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Systemic lupus erythematosus (SLE) is a multisystem autoimmune inflammatory condition
that affects multiple organs and provokes extensive and severe clinical manifestations.
Lupus nephritis (LN) is one of the main clinical manifestations of SLE. It refers to the
deposition of immune complexes in the glomeruli, which cause kidney inflammation.
Although LN seriously affects prognosis and represents a key factor of disability and death
in SLE patients, its mechanism remains unclear. The NACHT, leucine-rich repeat (LRR),
and pyrin (PYD) domains-containing protein 3 (NLRP3) inflammasome regulates IL-1β and
IL-18 secretion and gasdermin D-mediated pyroptosis and plays a key role in innate
immunity. There is increasing evidence that aberrant activation of the NLRP3
inflammasome and downstream inflammatory pathways play an important part in the
pathogenesis of multiple autoimmune diseases, including LN. This review summarizes
research progress on the elucidation of NLRP3 activation, regulation, and recent clinical
trials and experimental studies implicating the NLRP3 inflammasome in the
pathophysiology of LN. Current treatments fail to provide durable remission and
provoke several sides effects, mainly due to their broad immunosuppressive effects.
Therefore, the identification of a safe and effective therapeutic approach for LN is of great
significance. Phytochemicals are found in many herbs, fruits, and vegetables and are
secondary metabolites of plants. Evidence suggests that phytochemicals have broad
biological activities and have good prospects in a variety of diseases, including LN.
Therefore, this review reports on current research evaluating phytochemicals for
targeting NLRP3 inflammasome pathways in LN therapy.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a prototypic multisystemic autoimmune condition with
unclear etiology, attributed to loss of immune tolerance towards autoantigens and production of
antinuclear autoantibodies (Bentham et al., 2015). Nuclear autoantigens/antibody complexes are
deposited in multiple organs, resulting in tissue damage and severe clinical manifestations, including
malar rash, arthralgia, fever, renal failure, and cardiovascular diseases (Tanaka et al., 2018; Durcan
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et al., 2019). Lupus nephritis (LN) is a main clinical manifestation
of SLE; it negatively affects the quality of life of SLE patients and
their long-term prognosis (Davidson, 2016; Fanouriakis et al.,
2020). Approximately 50% of SLE patients develop renal disease
at some stage (Almaani et al., 2017). Hence, it is necessary to
further elucidate LN-related pathogenic mechanisms to develop
practical therapeutic approaches.

Inflammasome refers to multiprotein immune complexes
assembled by pattern recognition receptors (PRRs) in the
cytoplasm. Its activation mediates inflammatory responses to
cellular damage and pathogenic microbial infections (Franchi
et al., 2012; Strowig et al., 2012). As an important component of
the innate immunity, inflammasomes operate as a central
pathogenic mechanism in various diseases (Duncan and
Canna, 2018; Yang et al., 2019; Spel and Martinon, 2020).
Several studies have reported that the NACHT, leucine-rich
repeat (LRR), and pyrin (PYD) domains-containing protein 3
(NLRP3) inflammasome is involved in the occurrence and
development of LN (Zhao et al., 2015; Zhang et al., 2018a; Lin
Q. et al., 2019). This study summarizes current knowledge on the
role of the NLRP3 inflammasome in the pathogenesis of LN.

Recently, phytochemicals have attracted much attention due
to their cost, efficacy, and safety (Zhang et al., 2018b). We also
present a review of several phytochemicals that have been shown
to interfere with NLRP3 inflammasome-related signaling
pathways in the context of LN.

OVERVIEW OF THE NLRP3
INFLAMMASOME

Inflammasomes mediate caspase-1 activation and induce the
maturation and release of the proinflammatory cytokines IL-1
and IL-18, initiating a cascade of inflammatory responses. They
also trigger caspase-1-dependent pyroptosis and induce cell death
under pathologic inflammatory and stress conditions. Among
different inflammasomes, the NLRP3 inflammasome has been the
most extensively studied and elucidated (Hoffman et al., 2001).
Different studies showed that activation of the NLRP3
inflammasome is closely related to multiple autoinflammatory
diseases (Baroja-Mazo et al., 2014; Lu et al., 2017; Louvrier et al.,
2020). Therefore, its role in LN pathogenesis has attracted more
attention (Zhao et al., 2013a; Lech et al., 2015).

The NLRP3 inflammasome is a multiprotein oligomeric
complex consisting of NLRP3, adapter apoptosis-associated
speck-like (ASC) protein, and procaspase-1 (Martinon et al.,
2009; Guo et al., 2015). NLRP3 inflammasome activation
usually involves a priming step and an activation step (Latz
et al., 2013). At priming, the engagement of PRRs, such as
toll-like receptors (TLR) or cytokine receptors, activates the
transcription factor NF-κB, which upregulates the expression
of NLRP3 and pro-IL-1β and pro-IL-18 cytokine precursors
(Mishra et al., 2013; Kelley et al., 2019).

