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ABSTRACT

Objective: Like most real-world data, electronic health record (EHR)–derived data from oncology patients typi-

cally exhibits wide interpatient variability in terms of available data elements. This interpatient variability leads

to missing data and can present critical challenges in developing and implementing predictive models to under-

lie clinical decision support for patient-specific oncology care. Here, we sought to develop a novel ensemble ap-

proach to addressing missing data that we term the “meta-model” and apply the meta-model to patient-

specific cancer prognosis.

Materials and Methods: Using real-world data, we developed a suite of individual random survival forest mod-

els to predict survival in patients with advanced lung cancer, colorectal cancer, and breast cancer. Individual

models varied by the predictor data used. We combined models for each cancer type into a meta-model that

predicted survival for each patient using a weighted mean of the individual models for which the patient had all

requisite predictors.

Results: The meta-model significantly outperformed many of the individual models and performed similarly to

the best performing individual models. Comparisons of the meta-model to a more traditional imputation-based

method of addressing missing data supported the meta-model’s utility.

Conclusions: We developed a novel machine learning–based strategy to underlie clinical decision support and

predict survival in cancer patients, despite missing data. The meta-model may more generally provide a tool for

addressing missing data across a variety of clinical prediction problems. Moreover, the meta-model may ad-

dress other challenges in clinical predictive modeling including model extensibility and integration of predictive

algorithms trained across different institutions and datasets.
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INTRODUCTION

Background and significance
Predictive models trained using real-world clinical data offer tre-

mendous potential to provide patients and their clinicians patient-

specific information regarding diagnosis, prognosis, or optimal ther-

apeutic course.1–10 For example, a recent high-profile study trained

a machine learning model using hundreds of thousands of patient

records to forecast the development of acute kidney injury.9 How-

ever, key challenges have limited the introduction of machine learn-

ing–based predictive models into real clinical settings.3 One set of

challenges relates to interpatient variability in data availability. In

most real-world datasets, many patients will lack recorded findings

for many clinical factors.3,7,11–13 For example, some hospitals may

have a laboratory test menu that includes more than 1000 unique

orderable tests. Most patients will have had at most a small fraction

of these possible tests. A similar pattern involving substantial

“missing data” would usually be observed for nonlaboratory clinical

data, including other diagnostic studies, elements of patient history,

and physical exam findings. The issue of data heterogeneity becomes

particularly significant when considering time series data; even

patients who have similar diagnostic tests or physical exam maneu-

vers performed may have them at different time points or repeated

at varying intervals.3

Many commonly used machine learning algorithms require com-

plete datasets and cannot directly use for training or prediction data-

sets containing missing data. Data scientists commonly employ

several strategies to enable use of real-world data that include miss-

ing elements in predictive analyses. One strategy involves prepro-

cessing a set of clinical data by “imputing” missing data elements.14

While there are numerous variations on imputation and related

approaches, including single imputation, multiple imputation, and

expectation maximization, most imputation approaches are funda-

mentally designed to use available data to estimate the distribution

or value of each element of missing data.7,11–13,15–18 The prepro-

cessed dataset, including both actual and imputed clinical findings,

can then be used to train standard machine learning models or can

be applied to trained models to generate predictions. However, im-

putation, while very useful in many contexts has important limita-

tions. Most imputation algorithms assume that data are missing at

random (MAR); because diagnostic studies are selected and ordered

in response to the clinical setting, most clinical datasets will violate

the MAR assumption.3,11,18 Likewise, imputation can introduce ad-

ditional uncertainty and inaccuracy into predictions and may ob-

scure some of the intuition behind some predictive models.

