
RESEARCH ARTICLE

Pharmacokinetics of tulathromycin in

pregnant ewes (Ovis aries) challenged with

Campylobacter jejuni

Michael Yaeger1*, Jonathan P. MochelID
2,3*, Zuowei Wu4, Paul Plummer2,4, Orhan Sahin2,

Joseph Smith3,5, Melda Ocal4¤, Ashenafi Beyi4, Changyun Xu4, Qijing Zhang4, Ronald

W. Griffith4

1 Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa,

United States of America, 2 Department of Veterinary Diagnostic & Production Animal Medicine, College of

Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America, 3 Department of

Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of

America, 4 Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary

Medicine, Iowa State University, Ames, IA, United States of America, 5 Department of Large Animal Clinical

Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America

¤ Current address: Faculty of Medicine, Department of Medical Microbiology, Cukurova University, Adana,

Turkey

* jmochel@iastate.edu (JPM); myaeger@iastate.edu (MY)

Abstract

The purpose of this study was to evaluate the pharmacokinetics of tulathromycin in the

plasma and maternal and fetal tissues of pregnant ewes when administered within 24 hours

of a single, IV Campylobacter jejuni (C. jejuni) challenge. Twelve, pregnant ewes between

72–92 days of gestation were challenged IV with C. jejuni IA3902 and then treated with 1.1

ml/45.36 kg of tulathromycin subcutaneously 18 hours post-challenge. Ewes were bled at

predetermined time points and euthanized either at a predetermined time point or following

the observation of vaginal bleeding or abortion. Following euthanasia, tissues were collected

for bacterial culture, pharmacokinetics and histologic examination. The maximum (geomet-

ric) mean tulathromycin plasma concentration was estimated at 0.302 μg/mL, with a peak

level observed at around 1.2 hours. The apparent systemic clearance of tulathromycin was

estimated at 16.6 L/h (or 0.28 L/kg/h) with an elimination half-life estimated at approximately

22 hours. The mean tissue concentrations were highest in the uterus (2.464 μg/g) and pla-

centome (0.484 μg/g), and were lowest in fetal liver (0.11 μg/g) and fetal lung (0.03 μg/g).

Compared to previous reports, results of this study demonstrate that prior IV administration

of C. jejuni appeared to substantially alter the pharmacokinetics of tulathromycin, reducing

both the peak plasma concentrations and elimination half-life. However, additional con-

trolled trials are required to confirm those observations.
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Introduction

Infection with Campylobacter spp. is one of the most common causes of ovine abortion through-

out the world and has been reported to be the most common infectious cause of ovine abortion

in the United States [1–3]. Currently, a hypervirulent, tetracycline resistant, C. jejuni clone,

termed the Sheep Abortion (SA) clone, is responsible for 93% of ovine C. jejuni abortions in the

Midwestern US [1,4]. The only antibiotic approved to treat or prevent campylobacter abortion in

sheep is chlortetracycline [5]. However, the vast majority of recent US C. jejuni isolates are

reported to be resistant to tetracyclines (including chlortetracycline), and pharmacokinetic studies

have shown that feeding chlortetracycline to sheep at the approved dose (80 mg/head/day), or at

an even higher, unapproved dose (500 mg/head/day), resulted in levels that were presumed to be

subtherapeutic in pregnant ewe plasma and largely undetectable in fetal tissues and amniotic fluid

[1,6–9]. Results of these studies indicate that feeding chlortetracycline is unlikely to provide thera-

peutic benefit during an outbreak of C. jejuni abortion in US flocks.

Susceptibility results on C. jejuni isolates from field cases of ovine abortion demonstrate

that the vast majority are currently susceptible to macrolide antibiotics, including tulathromy-

cin, azithromycin, telithromycin and erythromycin [1,8,9] The potential benefits of treating

sheep with a macrolide antibiotic such as tulathromycin include the ease of administration

(subcutaneous injection), its wide volume of distribution, low effective plasma concentrations,

and long terminal half-life, which has been reported to be 110.8 h (± 20.9) in pregnant ewes

[10,11]. Pharmacokinetic studies in pregnant ewes have demonstrated that tulathromycin

reaches detectable levels in fetal plasma and amniotic fluid that persist for days following

administration to the ewe [11]. The potential clinical effectiveness of tulathromycin in C. jejuni
exposed pregnant ewes has been confirmed in a study utilizing an IV C. jejuni challenge model

in which tulathromycin treatment resulted in a statistically significant (p< .05) decrease in the

rate of vaginal bleeding/abortion in pregnant ewes compared to untreated controls [12].

The plasma pharmacokinetics of tulathromycin have been studied in non-gravid ewes and

healthy pregnant sheep [11,13]. However, these studies did not evaluate the pharmacokinetics

in several tissues targeted by campylobacter during the abortion process, including the uterus

and placenta/placentome. It is also well recognized that disease states can alter drug pharmaco-

kinetics [14–17]. Pathological states may affect the binding of drugs to plasma proteins, circu-

latory changes can impede or enhance drug entry to specific tissues, and many diseases can

alter hepatic and/or renal clearance [14]. For these reasons it is important to assess the phar-

macokinetics of an antibiotic in the target tissues of diseased animals to fully appreciate their

efficacy for a specific disorder.

