved in the
stomatal opening

[113,114]

RBOHF AT1G64060
Plasma membrane

superoxide
generation

CBL1/9/IPK26, activates by
phosphorylation

OST1 involved in
phosphorylation [115,116]
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Table 1. Cont.

Gene Name Accession
Number Main Function

Regulated by
Ca2+-Dependent ABA

Signaling

Regulated by
Ca2+-Independent

ABA Signaling
Reference

RBOHD AT5G47910
Plasma membrane

superoxide
generation

CPK5, activates by
phosphorylation - [96]

SnRK2.6/OST1 AT4G33950
Calcium-independent

ABA-activated
protein kinase

CBL/CIPL/CDPK, activates
by phosphorylation

SnRK2.6 involved in
phosphorylation [112,117]

SLAH3 AT5G24030 Anion channel

CBL1/9/CIPK23

ABI1 involved in
deactivation

[95,118,119]
CPK21 involved in

phosphorylated activation;
CPK21 also recruits SLAH3

onto the membrane

The target proteins of Ca2+-dependent and -independent ABA signaling systems are also the target
of other signaling systems. Reactive burst oxidases (RBOHs) are phosphorylated by SnRK2.6/OST1,
CPK5, and CBL1-CIPK26 [96,115,116]. At normal ABA levels, SnRK2.6 is inactive, and PP2CA (ABI1)
inhibits the S-type anion channel (SLAC1) and the activity of its homologs (SLAH3) [120]. In addition,
SnRK2.6 cannot inhibit K+ channel (KAT1) activity, which results in increased turgor pressure and
stomatal opening [121]. To cope with stress, plants tend to close stomata to prevent water loss.
ABA signaling would lead to the closure of stomata. Elevated ABA levels under stress conditions
inhibit PP2CA activity and the phosphorylation of SnRKs (Ca2+-dependent manner), CBL, CIPK,
and CDPK (Ca2+-independent manner) occurs leading to the phosphorylation of SLAC1/SLAH3 by
CBL1/9-CIPK23, CPK3/6/21/23, and SnRK2.6/OST1 [84,95,118,122–125]. SnRK2.6/OST1 also inhibits K+

channel (KAT1) activity [126] and mediates the efflux of anions and influx of K+ and decrease in turgor
pressure that results in stomatal closure (Figure 1C).

3.2. Abiotic Stress Signaling Integration with the ABA Signaling Pathway

In plants, ABA signaling is an important tool for robust stress responses to environmental
stimuli and developmental processes. Plants encounter numerous abiotic stress factors, such as water
scarcity (drought or dehydration), low temperature (cold stress), and salinity (salt stress) [59,127].
The plant utilizes ABA to assess the stress impact and may continuously alter ABA signaling stages
based on environmental and physiological conditions to delay processes, such as germination,
development, and lateral root formation, as appropriate [128]. Under stress conditions, numerous genes
are upregulated in plants via the ABA pathway. Promoter analysis of the ABA-inducible genes has
indicated that they must have multiple cis-elements, such as ABREs (PyACGTGG/TC) [129,130]. Plant
gene expression analyses have revealed conserved ABREs cis-acting elements in dehydration-inducible
promoters [131]. Sequences of ABREs are also present in the genes that are expressed in the seeds
(Figure 1D) [132].

The bZIP subfamily members (AREB1/ABF2, AREB2/ABF4, and ABF3) are induced by ABA,
dehydration, and high salinity [133], and the overexpression of the above factors in transgenic plants
has led to drought tolerance [133–135]. To establish the role of such AREB/ABF TFs in stress-responses
in vegetative tissues, Yoshida et al. [136] generated an areb1/areb2/abf3 triple mutant. Microarray analysis
revealed impaired stress-responsive gene expression. It also revealed many stress-responsive genes,
such as LEA proteins, group A PP2Cs, and various types of TFs that lie downstream of AREB/ABF TFs.
Most of such gene promoters contain ABRE sequences. The areb1/areb2/abf3 triple mutant was sensitive
to drought-stress and was more resistant to ABA (primary root growth) when compared with other
single and double mutants, suggesting that ABF3, AREB1, and AREB2 are the master TFs that regulate
the ABRE-dependent gene expression under stress conditions in ABA signaling. HD-ZIP transcription
factor (TF), HAT1, a critical regulator in brassinosteroid (BR) signaling, interacts with SnRK2s [137,138].
HAT1 suppresses ABA signaling and is involved in ABA regulation of drought response [138], which
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also suggests the integration of BR signaling with ABA signaling to regulate the downstream targets of
abiotic stress tolerance.