As described subsequently, we propose and demonstrate an alter-

native approach to imputation in addressing missing data. We term

this new approach the meta-model. To develop and apply the

meta-model, we consider the problem of patient-specific prognosis

prediction in patients with advanced oncologic disease. While

population-based survival statistics are available across a wide range

of cancer types and patients, patient-specific information can be

harder to discern. For example, based on national SEER (Surveil-

lance, Epidemiology, and End Results) statistics, the overall 5-year

survival of patients with stage IV colon cancer is just 14%.19 How-

ever, some individual patients will have a considerably better than

average survival. The critical question for an oncologist then, when

seeing an individual patient, is not the population survival, but

rather what the individual patient’s prognosis is. Individualizing pa-

tient prognosis is not itself a new endeavor. On the contrary, numer-

ous published studies describe clinical risk factors that portend

better or worse prognosis. For example, prior studies clearly estab-

lish that patients with colon cancer experience shorter survival on

average if they have comorbid diabetes.20 While a clinician may

take these types of published findings into account when considering

prognosis, their true clinical utility can be quite limited. In particu-

lar, patients may have multiple clinical factors that individually

could convey improved or worsened prognosis; there would usually

not be a viable strategy to calculate the aggregate impact of these

multiple factors. Indeed, prior studies have shown limitations of the

human brain in manually making predictions based on a large num-

ber of predictors.2 Thus, as a secondary focus of this article, we pro-

pose, validate, and demonstrate a strategy to apply machine

learning to the development of patient-specific Kaplan-Meier sur-

vival curves. These patient-specific curves may offer oncologists and

other clinicians the opportunity to more accurately assess patient

prognosis and communicate risk to patients.

Objectives
This article has 2 objectives. The primary objective is to develop and

demonstrate a novel meta-model approach to addressing missing

data. As described in detail subsequently, our meta-model concept

includes an ensemble of underlying models based on varying predic-

tors with the final output based on an aggregate of all individual

models for which a patient has complete data. The meta-model may

also address other challenges in predictive clinical decision support

(CDS) implementation including model extensibility and integration

of predictive algorithms trained across different institutions and

datasets.

The secondary objective of this article is to develop a method for

generating patient-specific Kaplan-Meier survival curves.

MATERIALS AND METHODS

An overview of our methods is shown as Figure 1. Using clinical

data from patients with metastatic colorectal cancer (CRC), meta-

static breast cancer, and advanced lung cancer, we first developed a

set of survival prediction models intended to individualize patient

prognosis. After developing and validating the individual models,

we combined the individual models for each dataset into a meta-

model. We demonstrate that this meta-model can provide an alter-

native to imputation in addressing missing data and may offer sev-

eral key advantages. Key methodologic points are described

subsequently with additional detail provided in the Supplementary

Methods.

Patient cohorts
We defined patient cohorts from 3 subsets of the nationwide Flat-

iron Health electronic health record–derived de-identified data-

base21: (1) metastatic CRC, (2) advanced non-small cell lung cancer,

and (3) metastatic breast cancer. For each patient in our cohort, we

extracted and assembled outcome data (time surviving after the date

of advanced diagnosis) and selected clinical features that were com-

monly available and that we thought might help to predict prognosis

(“predictors”). We randomly split the cases for each cohort into a

training and a testing partition in an approximately 80:20 ratio.

Survival outcome
We captured survival, defined as the number of days between ad-

vanced tumor diagnosis and death for use as our outcome variable.

Patients were censored to the time of their last encounter.
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Predictors and predictor sets
We considered patient demographics, tumor characteristics, molecu-

lar biomarkers, and laboratory test results for use as predictors

(Table 1). We prioritized potential predictors for inclusion based on

factors including data availability and expected predictive value.

That is, we favored predictors available on a larger number of

patients (based on a preliminary exploration of the data) and those

that, based on our domain expertise, we thought were more likely to

be of value. In addition, we considered the usability of predictors

both in our analysis and in potential downstream applications (eg,

we preferred predictors often available in structured form with

meanings that are substantially standardized across institutions).

We further grouped the predictors into “predictor sets” (Table 1).

