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Abstract: Theω-hydroxyl-panaxytriol (1) andω-hydroxyl-dihydropanaxytriol (2)—are rare examples
of polyacetylene metabolism by microbial transformation, and these new metabolites (1, 2) from
fermented red ginseng (FRG) by solid co-culture induction of two Chaetomium globosum should be
the intermediates of biotransformation of panaxylactone (metabolite A). The metabolic pathway of
panaxylactone was also exhibited. The ingredients of red ginseng (RG) also induced the production
of rare 6/5/5 tricyclic ring spiro-γ-lactone skeleton (3). The ω-hydroxylation of new intermediates
(1, 2) decreases cytotoxicity and antifungal activity against C. globosum compared with that of its
bioprecursor panaxytriol. Additionally, compounds 1 and 2 indicated obvious inhibition against nitric
oxide (NO) production, with ratios of 44.80 ± 1.37 and 23.10 ± 1.00% at 50 µM. 1 has an equivalent
inhibition of NO production compared with the positive drug. So, the microbial biotransformation
that occurred in FRG fermented by gut C. globosum can change the original bioactivity of polyacetylene,
which gave a basis about the metabolic modification of red ginseng by intestinal fungus fermentation.

Keywords: fermented red ginseng; Chaetomium globosum; polyacetylene; detoxification; oxidative
metabolism

1. Introduction

As one of the most popular herbal medicines, red ginseng (RG) has been studied for its
pharmacological activities, and it is also a widely used functional food [1]. The gut microbiota
has an application for medical treatment and drug discovery over distinct pathema indications [2].
It has been reported that ginseng was processed by fungal and bacterial fermentation, which can cause
an increase in the bioactivity and biotransform ginsenosides into aglycone forms [3,4]. The fermentation
process had the potential for biotransformation of active metabolites into a high-value product, and it
can also contribute to the improvement of biological activities of the medicinal plant [5]. Co-culture
technology has appeared as a new approach to activating the biosynthesis of natural products [6].
The natural world was the co-culture system, not single cultures, so the co-culture system can imitate
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the interaction between different strains. Chaetomium globosum, belonging to the Chaetomiaceae family,
is commonly found in terrestrial and marine habitats, and it was reported to cause infections in
humans [7]. C. globosum was also found residing in Epinephelus drummondhayi guts [8]. On the positive
side, the Chaetomium genus afforded a rich source of unique bioactive metabolites [9]. The emergence
of antibiotic-resistant pathogenic microorganisms poses a threat to human health [10]. Most of the
drug resistance was about the chemicals; the natural medicine was not studied in-depth study. In this
work, a pathogen resistance against natural medicine was found by chance. Our previous work led to a
rare example of polyacetylene biotransformation and a new polyacetylene, panaxylactone (metabolite
A) transformed from panaxytriol in fermented red ginseng (FRG) by process of C. globosum [11].
The biotransformation process was not clear, so the reinvestigation of the polyacetylenes from FRG by
solid co-culture of two C. globosum from different sources was carried out. Two new intermediates (1, 2)
relevant to the biotransformation of panaxylactone were isolated, along with a microbial metabolite
having a novel spiro-γ-lactone skeleton (chaetoginsin, 3) (Figure 1). The metabolic modification
of active polyacetylenes from RG was investigated by these compounds from FRG by pathogen
C. globosum.
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The analysis of  correlation spectroscopy (COSY) spectroscopic data revealed the 
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heteronuclear multiple bond correlation (HMBC) correlations from H-3 to C-1, C-2, and C-4; H-8 to 
C-6, C-7, C-9 and C-10; H-17 to C-15 and C-16 elucidate the structure of compound 1 (Figure 2). 
There is a high similarity between the chemical skeletons of compound 1 and known compound 
panaxytriol (PXT) [12,13]; therefore, a polyacetylene with cytotoxicity previously isolated in ginseng, 
the configuration of compound 1 at C-3 was identified by comparing the NMR data and the optical 
rotation (OR) values with those of panaxytriol and metabolite A found from FRG in our previous 
work [11]. The absolute configuration of 1 was confirmed by comparing OR value at −24.0 and 
circular dichroism (CD) spectrum with those of known panaxytriol [11,12]. The structure of 
compound 2 was determined as the dihydrogen at C-1, C-2 derived from 1 by DEPT spectrum, 
HRESI-MS, 2D-NMR, optical rotation value, and CD spectrum.  
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2. Results and Discussion