Mitogen-activated protein kinases (MAPKs) are also involved in ABA signaling in response
to abiotic stress [57,139]. Studies on MAPK inhibitors highlighted the link between ABA and
MAPK signaling. For example, in barley, phenyl arsine oxide inhibited ABA-induced MAPK
activation [140]. Apart from MPK3, MPK4, and MPK6, the only other MAPKs activated in response
to ABA are MPK12 [141–143] and the C-clade MAPKs MPK1/2/7/14 [144–146]. In Arabidopsis,
MAP3K17 and MAP3K18 function upstream of the MAP3Ks to activate MKK3 and MAP2K, and,
therefore, the C-clade MAPKs (MPK1, MPK2, MPK7, and MPK14) in response to ABA signaling
(Figure 1D) [82,146,147]. BiFC and yeast 2-hybrid techniques have been used to demonstrate
the interactions between kinases in Nicotiana benthamiana [146,147]. In the mkk3 and map3k17/18
backgrounds, ABA-driven activation of MPK7 was significantly reduced [146]. Genetic analysis
revealed that in ABA signaling, PYR/PYL/RCAR-SnRK2-PP2C (an ABA core signaling module)
activates the MAP3K17/18-MKK3-MPK1/2/7/14 cascade through the transcriptional regulation of
MAP3K17/18 followed by MAP3K activation [146,148]. MAP3K18 is also regulated directly by the
PYR/PYL/RCAR-SnRK2-PP2C module, suggesting that PP2C phosphatase ABI1 interacts directly with
MAP3K18 [82] (Figure 1D). MAP3K18 also controls RD29B and RAB18 expression, two known ABA
and abiotic stress-responsive genes, indicating the role of ABRE genes downstream of the MAPK
cascade for the ABA signaling-driven abiotic stress response in plants.

3.3. Biotic Stress Signaling Integration with the ABA Signaling Pathway

Plants respond to biotic and abiotic stress via crosstalk signals such as ABA, salicylic acid
(SA)/jasmonic acid (JA)/ethylene (ET)-mediated defense signaling [149]. The role of ABA in the
crosstalk between biotic and abiotic stress is very broad and is discussed in detail by recently published
reviews [150,151]. A restraint function of ABA on the systemic acquired resistance pathway of SA
induction has also been reported in tobacco [152]. Elicitors/effectors secreted by Pseudomonas syringae
pv. tomato activate ABA biosynthesis along with ABA signaling, which leads to the inhibition of biotic
defense responses [23]. However, several reports have shown the positive effect of ABA signaling on
biotic and abiotic stress. For example, treatment with ABA and SA resulted in a short-term increase in
H2O2 production, which induced tolerance to salinity, heat, and oxidative stress [153]. During infection
in plants, stomata can act as passive passage for bacteria. P. syringae pv. tomato pathogen-associated
molecular patterns (PAMPs) induce stomatal closure via ABA signaling, NO production, and flagellin
receptor (FLS2), indicating the integration of biotic and abiotic signaling with ABA signaling in the
regulation of stomata [154]. β-aminobutyric acid (BABA), a non-protein amino acid, has been reported
as a link between heat tolerance, biotic stress, and ABA signaling. Plants treated with BABA become
resistant to abiotic as well as biotic stress [155–158]. The ibs3, a BABA-induced sterility mutant, exhibits
defected regulation of ABA1, salt resistance, and BABA-induced pathogen [159]. A recent study
described BABA as a natural molecule synthesized by plants under stress [160]. Therefore, it may
be a new entry into the list of plant hormones. Isolation of an activation-tagged mutant of activated
disease resistance 1 (adr1) further consolidates the link between ABA-mediated biotic and abiotic
signaling. The adr1 mutant displayed drought tolerance as well as disease resistance. Surprisingly,
adr1 plants display sensitive phenotype toward salt and heat stress, suggesting antagonism between
biotic stress and abiotic stress [161]. Recently, a study reported that PUB10 acts as a negative regulator
of ABA signaling, which could also be intermediatory in JA signaling (Figure 2) [66]. MAPKs are
also reportedly involved in plant defense response by regulating the JA- and SA signaling as well as
downstreaming transcription factors. This is discussed in detail by a recently published review [162].