Field and experimental studies of campylobacter abortion in sheep have consistently iden-

tify large numbers of the organism in the maternal uterus, fetal placenta and lung, and to a

lesser extent fetal liver [12]. It is currently unknown how tulathromycin accumulates in these

tissues in ewes undergoing infection with C. jejuni. The objective of this study was to evaluate

the pharmacokinetics of subcutaneously administered tulathromycin in the plasma of ewes

challenged with a single IV dose of C. jejuni. An additional objective of this investigation was

to evaluate the concentrations of tulathromycin in ewe uterine and placental tissues, as well as

in fetal lung, liver, and amniotic fluid in ewes challenged with C. jejuni.

Materials and methods

Animals

Twelve, timed-bred pregnant ewe-lambs (Hampshire ram crossed to Polypay ewe-lmbs) were

sourced from the Iowa State University Sheep Teaching facility. Ultrasound was used to
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confirm pregnancy in all animals and to estimate the stage of gestation. Gestational ages on

arrival were estimated to vary from 72–92 days of gestation. The weight of ewe-lambs ranged

from 45.9–75.3 kg, with a mean weight of 58.5 kg. Ewes were allowed to acclimate for 3 days

upon arrival at the Laboratory Animal Resources (LAR) research facility. Ewes were weighed

on entry, identified with ear tags and were housed in pairs in pens on raised tenderfoot decks

in an animal biosafety level 2 facility. All ewes were fed Teklad-Envigo 7060 small ruminant

complete ration and water ad libitum. All undertaken procedures were approved by the Iowa

State University Institutional Animal Care and Use Committee (IACUC-18-1134, protocol 7-

12-7407-OP). For all inoculations, ewes were fully conscious and restrained manually.

Campylobacter strain

All 12 ewes were challenged with Campylobacter jejuni IA3902, which is a clinical isolate of the

Sheep Abortion (SA) clone cultured from an aborted ovine fetus. Although currently there is

no CLSI-derived breakpoint for tulathromycin against C. jejuni in sheep, this isolate was con-

sidered susceptible based on agar dilution studies producing an MIC of 0.5 μg/mL, which is

much lower than comparable breakpoints for other macrolides. This isolate was susceptible to

tulathromycin based on broth microdilution and confirmed to be a SA clone by pulsed-field

gel electrophoresis, multilocus sequence typing, cmp gene sequence typing, and whole genome

sequencing [1,18]. Fresh bacterial cultures were obtained following 24 hours of growth on

Mueller Hinton (MH) agar in anaerobic jars under microaerobic conditions (5% oxygen, 10%

carbon dioxide, and 85% nitrogen) at 42˚C. Campylobacter was harvested from MH agar,

washed once with PBS to remove free endotoxin, diluted to the desired concentration in sterile

PBS based on optical density (OD600 = 0.507), and then used as the inoculum for IV chal-

lenge. The final number of organisms in each suspension was determined by counting the

number of viable CFUs.

C. jejuni challenge

The upper half of the left jugular furrow was shaved. The area was aseptically prepared using

alternate Chlorhexidine1 (chlorhexidine gluconate 2.0%) and isopropyl alcohol (70%) wipes

performed three times. An 18G, 2-inch IV catheter was placed into the left jugular vein. Ewes

were administered 1.5 ml of 50 mg/ml flunixin meglumine (Prevail) IV to lessen the impact of

endotoxin. This was followed by 1–1.25 ml of 8.5X108 CFU/ml C. jejuni IA3902 IV [12]. A

small amount of blood was aspirated back into the syringe and reinfused following inoculation

to assure that all of the inoculum was administered into the jugular vein. Because ewe weights

varied from 45.9–75.3 kg, graded challenge doses were administered. Ewes weighing 45.4–54.4

kg received a 1ml challenge, ewes weighing 54.5–63.5 kg received 1.15 ml and ewes weighing

>63.5 lbs received a 1.25 ml challenge dose.

Treatment

Each ewe was administered 1.1 ml/45.36 kg of 100mg/ml (i.e., 140 ± 19 mg or 2.4 ± 0.3 mg/kg

on average) tulathromycin (Draxxin, Zoetis, Parsipanny, NJ) subcutaneously in the region

anterior to the axilla 18 hours post-campylobacter challenge.

Plasma and tissue collection

Plasma was collected from each ewe at the following time points: 0 (pre-dosing), 0.5, 1, 2, 6, 12,

24, 72, 144, 216, 288, and 360 hours. Three ewes were scheduled to be euthanized on days 2, 5,
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10 and 20 post-antibiotic administration for pharmacokinetics on uterus, placentome, fetal

lung, liver and amniotic fluid.

Indicators for study termination

Animals were monitored twice daily for signs of ill health including depression, loss of appe-

tite, prolonged recumbency, elevated temperatures and evidence of impending abortion (vagi-

nal bleeding) or abortion. Ewes that became markedly depressed and recumbent post-

challenge due to endotoxemia were euthanized for humane reasons. Ewes that exhibited vagi-

nal bleeding or aborted were immediately euthanized with a powder-activated, penetrating

captive bolt gun, as per AVMA Guidelines on Euthanasia [19]. Following immediate loss of

consciousness and loss of corneal reflex, pneumothorax was created as an adjunctive method

to ensure death. The study was concluded 21 days post-challenge and all remaining animals

were euthanized and necropsied.