Compound 1 was gained as an oil and the formula was identified to be C17H26O4 by
its Distortionless Enhancement by Polarization Transfer (DEPT) spectrum and HR-ESI-MS (m/z
317.1735 [M + Na]+). Analysis of its 13C-NMR data exhibited the presence of the panaxytriol
skeleton. The analysis of correlation spectroscopy (COSY) spectroscopic data revealed the
C8-C9-C10-C11-C12-C13-C14-C15-C16-C17 structural connection. The heteronuclear multiple bond
correlation (HMBC) correlations from H-3 to C-1, C-2, and C-4; H-8 to C-6, C-7, C-9 and C-10; H-17 to
C-15 and C-16 elucidate the structure of compound 1 (Figure 2). There is a high similarity between
the chemical skeletons of compound 1 and known compound panaxytriol (PXT) [12,13]; therefore, a
polyacetylene with cytotoxicity previously isolated in ginseng, the configuration of compound 1 at
C-3 was identified by comparing the NMR data and the optical rotation (OR) values with those of
panaxytriol and metabolite A found from FRG in our previous work [11]. The absolute configuration
of 1 was confirmed by comparing OR value at −24.0 and circular dichroism (CD) spectrum with those
of known panaxytriol [11,12]. The structure of compound 2 was determined as the dihydrogen at C-1,
C-2 derived from 1 by DEPT spectrum, HRESI-MS, 2D-NMR, optical rotation value, and CD spectrum.Molecules 2020, 25, x FOR PEER REVIEW 3 of 7 
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Compound 3 was determined to be C11H12O5 from its NMR spectrum and HR-ESI-MS. Analysis
of its DEPT data exhibited one lactone carbonyl (δC 168.7), one ketone (δC 204.9), and two olefinic
carbons (δC 124.1 and 152.3), so 3 has a tricyclic ring system. The structure of 3 (Figure 3) was confirmed
by HMBC spectrum from H-10 to C-5, C-9; from H-8, H-6,H-11 to C-9; from H-11 to C-4; from H-5,
H-6, H-8 to C-7; from H-5, H-11 to C-3; from H-2, H-3 to C-1. The relative configurations of 3 at H-5
and H-9 were determined by the nuclear overhauser enhancement spectroscopy (ROESY) correlations
between H-5 and H-10. The absolute configuration of 3 was determined by comparing the circular
dichroism spectrum with that of its analog, streptoglyceride A [14].
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In our previous work, some active compounds such as panaxytriol from RG indicated inhibition
against the merisis of C. globosum, and C. globosum may own a detoxication mechanism against
the antifungal activity of active compounds [11]. Panaxylactone (metabolite A) biotransformed
from panaxytriol exhibited no antifungal activity, suggesting that C. globosum can transform
panaxytriol to panaxylactone with less antifungus activity than can panaxytriol for its own merits.
The biotransformation of panaxylactone was not clear, so the investigation of the intermediates in
the biotransformation of natural polyacetylene by adjustment of fermentation mode was carried out.
Two new key intermediates (1, and 2) were isolated, and the metabolism process of panaxylactone
was shown in Figure 4. The natural 1-hydroxydihydropanaxacol from ginseng like the structure of
2, except for one more ω-hydroxy at 2, had S configuration at C-3 [15], and 2 had R configuration
at C-3, so 2 was mostly transformed from 1. Compound 1, 2, and 3 also exhibited no antifungal
activity with MICs > 256 µg/mL against C. globosum, which gave more proof on the detoxication
mechanism of C. globosum against the antifungal activity of polyacetylenes from RG. Numerous
bioactive polyacetylenes were found in the plant Panax ginseng. Among these compounds, PXT was
shown in vitro cytotoxic activity against a series of human tumor cells [13]. Compound 1, 2 indicated
no cytotoxicity with a concentration of 40 µM. Based on the LC-MS test (Figure S25), the new compound
2 was exhibited to be non-mark in RG extract, but mark in FRG, so compound 2 was obtained by
microbial fermentation. Through these results, it was found that the changes in the chemical structure
of PXT can decrease the antifungal activity and cytotoxicity. Compounds 1 and 2 indicated significant
inhibition against NO production, with ratios of 44.80 ± 1.37 and 23.10 ± 1.00% at 50 µM. So, pathogen
C. globosum might possess the potential of bioactivity modification upon the polyacetylenes from RG.
The novel skeleton, like 3, was only found in basidiomycete Lenzites betulinusrare and Streptomyces,
but not from plants [14,16]. 3 was positive in FRG by LC-MS, but negative in RG and liquid medium of
C. globosum, so 3 should be produced by C. globosum, and this skeleton was first found in the generous
Chaetomium metabolites. Thus, the chemical constituents of RG extract can induce the production of
rare 6/5/5 tricyclic ring spiro-γ-lactone skeleton (3) from Chaetomium.
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3. Materials and Methods