In Arabidopsis, the biotic stress-inducible AP2/ERF TF family proteins are associated with different
abiotic stresses, such as cold, drought, salinity, heat, and light stress [70,163–165]. Many ROS-inducible
genes are also induced by AtERF6 for protection against both biotic and abiotic stress [166]. Most of
the ethylene response factors (ERFs) that display abiotic stress tolerance are induced not only by
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ethylene but also by other biotic stress associated phytohormones, such as JA and SA. Therefore,
there is potential crosstalk between abiotic and biotic stress and responses via the ABA signaling
pathway [167–170] (Figure 2).

4. ABA Signaling in Plant Development

4.1. Role of ABA Signaling in Seed Germination and Lateral Root Formation

ABA accumulates during seed development and seed germination. In mature seeds, ABA promotes
the synthesis of LEA (Late embryogenesis abundant) proteins for desiccation tolerance. ABA also
inhibits germination and stimulates dormancy in mature seeds [55]. ABI3 and ABI4 control seed
sensitivity and embryonic gene expression in plants [171]. abi3 mutant seeds display reduced dormancy
and vivipary, caused by the strongest alleles. To control seed maturation, ABI3/VP1 binds directly to
the promoters of Sph/RY. FUSCA3 (FUS3) and LEAFY COTYLEDON 2 (LEC2) genes encode TFs that are
structurally related to VP1/ABI3 [172,173], and the genes interact with ABI5 [174], although VP1/ABI3
is involved directly in ABA signaling. A bZIP protein, ABA-INSENSITIVE5 (AB15), was identified via
ABA insensitive germination screening [171]. In addition to ABI5, three AREB/ABF-type bZIP proteins,
namely EEL, AREB3, and AtbZIP67/AtDPBF2, are expressed in the nuclei of developing seeds and play
vital roles in seed germination [175,176]. During early germination and seed maturation under stress
conditions, ABI5 regulates the direct expression of AtEm1 and AtEm6 (LEA class genes) [130,175,177].
A seed expressed gene, DELAY OF GERMINATION 1 (DOG1), is critical for dormancy induction.
During Arabidopsis seed development, DOG1 interacts with ABI3 and influences ABI5 expression [178]
(Figure 1E). PGIP1 and PGIP2 are associated with the process of seed germination, and they are direct
targets of ABI5 [179,180]. Overall, all the above studies highlight the key role of ABI5 as a master
regulator of seed development through the ABA signaling pathway. A negative regulator of lateral
root formation, MYB96, activates the expression of ABI5 and is involved in plant responses to salt
and drought stress [181]. MYB7 also negatively regulates ABI5 expression in seeds [182] (Figure 1E).
The above studies support the functional role of ABI5 in the ABA signaling pathway-dependent
inhibition of lateral root growth under stress conditions [183].

4.2. ABA and Light Signaling Convergence

ABA and light are the endogenous hormonal and the external environmental cues that play vital
roles in the regulation of seed germination and seed development. The ability of plants to integrate
external signals with internal regulatory pathways is crucial for their survival [184,185]. However,
the crosstalk between ABA signaling and light signaling and its underlying molecular mechanisms
remain largely unclear. The involvement of TF HY5 in promoting seedling photomorphogenesis,
root development, and early seedling growth has been studied extensively. It mediates ABA
signaling responses in seed germination by binding directly to the ABI5 promoter and regulating its
expression [186]. Two major TFs in the phytochrome A pathway, FAR-RED IMPAIRED RESPONSE1
(FAR1) and FAR-RED ELONGATED HYPOCOTYL3 (FHY3), positively regulate ABA signaling by
inducing ABI5 expression directly [187]. PIL5 (also known as PIF1), a phytochrome-interacting bHLH
TF, also targets ABI5 [188]. Conversely, BBX21, a transcriptional regulator that is involved in the
regulation of seedling photomorphogenesis, negatively regulates ABI5 expression by intervening in
the binding of HY5 to the ABI5 promoter [189]. In addition, ABI5 can regulate its own expression while
BBX21 inhibits ABI5 activation (Figure 1E). BBX21 represses ABI5 activity by regulating the binding
activities of both ABI5 and HY5 to the ABI5 promoter [189]. The findings suggest that, in the light
signaling pathway, multiple TFs regulate ABI5 expression in the ABA signaling responses.