Necropsy

At necropsy ewes and fetuses were inspected for gross lesions and samples were collected

for bacterial culture, pharmacokinetics and histologic examination. Post-mortem culture

samples collected from each ewe included heart blood and uterus. Fetal placenta (abor-

tions) or intact placentome and a fetal lung/liver tissue homogenate were also harvested for

bacterial culture. Samples of uterus, placenta/placentome and pooled fetal lung and liver

were placed in separate sterile Petri dishes. Samples were immediately refrigerated follow-

ing collection and cultured the same day. Tissues collected for pharmacokinetics included

uterus, placenta/placentome, fetal amniotic fluid, lung and liver. Amniotic fluid was har-

vested with a 3 mL syringe and 22-gauge needle and stored in a snap-cap tube at -80 imme-

diately following harvest. At least 30 grams of each tissue were collected in whirl-pak bags

and stored at -80˚C immediately following harvest. Samples collected for histopathology

included maternal liver, gall bladder, and uterus. Fetal tissues collected for histologic exam-

ination included placenta/placentome, fetal lung and liver. Tissues for histopathology were

placed in 10% neutral buffered formalin for 24 hours and then transferred to 70% ethanol,

trimmed, and processed routinely for H&E staining. All placentas/placentomes were

stained with Gimenez stain to assess for intracytoplasmic organisms consistent with Cox-
iella burnetii or chlamydia.

Campylobacter culture

For Campylobacter culture and semi-quantitative enumeration of C. jejuni from necropsy sam-

ples, a couple drops of blood were directly streaked onto agar culture plates using a sterile cot-

ton swab. Placenta, uterus, and pooled fetal liver and lung tissues were minced with sterile

scissors or scalpels, swabbed and streaked onto media. The culture medium was Mueller-Hin-

ton (MH) agar containing Preston Campylobacter selective supplement (trimethoprim, rifam-

picin, polymyxin B and cycloheximide; SR0117E) and Campylobacter growth supplement

(SR0232E; sodium metabisulfite, sodium pyruvate and ferrous sulfate). Incubation took place

in anaerobic jars under microaerobic conditions at 42˚C for 48 hours. Campylobacter-like col-

onies were counted on each plate to determine the number of CFUs in each sample. A single

suspect colony from each sample and/or animal was subjected to species identification by

MALDI-TOF mass spectrometry as described elsewhere [20].
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Bioanalytical methods

Chemicals

Solvents used in the LC-MS/MS analysis of tulathromycin were LC-MS grade (Optima, Fisher

Chemical, Fair Lawn, NJ). The acetonitrile used in protein precipitation of plasma and amni-

otic fluid was also LC-MS grade. Analytical standards of tulathromycin and CP-60,300 were

obtained from Santa Cruz Biotechnology and Toronto Research Products, respectively. The

internal standards of tulathromycin-d7 and roxithromycin were obtained from Toronto

Research Products and Sigma Chemical Co., respectively. Stock standards of these reference

standards were prepared at a concentration of 1.00 μg/μL in LC-MS grade methanol and

stored at -20˚C.

Extraction procedures. Plasma and amniotic fluid samples were prepared by precipita-

tion of plasma proteins with acetonitrile. Plasma samples 100 μL, were mixed with 400 μL of

acetonitrile to precipitate plasma proteins. The acetonitrile contained tulathromycin-d7 as an

internal standard at a concentration of 200 ng/mL. Nine calibration spikes and three quality

control (QC) samples in blank ovine plasma were extracted with each set of plasma or amni-

otic fluid samples. The concentration of the calibration spikes was 2.5, 10, 20, 50, 100, 200, 500,

1000 and 2,000 ng/mL while the QC samples was 15, 150, and 1500 ng/mL. The samples were

vortexed for 5 seconds and centrifuged for 10 minutes at 7500 rpm (6000 x g) to sediment the

protein pellet. The supernatant was poured off into dry down tubes and evaporated at 40˚C

with a flow of nitrogen in a Turbovap. The contents were reconstituted with 125 μL of 25%

acetonitrile in water followed by 75 μL of water. The samples were transferred to autosampler

vials fitted with a glass insert and centrifuged at 2,400 rpm (2000 x g) prior to analysis.

Tissue samples of fetal liver, fetal lung, uterus, and placentome were extracted by acidic

hydrolysis of tulathromycin to the common hydrolytic fragment, CP-60,300. Homogenized

tissue samples, tissue spikes, and ovine tissue blanks, 1 gram, were hydrolysed with 2 N hydro-

chloric acid (HCl), 4 mL, for 1 hour at 60˚C. A second addition of 3.5 mL of HCl to the tissue

samples was performed after centrifugation of the tissue digest and removal of the supernatant.

The samples were then vortexed and shaken followed by centrifugation. The supernatant from

this second extraction was combined with the supernatant from the first digestion and the vol-

ume was adjusted to 8 mL. Each set of tissue samples was run with seven calibration spikes

(tulathromycin) prepared in the corresponding blank ovine tissue matrix along with tissue

blank. These calibration spikes were at concentrations of 0.02, 0.05, 0.10, 0.20, 0.50, 1.0, and

2.0 ug/g. Negative sheep plasma, uterus, placentome, amniotic fluid, fetal lung and liver, were

collected from untreated sheep from a separate study. For LC-MS/MS analysis the samples

and spike/blanks were diluted 1:10 with a 0.1 M potassium acetate buffer, pH 5.0 in autosam-

pler vials. The buffer contained an internal standard of roxithromycin at a concentration of 50

ng/mL. The vials were then centrifuged at 2,400 rpm prior to analysis.