3.1. General Experimental Procedure

Silica gel (200–300 mesh), Lichroprep RP-18, and Sephadex LH-20 were applied to column
chromatography. The TLC plate was purchased from Qingdao Marine Chemical Group Co. and used
for chromatography analysis. One-dimensional and two-dimensional NMR data were acquired on
a Bruker AVANCE-600 MHz NMR instrument (Bruker, Karlsruhe, Germany). Mass spectra were
measured by spectrometers of Agilent G3250AA (Agilent, Santa Clara, CA, USA) and AutoSpec
Premier P776 (Waters, Milford, MA, USA). Optical rotations and circular dichroism spectra were
measured on a polarimeter (Jasco P-1020) and an Applied Photophysics Chirascan spectrometer
(Applied Photophysics Ltd., Surrey, British). LC-MS analyses were performed on an instrument (LTQ
ORBITRAP XL).

3.2. Fungus Material and Cultivation Condition

Red ginseng was purchased from the Juhuacuen medicinal market of Kunming in Yunnan Province
in China. The fungi were obtained from Dendrobium officinale gathered in Honghe of Yunnan Province
and Hydrocharis dubia collected at Lijiang in Yunnan Province, China. The species were determined as
C. globosum (JC-H8, YNH-16) on the analysis of morphological and genetic (ITS) properties. The voucher
specimens were conserved in the analytical chemistry key laboratory of universities in Yunnan Province.
The fermentation of two C. globosum were put into effect in 500 mL Erlenmeyer flasks consisting of
0.12 L of potato dextrose broth (PDB) with potato infusion of 0.024 kg of fresh potato, 1.8 g of dextrose,
120 mL of distilled H2O, pH 7.0, at 150 rpm and 28 ◦C for three days for a seed medium. Each 20–25 mL
of seed medium was put into a 0.35 L microbiological culture vessel containing 0.12 kg of cooked RG.
A total of 7 kg RG was fermented by C. globosum at 28 ◦C for thirty days.

3.3. Extraction and Separation Methods

All 7000 g of the solid medium was extracted with methanol for three times, the methanol extract
was partitioned with ethyl acetate to give an EtOAc fraction and then dried under vacuum to obtain a
dark extract (52.3 g). The extract was applied to column chromatography on silica gel (7 cm × 20 cm,
200 to 300 mesh, 400 g) and was eluted with a solvent system of chloroform-methanol from 1:0 to 10:1
(v/v) to give four fractions (A–D). Fraction A (13.3 g) was purified by using Lichroprep RP-18 (3 cm ×
10 cm, CH3OH-H2O at 20% to 80%), Sephadex LH-20 (2 cm × 100 cm, chloroform-methanol at 1:1) to get
2 (3 mg). Fraction B (13.2 g) was separated by Sephadex LH-20 (2 cm × 150 cm, chloroform-methanol
at 1:1), Lichroprep RP-18column chromatography (3 cm × 12 cm, CH3OH-H2O at 10% to 80%) to get 1
(4 mg), and chaetoginsin (3, 6 mg).
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ω-Hydroxyl-panaxytriol (1). [α]22
D −24.0 (c 0.35, MeOH). HR-ESIMS m/z: 317.1735 [M + Na]+,

calcd for C17H26O4Na: 317.1729. 1H-NMR (MeOD, 600 MHz) and 13C-NMR (MeOD, 150 MHz) in
Table 1.

ω-Hydroxyl-dihydropanaxytriol (2). [α]22
D −8.6 (c 0.45, MeOH). HR-ESIMS m/z: 319.1879 [M +

Na]+, calcd for C17H28O4Na: 319.1885. 1H-NMR (MeOD, 600 MHz) and 13C-NMR (MeOD, 150 MHz)
in Table 1.