Similar to how we selected the predictors themselves, we selected

the predictor set groupings based on patterns of data availability

(eg, we preferentially included lab tests commonly performed to-

gether in the same predictor set) with an emphasis on developing

predictor sets for which many or all patients would have all of the

available predictors. The number of total cases along with an ac-

counting of censored patients and deceased patients, available for

use with each predictor set, is shown as Table 2.

Individual model development
For each cohort and set of predictors, we trained 2 different survival

models: one linear Cox regression model and another based on a

random forest. We used the R survival package22 to develop and val-

idate the linear models and the R randomForestSRC package23–26 to

develop the tree-based models. We included 100 trees per individual

model. Additional detail on these models is available in the Supple-

mentary Methods.

Addressing missing data in training and testing

individual models
We used 3 strategies to train and test individual models in the setting

of missing data. The first strategy involved using complete cases

with respect to each predictor set (ie, patients were excluded from

training or testing who did not have all of the requisite predictors

needed). The second strategy involved imputation. We imputed

missing predictor values using the random forest–based imputation

algorithm, missForest as described in greater detail in the Supple-

mentary Methods. The third strategy to addressing missing data in-

volved leveraging built-in functionality to handle missing data

within the randomforestSRC package23–26; we term this third strat-

egy native imputation.

Meta-model conceptual approach
Aiming to integrate survival predictions across individual models,

improve overall prediction accuracy, and offer other important

practical properties, as described subsequently, we developed an ap-

proach we termed the meta-model. Conceptually, the meta-model

(Supplementary Figure S1) starts by training individual prediction

models, such as the individual survival models described previously.

It then assigns a weight to each model, based on the model’s accu-

racy, such that models that tend to predict outcomes with greater ac-

curacy are more heavily weighted (specific approach to assigned

weights described subsequently). The meta-model can then be ap-

plied to test patients by computing all individual models for which

the patient has the necessary predictors and then taking a weighted

average of the predictions produced by these individual models. We

note that the meta-model in part represents an adaptation of Brei-

man’s27 stacked regression.

Development of the survival meta-model
We trained 1 meta-model for each cohort (3 meta-models total) us-

ing the predictor sets shown in Table 1. For each predictor set, we

trained a random forest–based model using methods paralleling the

development of the individual survival prediction models. (We refer

to each of these individual random forest models within the

meta-model as an “individual model.”) To assign a weight to each

individual model, we performed 5-fold cross validation of each indi-

vidual model capturing the median cross-validation area under the

receiver-operating characteristic curve (AUROC) of the model at

500, 1000, and 1500 days. We then transformed these median

AUROC values into model weights using 1 of several weighting

Figure 1. Overview of data, model development, and performance assessment. Shown is an overview of the approach used to extract, analyze, and model the

data and assess model performance. Details are described in the Materials and Methods section and in the Supplementary Methods. CRC: colorectal cancer;

NSCLC: non-small cell lung cancer.
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functions having the form w ¼ x� 0:5ð Þn; where w is the weight

assigned to the model prediction, x represents the median cross-

validation AUROC, and n represents an exponent (see Supplemen-

tary Methods for additional detail). A value of n¼2 was used for all

analyses unless otherwise specified.

Model evaluation metrics
We evaluated our models by comparing predicted survival to actual

survival for patients in the test partition. We primarily used

AUROC, describing each models ability to discriminate patients

alive vs deceased at various time points. We specifically considered

AUROC at 500, 1000, and 1500 days post advanced diagnosis. We

calculated AUROC using the method described by Heagerty et al.28

as implemented in the R package survivalROC.28,29 In addition, as

described in greater detail in the Supplementary Methods, we evalu-

ated model calibration by comparing the actual deaths with the pre-

dicted deaths for groups of patients over various time windows.

RESULTS

As described in the methods and Figure 1, we tested our models in 2

settings: (1) complete case analysis (we used only test cases with all

needed predictors available) and (2) all case analysis (we used test

cases regardless of predictor data availability).