LC-MS/MS analysis. LC-MS/MS was performed using a Surveyor Pump and autosampler

coupled to a triple quadrupole mass spectrometer TSQ Discovery Max (Thermo Scientific, San

Jose, CA, USA). The mobile phases consisted of A: 0.1% formic acid in water and B: 0.1% for-

mic acid in acetonitrile at a flow rate of 0.25 mL/min. Separation was achieved with an ACE 3

C18 column, 150 mm x 2.1 mm, 3 μm particles (Mac-Mod Analytical, Chadds Ford, PA, USA)

maintained at 45˚C. The autosampler temperature was 12˚C with an injection volume of

15 μL. Initial solvent composition was 7.5% B which was increased linearly to 95% B in 8 min-

utes. The solvent composition was maintained at 95% B for 2 minutes prior to equilibration to

7.5% B. The flow rate during this time period was 0.325 ml/min. Tulathromycin and tulathro-

mycin-d7 eluted from the ACE C18 column at 5.05 ± 0.05 minutes. Positive ion electrospray

MS of the precursor ions of the analytes was used for residue detection. The triply charged
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precursor ions of tulathromycin (m/z 269.8) and tulathromycin-d7 (m/z 271.9) were used for

MS fragmentation in the analysis. The fragment ions of the triply charged tulathromycin and

tulathromycin-d7 precursors were 115.9, 259.1, and 420.1 m/z.

The tulathromycin marker, CP-60,300, and roxithromycin eluted from the ACE 3 C18 col-

umn at 4.81 ± 0.05 and 7.43 ± 0.05 minutes, respectively. Positive ion electrospray MS of the

precursor ions of the analytes was used for residue detection. The doubly charged precursor

ion of CP-60,300 (m/z 289.2) and singly charged roxithromycin (m/z 837.5) were used for MS

fragmentation in the tulathromycin analysis. The fragment ions of the doubly charged CP-

60,300 marker precursor at m/z 289.4 were 116.0, 158.1, 231.1, and 420.3 m/z. The fragment

ions of the roxithromycin precursor ion at m/z of 837.5 were at 522.2, 558.3, and 679.4 m/z.

Calibration curves in plasma and amniotic fluid exhibited a correlation coefficient (r2)

exceeding 0.995 across the concentration range using a weighted (1/X) linear fit. QC samples

at 15, 150, and 1500 ng/mL were within ± 15% of the nominal value with most of the QC’s

within ± 10% of the nominal value. The limit of quantitation (LOQ) of the analysis was 2.5 ng/

mL with a limit of detection (LOD) of 0.5 ng/mL.

All tissue calibration curves exhibited a correlation coefficient (r2) exceeding 0.99 across the

concentration range using a weighted (1/X) linear fit. The limit of quantitation (LOQ) of the

analysis was 0.02 ug/g with a limit of detection (LOD) of 0.05 μg/g for fetal liver and fetal lung.

The limit of quantitation (LOQ) of the analysis was 0.02 μg/g with a limit of detection (LOD)

of 0.05 μg/g for ovine uterus and placentome. A few uterus samples were rerun after dilution

with the blank uterus extract as the concentration of the sample was above the 2 μg/g level.

Method development and validation. Tulathromycin has been measured in three plasma

matrices in this laboratory by LC-MS/MS for over six years. A simple protein precipitation

with acetonitrile has always afforded a robust analysis. The LC-MS/MS analysis for tulathro-

mycin has been performed on ion trap instruments as well as two different triple quadrupole

instruments and an Orbitrap exact mass instrument. USDA regulations through the Food

Safety and Inspection Service (FSIS) require analysis of CP-60,300 rather than tulathromycin

in animal tissues. The hydrolytic fragment, CP-60,300, was not available commercially until

two years ago at which time we switched analysis to this residue in tissues. The hydrolysis pro-

cedure with 2 N HCl is the standard FSIS method in tissues. This method has been previously

validated in caprine tissues [21,22].

Pharmacokinetic analysis. As previously described by Smith et al., pharmacokinetic anal-

ysis of total tulathromycin plasma concentrations was completed using a statistical moment

(i.e., non-compartmental) approach in commercial software (PKanalix, Monolix Suite

2019R1, Lixoft, France) [22]. Time versus concentration figures for tulathromycin were pro-

duced using a commercial program (GraphPad Prism version 7.0 for MacOS, GraphPad Soft-

ware, La Jolla California USA, www.graphpad.com).