Chaetoginsin (3). [α]22
D −21.6 (c 0.14, MeOH). HR-ESIMS m/z: 247.0578 [M + Na]+, calcd for

C11H12O5Na: 247.0582. 1H-NMR (CDCl3, 600 MHz) and 13C-NMR (CDCl3, 150 MHz) in Table 1.

Table 1. 13C Nuclear Magnetic Resonance (NMR) and 1H-NMR data of compounds 1–3.

Pos. 1 2 Chaetoginsin

δH δC δH δC δH δC

1 5.20 (d, J = 12.0 Hz)
5.42 (d, J = 18.0 Hz) 115.1 1.00 (t, J = 7.2 Hz) 8.4 168.7

2 5.93 (m) 136.9 1.68 (m) 30.5 6.23 (d, J = 6.0 Hz) 124.1
3 4.63 (s) 62.5 4.29 (t, J = 6.6 Hz) 63.0 7.26 (d, J = 6.0 Hz) 152.3
4 74.6 76.8 94.2
5 69.7 68.5 2.83 (m) 48.5
6 65.1 64.8 2.09 (d, J = 18.0 Hz), 2.51 (m) 32.7
7 78.3 77.5 204.9
8 2.49, 2.61 (m) 23.5 2.49, 2.60 (m) 23.5 3.94 (d, J = 18.0 Hz), 4.60 (d, J = 18.0 Hz) 67.5
9 3.61 (m) 72.1 3.61 (m) 72.1 106.8

10 3.59 (m) 72.4 3.59 (m) 72.4 1.64 (s) 25.1
11 1.55 (m) 32.6 1.54 (m) 32.6 3.94 (d, J = 12.0 Hz), 4.12 (d, J = 10. 8 Hz) 71.8
12 1.38 (m) 25.5 1.38 (m) 25.5
13 1.38 (m) 29.4 1.38 (m) 29.3
14 1.38 (m) 29.3 1.38 (m) 29.1
15 1.38 (m) 25.5 1.38 (m) 25.5
16 1.55 (m) 32.2 1.54 (m) 32.2
17 3.59 (m) 61.6 3.59 (m) 61.6

3.4. LC-MS Method

The extracts of RG, and FRG fermentation materials were afforded according to the preparation
method exhibited above. Similar sampling volumes of RG, and FRG fermentation materials,
and compounds 2, 3 were prepared for application in the LC-MS investigation. A gradient solvent
(methanol/0.1% methanoic acid from 40% to 99%) and a velocity of flow at 0.3 mL/min were applied to
the investigation. The target ions were extracted by the precise molecular weight of compounds 2 and
3.

3.5. Bioassay Method

The two-fold plate dilution method were applied to the in vitro antifungus experiment [11].
Nystatin as positive drug had a minimum inhibitory concentration (MIC) at 32 µg/mL. The method
of 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium (MTT)
assay was applied to the investigation of cytotoxicity of compounds 1 and 2 against tumor cell lines [17],
A-549, HL-60, MCF-7, SW480, and SMMC-7721. Taxol was the positive drug with the IC50 < 0.008 µM.
The NO inhibitory activities of compounds 1,2 were determined using the Griess reagent assay for NO
production [11]. The positive control, L-NMMA has inhibitory ratio of 53.52 ± 0.53 % at concentration
of 50 µM.

Supplementary Materials: 1H and 13C-NMR, HSQC, HMBC, 1H-1H COSY, ROESY, and HR-ESIMS spectra of
compounds 1–3. CD spectra of 1, 2, and 3. LC-HRMS finger-prints by ion extraction of co-culture, single strain,
the liquid medium of C. globosum fermentation products, red ginseng, and compounds (2, 3). Cytotoxicity of
compounds 1, 2 by the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium
(MTS) method.

Author Contributions: B.-Y.W. and C.-H.Z. performed the experiments and analyzed the data; X.-Q.Y., M.H.,
T.-T.X. contributed materials and bioactivity; X.-Y.W., S.Y. tested the NMR experiments; Z.-T.D. designed the
experiments; Y.-B.Y. wrote the paper. All authors have read and agreed to the published version of the manuscript.
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