4.3. ABA Signaling and Control of Flowering Time

A variety of ABA signaling activities are involved in controlling meristem function or flowering
time [171,190]. In addition, the ABA inhibitory effect in floral transition was described very well in a



Plants 2019, 8, 592 9 of 20

study on an ABA-deficient mutant [191]. Such an inhibitory effect could be due to the modulation
of DELLA protein activity [184]. Therefore, ABA is also considered a floral repressor. FLOWERING
LOCUS C (FLC) is a key repressor integrator that tightly controls flowering signals [192]. FLC also
mediates seed germination via genes, such as SOC1, APETALA1, and FT, making FLC an effective
regulator in temperature-dependent seed germination [193]. ABFs are the bZIP TFs that are involved
in ABA signaling during seed germination in plants [194,195]. Another bZIP protein, FD, mediates
signals from FT at the shoot apex [196]. Overexpression of another bZIP TF, ABI5, upregulates FLC
expression and delays flowering initiation. Phosphorylation of ABI5/SnRK2 during ABA signaling
directly affects floral transition, and the inhibitory effect of ABI5 on floral transition disappears without
phosphorylation. Transactivation of FLC expression could occur by direct binding of ABI5 to FLC
promoter regions [197]. AtU2AF65b, a putative U2AF65 spliceosome, participates in ABA-mediated
flowering via the regulation of the pre-mRNA splicing of ABI5 and FLC [198], which indicates the
positive regulation of FLC activity by ABI5 during ABA signaling. Furthermore, AtU2AF65b-mediated
mRNA splicing is critical for ABA-regulated flowering transition for the control of floral transition in
plants (Figure 1E).

5. Other Aspects of ABA Signaling

ABA transporters are also a significant part of ABA signaling, as it is important to transport
ABA from its sites of synthesis to its multiple sites of action within plants. In Arabidopsis, four ABA
transporters have been identified (AtABCG25, AtABCG30, AtABCG31, and AtABCG40) all of which
are ATP-binding cassette transporter G subfamily members [199–202]. AtABCG25 is involved in
exporting ABA from the vasculature [201], while AtABCG40 is a plasma-membrane ABA-uptake
transporter in guard cells, and is necessary for timely closure of stomata in response to drought stress
and seed germination [199,200]. AtABCG30 mediates ABA uptake into the embryo, while AtABCG31
brings about ABA secretion from the endosperm [200]. A recent study reported ABA transporter-like
1 (AhATL1) gene from peanut (Arachis hypogaea L.) whose cognate protein, AhATL1, is a member
of the ATP-binding cassette transporter G subfamily and localizes to the plasma membrane [203].
The expression of both the AhATL1 transcript and the corresponding protein was upregulated by
water stress and treatment with exogenous ABA. Another report suggested that in Medicago truncatula,
MtABCG20 acts as an ABA exporter that influences root morphology and seed germination [204].
These data indicate that the ABA transport system plays a significant role in water deficit tolerance
and growth regulation [203].

ABA signaling crosstalk occurs with other hormones that are involved in plant growth and stress
response. These hormones include strigolactone, cytokinin, and karrikin. Strigolactone (SL) is a recently
discovered class of phytohormone that inhibits shoot branching [205]. ABA signaling may regulate SL
biosynthesis [206]. The antagonistic action of ABA and cytokinin signaling mediates drought stress
response in Arabidopsis [207]. Karrikin signaling pathway seems to be upstream of ABA signaling
pathway and karrikin mediates changes in ABA-related gene expression [208]. DELLA protein is
important for seed germination [209]. ABA also interacts with DELLA protein when DELLA/ABI3/ABI5
complex is involved in seed germination [210].

6. Conclusions

It is evident that ABA is an important signaling compound. In stress and developmental responses
in plants, ABA signaling largely depends on the SnRK family of protein kinases. ABA signaling
integrates other signaling components, such as Ca2+, light, MAP kinase, SA, JA, and ET signaling,
in response to environmental cues, developmental activities, and biotic stress (Figure 3). Such integration
is vital for response stress and plant development; however, there are still gaps regarding to what
extent and how often such integrations occur. In addition, it is important to reveal the complex ABA
signaling network by adopting more integrated and more detailed genome-wide studies to identify the
critical components of stress responses and developmental processes and to develop scientific tools for
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the genetic engineering of stress-tolerant and robust plants. Furthermore, it is critical to determine the
role of all ABA signaling-related genes to fill any knowledge gaps about ABA signaling. In the future,
studying the function of ABA signaling-related genes under different combined stress conditions and
the regulation of developmental processes would offer detailed insights into the underlying mechanism
of ABA signaling.

Figure 3. Integration of various signaling pathways with ABA signaling. ABA signaling plays a central
role in regulating different developmental processes, including stress responses, as is evident from its
interactions with calcium (Ca2+), jasmonic acid (JA), salicylic acid (SA), brassinosteroid (BR), ethylene
(ET), and MAP kinase (MAPK) signaling pathway members.
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