Standard PK parameters were generated for individual sheep, as follows:

• Maximum tulathromycin concentration, Cmax;

• Time of maximum tulathromycin concentration, Tmax;

• Area under tulathromycin concentration-time curve, AUClast, AUCinf and partial AUC

estimate from 0 to 72 hr (AUC0-72);

• Area under the moment curve, AUMCinf;

• Tulathromycin mean residence time, MRT

MRT = AUMCinf ⁄ AUC inf;
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• Slope of the elimination phase λz, computed by linear regression of the logarithmic concen-

tration vs. time curve during the elimination phase;

• Tulathromycin terminal half-life, T1/2 (λz)

T1/2 (λz) = ln (2) ⁄ λz;

• Tulathromycin apparent systemic clearance, CL/F

CL/F = Dose ⁄ AUC inf;

• Apparent volume of distribution of tulathromycin during the elimination phase, Vz/F

Vz/F = Dose ⁄ (AUCinf x λz);

For data analysis, the first value below the LLOQ was inferred to be LLOQ/2, and subse-

quent data points were excluded from the analysis. A linear/log trapezoidal rule was used to

estimate the area under the tulathromycin time-curves.

Selection of timepoints for determination of λz for each individual was performed automat-

ically by the PKanalix 2019R1 software using the adjusted R2 method and checked manually

prior to running the non-compartmental analysis. A minimum of 3 timepoints was selected

for estimating the slope of the terminal phase. λz was calculated via a linear regression between

Y = log(concentrations) and the X = time. The 1/Y2 weighting method was used for the regres-

sion analysis.

Summary statistics on the individual PK parameters were performed thereafter to derive

the geometric mean, median and (min-max) range. The geometric mean instead of the arith-

metic mean was used given the small size of the study and the relatively large amount of data

below the analytical quantification limit.

Statistical analysis of tulathromycin tissue data

Graphical representations of tissue tulathromycin data (not presented herein) were performed

using the ggplot2 package (v. 3.2.1) in R 3.5.2. Differences in average tissue concentration were

assessed with a student’s T test. P< 0.05 were considered as statistically significant.

Results

Animals

Six hours post C. jejuni challenge, one ewe (C10) was laterally recumbent and had developed

respiratory distress. She was euthanized 6.8 hours post-C. jejuni challenge for humane reasons.

At necropsy she had abundant white foam in her trachea and nostrils. Her lungs were

extremely heavy, and a white froth and clear fluid drained from large airways when the lungs

were sectioned (pulmonary edema). The pleural surface of the lung had numerous petechial

hemorrhages. Two fetuses were present in utero, each of which had multifocal petechial to

ecchymotic hemorrhages in the subcutis and liver. C. jejuni was not isolated from maternal or

fetal tissues. Clinical and post-mortem findings were interpreted to support a diagnosis of

severe endotoxic shock.

Three of the 12 ewes (C5, C6, C12) developed vaginal bleeding or aborted. Large numbers

of C. jejuni were isolated from the uterus, fetus and placenta of each of these ewes accompanied

by histologic evidence of metritis and placentitis (Table 1). Results support a diagnosis of C.

jejuni abortion in these three animals. A fourth ewe (C11) had a live fetus in utero at the

21-day study termination, but large numbers of C. jejuni were isolated from placentomes in

association with mild placentomal inflammation. C. jejuni was not isolated from tissues of the

remaining 6 ewes (C1-4, C7-9) and significant gross or histologic lesions were not identified in
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fetal or maternal tissues from these animals. Gimenez stained sections of placenta/placentome

failed to reveal intracytoplasmic organisms consistent with Coxiella burnetii or chlamydia in

any of the ewes.

Non-compartmental analysis

No sheep had detectable tulathromycin in plasma at time zero. Geometric mean and standard

deviations disposition profiles are presented in Table 2. There appeared to be significant varia-

tions of time versus concentration data for tulathromycin among individual sheep. For an

LLOQ of 2.5 ng/mL, 26% (38/144) of the samples had values below the analytical quantifica-

tion limit. Consequently, the number of samples above the quantification limit was highly vari-

able among study subjects, with some individuals only presenting 3 measurable

concentrations of tulathromycin in plasma (i.e., Ewe C10). The AUC% extrapolation was esti-

mated to be inferior to 20%. The plasma pharmacokinetic parameters for tulathromycin when

administered subcutaneously are summarized in Fig 1. Reported below are the plasma (geo-

metric) mean pharmacokinetic parameters with (min-max) range values for tulathromycin in

pregnant ewes challenged with Campylobacter jejuni: the maximum tulathromycin plasma

concentration was estimated at 302.0 (153.9–553.5) ng/mL, with a peak level observed at

around 1.2 (0.5–24.0) hours. The apparent systemic clearance of tulathromycin was estimated

at 16.6 (4.5–217.6) L/h (or 0.28 L/kg/h), associated with a low global extraction ratio

(E = 0.06), calculated as CL/Qc (with cardiac output Qc (mL/kg/min) approximated by the for-

mula: Qc = 180�BW(-0.19) [23]. Lastly, the apparent steady-state volume of distribution of tula-

thromycin in sheep was large, 522.0 (184.9–2879.1) L (or 9.0 L/kg), with an elimination half-

life estimated at approximately 22 hours.

Tulathromycin tissue concentrations

A summary of tulathromycin tissue concentrations in pregnant ewes is provided in Table 3.

The mean tissue concentrations were highest in the uterus (2.464 μg/g), followed by the pla-

centome (0.484), fetal liver (0.11) and fetal lung (0.03). The mean concentration of

Table 1. Histopathology and Campylobacter jejuni culture results on fetal and maternal tissues harvested at necropsy.following tulathromycin administration in

campylobacter-challenged, pregnant ewes.