Complete case analysis
As shown in Figure 2, we first considered the performance of indi-

vidual models in comparison to the meta-model when applied to

complete cases within the test data. Although the meta-model is

intended for application to patients with a wide range of predictor

data availability, for comparison purposes, we applied the meta-

model in this analysis to the same subsets of test data used for the

complete case evaluation of each individual models. Figure 2 also

includes corresponding individual Cox regression models for com-

parison.

The best-performing individual models achieved an

AUROC>0.7 in predicting mortality at 500, 1000, and 1500 days.

In almost all cases, the meta-models outperformed the individual

models on comparable datasets and in some cases achieved

AUROCs approaching or exceeding 0.8. The difference in perfor-

mance between individual models and the meta-models was most

pronounced when considering the simplest individual models (eg,

the “A” and “B” models); this makes sense, given that the meta-

models in many patients would have been able to leverage a much

wider array of predictors than the simple individual models. More

interestingly, the meta-models also seem to modestly outperform the

more complex individual models in most cases. Supplementary

Table S1 provides additional training and testing AUROC values.

All case analysis
Because an important goal of the meta-models was applicability to

patients with a wide range of predictor data availability, we also

compared the meta-model with the individual models when applied

to all test patients. For this analysis, we imputed missing test data

for application to the individual models. Because the meta-models

were designed to accommodate variability in predictor data avail-

ability, no imputation was used with the meta-models; however, all

test patients were used to evaluate both the individual models and

the meta-models.

Area under the receiver-operating characteristic curve

Model performance in the all case analysis is shown in Figure 3 (for

AUROCs at 1000 days) and in Supplementary Figures S2 and S3

(for AUROCs at 500 and 1500 days, respectively). As shown, the

meta-model significantly outperforms many of the individual models

and performs similarly to the best performing individual models.

Supplementary Table S1 provides additional training and testing

AUROC values.

Table 2. Patient characteristics by predictor set

Complete Cases

Cohort Predictor Set n % Total Deceased Total Censored

Advanced lung cancer A 6558 100 1146 5412

B 6559 100 1146 5413

C 6558 100 1146 5412

D 4479 68 639 3840

E 3254 50 577 2677

F 3253 50 577 2676

G 2285 35 338 1947

H 157 2 21 136

Metastatic breast cancer A 5045 100 1633 3412

B 5045 100 1633 3412

C 5045 100 1633 3412

D 4795 95 1548 3247

E 2854 57 818 2036

Metastatic colorectal cancer A 6742 100 1760 4982

B 6743 100 1761 4982

C 6742 100 1760 4982

D 3888 58 888 3000

E 3435 51 768 2667

F 2759 41 588 2171

G 1163 17 269 894
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Impact of weighting functions

We compared various meta-model weighting functions (Supplemen-

tary Figure S4) and found that the specific weighting-function (ie,

value of the exponent n) makes little difference in performance.

Model calibration

To assess model calibration, we compared predicted mortality to ac-

tual mortality for groups of patients over various time windows

(Figure 4). To evaluate further the calibration of each survival

model, we fit Poisson regression models with predicted mortality

(log transformed) for patient-time groups as the independent vari-

able and actual mortality as the dependent variable. Meta-models

produced slopes close to 1 (range, 0.98-0.99) (Figure 4), suggesting

that predicted and actual mortality agree well on average (a slope of

1 would suggest perfect alignment on average). Likewise, the indi-

vidual models when used with imputation generally showed good

calibration, but several cases exhibited slopes considerably further

from 1 (range for individual models, 0.94-1.06). Supplementary Ta-

ble S2 expands on the analysis in Figure 4 by explicitly considering

whether the models are systematically over- or underestimating pa-

tient risk in lower- and higher-risk patients.

Individual patient survival

To illustrate how the meta-model might be used in practice, we plot-

ted individual Kaplan-Meier survival curves for 9 selected patients

within the test partition of the CRC dataset (Figure 5).