Animal ID DPI Vaginal bleed, Aborted Metritis Placentitis Placenta Uterus Fetus Maternal Blood

C1 6 - 0 0 0 0 0 0

C2 3 - 0 0 0 0 0 0

C3 11 - 0 0 0 0 0 0

C4 11 - 0 0 0 0 0 0

C5 5 + + + Lawn Lawn TNTC 0

C6 3 + + + Lawn Lawn TNTC 0

C7 21 - 0 0 0 0 0 0

C8 3 - 0 0 0 0 0 0

C9 21 - 0 0 0 0 0 0

C10 1 Endotoxic shock 0 0 0 0 0 0

C11 21 - 0 + TNTC 0 0 0

C12 8 + + + TNTC TNTC TNTC 0

Lawn: Culture plate completely covered with bacterial colonies.

TNTC; Too numerous to count.

DPI: Number of days post-campylobacter challenge the animal was euthanized.

https://doi.org/10.1371/journal.pone.0256862.t001
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Tulathromycin detected in the uterus of ewes with high levels of Campylobacter in the repro-

ductive tract and conceptus were compared to ewes that were culture negative at necropsy.

The mean concentration of Tulathromycin was 1.745 μg/g ± 1.04 in infected and inflamed

Table 2. Summary results from the non-compartmental analysis (NCA) of plasma tulathromycin data in 12 pregnant ewes challenged with Campylobacter jejuni.

Units Min Median Max Geomean GeoSD

Cmax ng/mL 153.9 302.1 553.5 301.5 1.5

Tmax hr 0.5 0.5 24.0 1.2 3.8

AUClast ng/mL x hr 564.3 10,419.9 20,080.7 7,956.4 2.6

AUCinf ng/mL x hr 565.3 10,465.4 33,812.8 8,477.0 2.8

AUC(0–72) ng/mL x hr 605.5 7,453.6 13,230.9 6,088.5 2.2

AUMCinf ng/mL x hr2 852.5 637,544.2 15,761,900.0 358,667.6 11.3

MRT hr 1.5 48.9 466.2 42.3 4.2

λz 1/hr 0.002 0.04 1.18 0.03 5.5

T1/2 (λz) hr 0.6 18.3 446.9 21.8 5.5

CL/F L/hr 4.5 14.6 217.6 16.6 2.7

Vz/F L 184.9 373.8 2879.1 521.5 2.4

1Maximum plasma concentration.
2Time of maximum plasma concentration.
3Area under the concentration-time curve from time 0 to the last observable timepoint.
4Area under the concentration-time curve from time 0 to infinity.
5Area under the concentration-time curve from time 0 to 72 hours.
6Area under the moment curve from time 0 to infinity.
7Mean residence time.
8Slope of the terminal (elimination) phase.
9Terminal (elimination) half-life.
10Apparent systemic clearance.
11Apparent volume of distribution during the elimination phase.

Several pharmacokinetic parameters were produced via NCA using Pkanalix 2019R1 (Lixoft, France). The following summary parameters are reported for

Tulathromycin: Cmax1; Tmax2; AUClast3, AUCinf4 and AUC0-725; AUMCinf6; MRT7; λz
8; T1/2 (λz) 9; CL/F10; and Vz/F11.

https://doi.org/10.1371/journal.pone.0256862.t002

Fig 1. Plasma tulathromycin concentrations (ng/ml) over time (hours). Data are presented on a log10 scale with

mean and one standard deviation.

https://doi.org/10.1371/journal.pone.0256862.g001
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uteri and 2.82 μg/g ± 1.24 in non-infected uteri. Due in part to the high individual animal vari-

ation, these differences were not statistically significant.

Discussion

Our analysis exclusively focused on the pharmacokinetics of unchanged tulathromycin. Phar-

macokinetic studies in ruminants and pigs have shown that tulathromycin is metabolized to a

low extent and is eliminated primarily as the unchanged (parent) drug (EMEA/MRL/894/04).

As a result, very low concentrations of tulathromycin metabolites are typically detected in

plasma. Therefore, most pharmacokinetic studies from the literature focus on unchanged tula-

thromycin. When the plasma pharmacokinetic dispositions of tulathromycin from this study

were compared with data from similar studies using the same dose, formulation, schedule and

route, in non-challenged pregnant sheep and non-pregnant adult ewes, the mean maximum

plasma tulathromycin concentration in C. jejuni challenged sheep was much lower (0.3 μg/

mL) than in pregnant sheep (4.9 μg/mL) and non-pregnant ewes (3.6 μg/mL), the mean time

to maximum concentration was shorter (1.2 hrs) when compared to pregnant sheep (4.0 hrs)

but similar to non-pregnant adult ewes (1.6 hrs), and the mean apparent elimination half-life

was substantially shorter (22 hrs) than in pregnant sheep (110.8 hrs) and non-pregnant ewes

(118 hrs) [11,13]. The differences in maximum plasma tulathromycin concentration have been

observed in other experimental models of infection, with lower concentrations observed in

goats and pigs undergoing experimental respiratory infection compared to controls [22,24]. It

is possible that the leukocyte transport of tulathromycin to sites of infection decreased the

plasma concentrations of the ewes in this study. Additionally, volume of distribution can be

altered by different physiologic states, such as pregnancy, with absorption typically decreased

and elimination increased in pregnant individuals [25]. Due to high tissue distribution of

macrolides such as such tulathromycin, such disparate Cmax levels in plasma in animals of

varying physiological state may not be indicative of differences in clinical efficacy.

Using the standard equations outlined in the Methods section (Pharmacokinetic analysis),
we calculated the apparent systemic clearance (CL/F) and volume of distribution (Vz/F) of

tulathromycin based on earlier descriptions from the literature [11,13]. Specifically, CL/F after

Table 3. Tulathromycin concentrations in selected maternal and fetal tissues at various time periods following antibiotic administration in campylobacter-chal-

lenged, pregnant ewes.

Animal ID Necropsy–hours post-antibiotic

administration

Campy infection (i.e.,

culture positive)

Placentome

(μg/g)

Uterus (μg/

g)

Amniotic fluid (μg/

ml)

Fetal liver (μg/

g)

Fetal lung (μg/

g)

C10 7 Neg 0.20 4.03 0.0051 0.04 0.02

C8 50 Neg 0.56 2.33 0.0023 0.07 0.02

C2 50 Neg 0.59 3.93 0.0028 0.11 0.03

C6 56 Pos 0.58 1.16 NA 0.06 0.02

C5 105 Pos 0.40 0.99 ———— 0.19 0.12

C1 120 Neg 0.48 1.14 0.0025 0.07 0.02

C12 166 Pos 0.48 1.57 0.0372 0.09 0.04

C4 239 Neg 0.55 4.18 0.0018 0.10 0.03

C3 240 Neg 0.51 2.84 0.0025 0.11 0.02

C9 478 Neg 0.48 1.06 0.0025 0.13 0.03

C7 478 Neg 0.37 3.08 0.0077 0.19 0.02

C11 479 Pos 0.61 3.26 0.002 0.06 0.03

Mean ± SD 0.48 ± 0.11 2.464 ± 1.19 0.0066 ± 0.011 0.101 ± 0.049 0.03 ± 0.028

The amniotic fluid results of C5 were not reported because they were a statistical outlier.

https://doi.org/10.1371/journal.pone.0256862.t003
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a single subcutaneous dose of tulathromycin (2.5 mg/kg) was estimated at 10.8 mL/kg/h and

29.1 mL/kg/h in non-challenged pregnant sheep and non-pregnant adult ewes, respectively

[11,13]. In comparison, the estimated apparent systemic clearance of tulathromycin in C.

jejuni challenged sheep was much higher (280 mL/kg/h). The apparent volume of distribution

of tulathromycin was estimated at 1.54 L/kg and 4.05 L/kg in non-challenged pregnant sheep

and non-pregnant adult ewes, respectively [11,13]. Comparatively, the estimated Vz/F in C.

jejuni challenged sheep was 9.0 L/kg.

This study utilized an aggressive IV challenge model that typically results in loss of approxi-

mately 10% of challenged ewes due to endotoxic shock (in house, unpublished data). One ewe

from this study was euthanized in extremis� 6 hours post-challenge with clinical signs and

gross lesions consistent with endotoxic shock. The LPS constituent of the outer membrane of

Gram-negative bacteria such as campylobacter has been linked to inflammation and immune

activation in a wide range of pathologies [26]. It appears that endotoxemia associated with IV

administration of large numbers of C. jejuni may alter the pharmacokinetics of tulathromycin.

However, this aggressive challenge model may not accurately reflect field cases of abortion

where clinical signs in ewes are not typically reported prior to abortion.

Sepsis is characterized by a state of increased vascular permeability responsible for a shift of

fluids from the intravascular compartment to the interstitial space [27,28]. The systemic effects

associated with IV administration of Campylobacter, a gram-negative bacterium, could be

responsible for an increase of tulathromycin volume of distribution in C. jejuni challenged

sheep. Our findings on tulathromycin apparent clearance are more surprising since earlier

descriptions on the effect of infectious and inflammatory diseases on cytochrome P450-medi-

ated drug metabolism and pharmacokinetics have reported down-regulations of hepatic and

extrahepatic cytochrome P450s, as well as other drug metabolizing enzymes [29]. Notewor-

thily, any change in the apparent clearance and volume of tulathromycin can be confounded

by variations in subcutaneous bioavailability. Although the bioavailability of tulathromycin

after intramuscular administration in sheep has been reported at 100% (Draxxin Summary of

Product Characteristics), to the best of the authors knowledge, its value after subcutaneous

dosing in unknown. In essence, our reported changes in apparent clearance and volume can

be triggered by a change (i.e., reduction) in subcutaneous bioavailability.

Overall, results of this study demonstrate that prior IV administration of C. jejuni appears

to substantially alter the pharmacokinetics of tulathromycin, reducing both the peak plasma

concentrations and elimination half-life. Additional studies utilizing a control group consist-

ing of pregnant ewes not challenged with campylobacter would be needed to definitively con-

firm these suspicions. Furthermore, although the sampling schedule in our study was quite

dense, parameter estimates derived from a non-compartmental analysis are heavily dependent

on selected sampling times. Additionally, the large variation in the number of quantifiable

samples of tulathromycin in plasma among study subjects likely drove a significant part of the

variability in pharmacokinetic parameter estimates between ewes. As such, additional mathe-

matical modeling work on a larger study population is warranted to verify our preliminary

findings on the effect of C. jejuni on tulathromycin pharmacokinetics in sheep.