DISCUSSION

In this study, we demonstrate the utility both of a meta-model ap-

proach to addressing missing data and of the use of machine learn-

ing–based models to predict patient survival in advanced CRC, lung

cancer, and breast cancer. We show that a meta-model method inte-

grating a suite of underlying models using varied predictors may

provide a practical strategy to accommodate missing data. With fur-

ther validation, we anticipate that the meta-model method described

here could be adapted to a wide range of prediction problems, span-

ning well beyond oncology survival prediction.

The meta-model approach is well suited to the development of

clinical decision support, which was our primary aim in undertaking

this work. Indeed, as shown in Figure 6, we aim to build an “app”

to provide clinicians with access to patient-specific Kaplan-Meier

curves. In addition to addressing missing data, the meta-model may

provide a framework for interinstitutional predictive model develop-

ment. For example, the meta-model could combine individual mod-

els trained using separate data sources, even at different institutions.

While using multi-institutional data (as opposed to single-site data)

to train predictive models would often be scientifically desirable in

ensuring generalizability and in obtaining data from a sufficient

number of patients, administrative challenges to data sharing

outside individual health systems often make multi-institutional

datasets impractical or impossible to obtain.3 However, the meta-

model approach may help to address this challenge to the extent

that building a multi-institutional meta-model would only require

institutions to share trained underlying individual models and not

actual patient data. Moreover, we envision future vendor-developed

Figure 2. Model area under the receiver-operating characteristic curve (AUC when each model is applied to a subset of patients in the test partition having data

available for all of the predictors in the corresponding predictor set. For example, consider the set of bars above “CRC_D” on the x-axis. The individual Cox re-

gression model and random forest (RF) series then denote AUC values for the individual Cox and RF models corresponding to colorectal cancer (CRC) predictor

set D; the meta-model bar represents the CRC meta-model. All 3 bars above CRC_D are based on a subset of the patients in the test partition who have data avail-

able for all the predictors included in CRC predictor set D (same subset of test patients used for all 3 bars). As shown, across all patient subsets, the meta-model

performs better than or similar to the individual models. Br_: breast cancer predictor set; lCA_: lung cancer predictor set.
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CDS systems that include both a set of “starter” models as well as

functionality for sites to train additional models; the systems could

then combine the starter with the locally trained models using the

meta-model approach described here. Finally, the meta-model ap-

proach may also be useful in identifying tests that were not per-

formed but which could substantially reduce prognostic uncertainty

(ie, tests needed for the better performing underlying models). CDS

could recommend the clinician order such tests.

As noted in the introduction, most imputation and other meth-

ods for addressing missing data, including the missForest method

considered here, assume data are MAR. Traditional imputation

approaches may be subject to bias when data are not missing at ran-

dom. For example, consider a hypothetical analysis in which

patients with high values for the tumor marker carcinoembryonic

antigen (CEA) are more likely to have CEA testing performed. In

this case, the “observed” distribution of CEA values (ie, measured

CEA results) will be higher than the unobserved distribution (ie,

what the CEA results would have been in patients who did not have

CEA testing). Further, suppose in this hypothetical example that

high CEA correlates with poor prognosis. In this case, imputation

might be prone to impute CEA results that are biased high (more in

line with the distribution of observed values), and thus a survival

prediction algorithm relying on these biased high imputed CEA

results might be prone to overly pessimistic prognostic projections in

patients without CEA testing. While a formal theoretical evaluation

of the extent to which non-random missing data may bias the meta-

model is beyond the scope of this article, we postulate that in many

cases, the meta-model should be comparatively robust to violations

of the MAR assumption. For example, consider what might happen

if a meta-model approach were used in the hypothetical CEA sce-

nario noted previously. In this case, we might expect individual

models that do include CEA to on average predict poorer prognosis;

however, this would be subject to adjustment based on the actual

CEA result in these models. Likewise, the individual models that do

not include CEA may on average provide overly pessimistic predic-

tions in patients who do not have CEA (this might be similar to the

case of imputation) and overly optimistic predictions in those who

do. However, these presumably should average out at the popula-

Figure 3. Model area under the receiver-operating characteristic curve (AUC) when applied to all cases from the test partition. Shown is the AUC (1000 days) of

each individual model, with missing test data addressed using either missForest imputation or imputation within the random survival forest algorithm

(“NativeImputation”). For comparison, also shown is the AUC of the corresponding meta-model (dashed line) when applied to the complete set of test patients.

All patients within the test partition, regardless of predictor data availability, are included in all analyses. For this analysis, we trained individual models using ei-

ther complete cases within the training data (top row) or addressed missing training data using missForest (middle row) or native imputation (bottom row). As

shown, the meta-model in most cases outperforms the individual models; in some cases, meta-model performance is similar to or negligibly worse than individ-

ual models. Analogous figures showing AUC at 500 and at 1500 days are provided as Supplementary Figures S2 and S3. Br_: breast cancer predictor set; CRC_:

CRC predictor set; lCA_: lung cancer predictor set.
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tion level if the patterns of missingness in the training and testing

partition are the same. Moreover, because models with CEA would

be weighted more (if they perform better), patients with CEA may

tend to have predictions that overall substantially adjust for CEA

results. (This, in theory, could introduce a net calibration error

across the dataset). Future research will be needed to evaluate

whether our speculation regarding the robustness of the meta-model

to the MAR assumptions holds in practice; however, the calibration

data provided here (Figure 4) empirically may be supportive. A use-

ful area for future work would be to investigate explicitly whether

patterns of data missingness impact model calibration.

While we had hypothesized that the meta-model would provide

better performance than traditional methods of addressing missing

data, in our experimental comparison, the meta-model did not uni-

versally outperform imputation. When applied to the complete set

of test patients and assessed in terms of AUROC, imputation in

combination with the best performing individual models performed

similar to and in some cases, slightly better than the meta-model ap-

plied to the same patients. The meta-model may in some cases be

more robust to calibration errors introduced due to data missing not

at random (see Figure 4 and the paragraph preceding this one).

Nonetheless, given the comparable performance of the approach,

coupled with improved transparency of the meta-model and the

practical applications noted previously, we expect that the meta-

model will provide a useful tool. Future work will be needed to gen-

eralize our assessment of the meta-model to a range of prediction

problems. Likewise, we selected only 2 imputation methods for

comparison; we selected missForest in part because it had been

shown to work well for laboratory test results in prior research7,12

and because it can impute both numerical and categorical variables,

but additional work comparing the meta-model to additional impu-

tation methods could be informative.

We were surprised that the specific weighting function used to

aggregate the predictions from the underlying models had little im-

pact on overall meta-model performance. We had expected that

higher values of the exponent n, which weight better-performing un-

derlying models more heavily, would have led to better overall per-

formance. While we do not have a full explanation, we expect that

Figure 4. Model calibration. To test model calibration, we calculated each test patient’s predicted mortality over 250-day time windows. We further grouped

patients into risk quartiles (4 ¼ highest risk of dying; 1 ¼ lowest risk) and calculated the aggregate predicted mortality for each patient group–time window combi-

nation. We then compared predicted mortality to actual mortality. The scatterplots (top) plot actual vs predicted mortality for each meta-model. The dashed 45-

degree line represents perfect calibration. To summarize each model’s calibration, we calculated the slope of a Poisson regression line fitting actual mortality as

a function of (log-transformed) predicted mortality with an intercept through the origin. Slopes of 1 would indicate perfect calibration, while slopes substantially

different from 1 would indicate miscalibration. The bar graphs (bottom) plot the calibration slopes for individual models. The horizontal dashed lines in the

graphs represent the meta-model calibration slope (and its mirror image around 1). Although the time windows and risk quartiles are not explicitly displayed in

this bottom summary plot, the data are nonetheless grouped by risk quartile and time window, paralleling the upper scatterplots. Br_: breast cancer predictor set;

CRC_: CRC predictor set; lCA_: lung cancer predictor set.
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this may be partly due to the fact that underlying models using dif-

fering predictors may provide predictions with at least partially

uncorrelated errors. Thus, averaging the “noisy” predictions pro-

duced by the underlying models may serve to reduce the overall

noise (ie, overall error). While we selected our predictor set groups

manually, in large part based on patterns of data availability, it may

be a useful subject of future work to explore characteristics of ideal

predictor sets. For example, should correlated predictors be prefer-

entially included in the same or in different predictor sets?