In this study, ewes were pretreated with flunixin meglumine, which is a non-steroidal anti-

inflammatory used in the treatment of inflammatory conditions, including endotoxemia [30].

Previous unpublished studies in our laboratory have demonstrated that flunixin meglumine

pretreatment diminishes the number of ewes that succumb to endotoxemia within the first 24

hours following IV administration of campylobacter. This drug inhibits cyclooxygenase

thereby decreasing prostaglandin synthesis [31,32]. In one report in sheep, flunixin meglumine

slowed the elimination and increased plasma concentrations of levofloxacin [31]. It was specu-

lated that inhibition of prostaglandin synthesis in the kidneys by flunixin meglumine caused
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reduced renal blood flow and a reduced glomerular filtration rate leading to decreased excre-

tion of the antibiotic via urine [31]. One study in goats did demonstrate that when flunixin

meglumine was administered concurrently with tulathromycin the pharmacokinetics were

altered [33]. Given that the present study is done in a different species and that the drugs were

not administered simultaneously it is difficult to speculate on what impact this might have in

the present study. Future studies to further evaluate this issue are warranted.

The average tissue tulathromycin concentrations were highest in the uterus (2.46 μg/g) and

placentome (0.48 μg/g) and lowest in fetal liver (0.11 μg/g) and lung (0.03 μg/g). Since the first

tissue samples were harvested 48 hours post-tulathromycin treatment, it is unlikely that this

study identified peak tissue concentrations. Results do demonstrate that during the 18-day tis-

sue sampling period, the decay of tulathromycin in tissues was very prolonged with similar lev-

els detected at Days 2 and 20 post-treatment in all tissues and fetal fluids. These persistent

levels in the uterus, placentome, amniotic fluid, fetal lung and liver for many days beyond

administration of a single dose of tulathromycin indicates therapeutic potential. Additional

studies with necropsies at earlier time periods would be needed to determine peak concentra-

tions in these tissues. Of note, in this study tulathromycin was administered 18 hours post-

Campylobacter challenge. During outbreaks of Campylobacter abortion, ewes will have been

exposed at different time periods. Currently a paucity of information exists regarding the tula-

thromycin concentrations in the lungs of sheep with lower respiratory tract infections. In

other species, lung concentrations have reached levels of 3.47 μg/g (pigs, 24 hours post infec-

tion), and 5.3 μg/mL in the pulmonary epithelial lining fluid in calves [34,35]. These levels are

similar to the concentrations achieved in the uteruses of the ewes in our study. Susceptibility

results on C. jejuni cultured from field cases of ovine abortion have demonstrated that the vast

majority of isolates are likely susceptible to the macrolide antibiotics (including tulathromycin,

azithromycin, telithromycin and erythromycin), based on comparable breakpoints for C.

jejuni to macrolide antibiotics established in other species [1,8,9]. Administering tulathromy-

cin at various times post-Campylobacter challenge would provide additional information on

whether the persistent tissue levels are sufficient to eliminate infection from the uterus and

conceptus in animals following various exposure intervals.

An interesting observation was that the ewes with generally lower reproductive tissue tula-

thromycin concentrations had the more obvious signs of infection. While the small sample

size limits the statistical evaluation of this relationship, it is possible that lower tissue concen-

trations of tulathromycin aided establishment of infection. Macrolides are known to concen-

trate at the site of infection due to transport by leukocytes, although this relationship is best

described in pulmonary tissues [24,36,37]. Future studies will need to evaluate the effect of low

tissue concentrations on infection in the reproductive tissues, as well as the effect of reproduc-

tive infections on the distribution of macrolide antibiotics.

Importantly, the administration of tulathromycin to treat pregnant ewes during an abortion

storm is an extra-label use of this antibiotic and requires a valid veterinarian-client-patient

relationship and appropriate veterinary oversight. In the United States or Canada, veterinari-

ans could contact the Food Animal Residue Avoidance Databank (FARAD), or Canadian

Global Food Animal Residue Avoidance Databank (CGFARAD) for extra-label use with-

drawal period recommendations. Veterinarians should evaluate available diagnostic informa-

tion and consider prudent use principles when determining if tulathromycin is an appropriate

therapy. This study was not designed to evaluate, nor was it intended to advocate, the use of

tulathromycin as a metaphylatic treatment, as this practice may facilitate the development anti-

biotic resistance [38,39].

Conclusions: Overall, this study illustrates that disease states, including endotoxemia and

the inflammation associated with campylobacter infection, have the potential to impact the
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pharmacokinetics of tulathromycin in pregnant ewes. Primarily, volume of distribution and

clearance are increased compared to studies evaluating the pharmacokinetics in non-infected

ewes. Additionally, the administration to infected ewes results in decreased peak concentra-

tions and a reduced half-life when compared to healthy ewe studies. Uterine tissues main-

tained the highest concentrations of tulathromycin when compared to placentomes, amniotic

fluid, as well as fetal liver and lung. While the persistence of tulathromycin in tissues post

infection is promising, ewes in this study with lower reproductive tissue concentrations appear

to have had the more severe clinical disease. The decreased peak concentrations and shortened

half-life in challenged animals would suggest that more than one tulathromycin injection may

be required to diminish losses during a C. jejuni abortion storm.
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