To be sure, our approach is not the first attempt to build patient-

specific Kaplan-Meier curves.30,31 However, most if not all prior

attempts to develop patient-specific survival curves have been based

on linear models, in contrast to our primary approach. The primary

novelty of this article is the use of the meta-model; however, the con-

cept of using patient-specific survival predictions for clinical deci-

sion support may also prove to be a useful, practical application of

this work.

In addition to the need for future work to further generalize the

meta-model approach, the specific application to patient-specific

survival prediction is subject to limitations. A key consideration is

that in some cases, the algorithms may be providing information

that the clinician already knew or suspected; for example, clinicians

can of course in some cases use judgement to identify patients who

appear sicker and likely have a worse prognosis. While formally test-

ing the clinical value of these algorithms may be a subject of a future

study, given the multitude of predictors that went into the algo-

rithms, we hypothesize that it would be difficult for a clinician to

manually integrate the value of the many predictors included in our

models. Indeed, studies have shown that the human brain is unable

to simultaneously integrate a large number of data elements.2,32 We

are considering performing user simulation studies to evaluate how

our algorithms perform in comparison to manual clinician intuition.

We are considering several extensions to the patient-specific sur-

vival models. In particular, we may develop models for other tumor

types and that incorporate additional predictors, including addi-

tional biomarkers, comorbidities, tumor genomics, patient socioeco-

nomic factors, care delivery characteristics, and potentially even

features extracted from radiologic and whole slide images. More-

over, in addition to providing prognostic predictions, we hypothe-

size that our approach will be applicable to patient-specific

treatment optimization and prescriptive decision support. For exam-

ple, we plan to explore whether we can update our models to in-

Figure 5. Patient-specific Kaplan-Meier curves for 9 selected colorectal cancer (CRC) test patients using meta-model–predicted survival probabilities. We selected

from the test partition of the CRC data 3 patients with substantially favorable (top row), 3 patients with substantially unfavorable (bottom row), and 3 patients

with generally typical (middle row) predicted survival. The solid lines represent the patient’s predicted survival and the dashed lines show survival for the cohort

as a whole. Applicable models represent the underlying individual CRC models for which the patient had the necessary predictor data and which were included

in the prediction.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 3 613



clude as predictors the treatment the patient received and then apply

counterfactual learning to predict response to therapy.

As we plan our implementation strategy, we will need to care-

fully evaluate how clinicians and their patients would consider

insights provided by our models, and whether such knowledge

would have unintended consequences. For example, how would a

clinician communicate a personalized life expectancy to a patient,

and how will the patient feel about this deeper understanding of

their own mortality? Could this information inadvertently bias clini-

cians when they take treatment decisions to be more or less aggres-

sive than they otherwise might? Who should oversee the

appropriateness of CDS tools for clinical use and monitor for

unforeseen outcomes? Addressing these questions may ultimately

prove more challenging than the technical aspects of this clinical de-

cision support.33

CONCLUSION

The “meta-model” approach we developed and demonstrated in

this article offers a strategy to develop clinical predictive models

that can accommodate interpatient heterogeneity in data availabil-

ity and “missing data.” We further demonstrate the value of ran-

dom forest–based survival models in predicting patient-specific

oncology survival. We expect that the proofs of concept we de-

velop here will provide a foundation for novel types of clinical de-

cision support to enable clinicians to make more personalized

patient care decisions.
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