At the activation stage, the NLRP3 inflammasome is activated
through the recognition of various pathogen-associated
molecular patterns (PAMPs) or damage-associated molecular
patterns (DAMPs) molecules (Lamkanfi and Dixit, 2014;

Swanson et al., 2019), including bacterial U1-snRNP, ATP,
and dsDNA (Mariathasan et al., 2006; Shin et al., 2012;
Muñoz-Planillo et al., 2013; Shin et al., 2013). These stimuli
activate the NLRP3 inflammasome through several mechanisms
that are not fully clarified. Current research suggests the potential
involvement of K+ efflux, mitochondrial dysfunction, lysosomal
rupture, or generation of reactive oxygen species (ROS)
(Katsnelson et al., 2016; Yu and Lee, 2016; Han et al., 2018).
In addition, NEK7 also interacts with NLRP3 and modulates the
activation of NLRP3 inflammasomes (He et al., 2016; Chen et al.,
2019).

Upon activation, the NLRP3 binds the stimulatory ligands and
the NACHT domains promote self-mediated oligomerization of
several NLRP3. NLRP3 combines with ASC through homotypic
N-terminal PYD-PYD interactions. Assembled ASC recruits
procaspase-1 through its C-terminal CARD-CARD
interactions to form the NLRP3 inflammasome. Subsequently,
the functional inflammasome initiates self-catalysis of
procaspase-1 to caspase-1, followed by self-enzymatic
hydrolysis of caspase-1, which generates the large p20 and
small p10 subunits (Elliott and Sutterwala, 2015; Sharif et al.,
2019). The p20 subunit converts pro-IL-1β and pro-IL-18 into IL-
1β and IL-18, respectively, and promotes the secretion of these
cytokines, which have a broad spectrum of inflammatory
activities (Spalinger et al., 2017; Mende et al., 2018; Abbate
et al., 2020). Simultaneously, activated caspase-1 cleaves
gasdermin D (GSDMD) protein, leading to the formation of
plasma membrane pores, triggering gasdermin D-mediated
pyroptosis (Miao et al., 2010; He et al., 2015).

Studies have identified a noncanonical inflammasome
representing another crucial mechanism of inflammasome
activation (Kayagaki et al., 2011). Noncanonical
inflammasomes are generally activated by Gram-negative
bacteria-derived molecules, including intracellular
lipopolysaccharides and toxins. These inflammasomes mediate
the activation of intracellular receptors caspase-11 in mice and
caspase-4 and caspase-5 in humans, which are oligomerized after
binding LPS and activate pyroptosis, together with inflammatory
responses (Shi et al., 2014; Kayagaki et al., 2015; Lagrange et al.,
2018). In addition, there is evidence that caspase-8 participates in
the activation of NLRP3 inflammasome in human monocytes
through an alternative NLRP3 inflammasome pathway (Xiang
et al., 2020). Under LPS stimulation, the NLRP3 inflammasome
activation is triggered by the TLR4-TRIF-RIPK1-FADD-CASP8
cascade signaling pathway, which then activates caspase-1 and
secretes IL-1β (Gaidt et al., 2016; Zito et al., 2020) (Figure 1).

ROLE OF NLRP3 IN LN

LN results from the interactions between genetics, epigenetics, sex
hormones, environment, and other factors (Cunningham et al.,
2019; Rahbar Saadat et al., 2019; Wardowska et al., 2019). The
core pathogenesis of LN is a loss of self-tolerance, leading to
accumulation or deposition of autoantibodies and immune
complexes in the kidney, activating the complement system
and causing chronic inflammation (Wada et al., 2019). Renal
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lesions in LN patients are characterized by glomerulonephritis,
vascular injury, and tubular atrophy, which eventually may
progress to renal fibrosis or even renal failure (Leatherwood
et al., 2019).

Recent findings showed that NLRP3 and associated
inflammatory cytokines, including IL-1β and IL-18, are elevated
in the blood and nephritis biopsies fromLNpatients (da Cruz et al.,
2020; Huang et al., 2020). Moreover, to systematically explore the
mechanisms of NLRP3 on LN, different mouse models have been
analyzed. In several models, NLRP3 and related components are
increased in LN mice compared with controls (Honarpisheh et al.,
2016; Bonomini et al., 2019). In MRL/lpr mice, a spontaneous
lupus model, the expression of NLRP3, ASC, and active caspase
l-p20 subunit protein was upregulated in the kidney, compared
with control mice. Furthermore, the IL-1β level was upregulated in
renal homogenates. Blocking upstream P2X7 receptor inhibited
NLRP3 inflammasome assembly and reduced proteinuria (Zhao
et al., 2013b). Intraperitoneal injection of pristane stimulates
the body to produce autoantibodies, which has become a
classic model for SLE (Freitas et al., 2017). In Nlrp3-R258W

mutant mice, more severe renal pathological changes occurred
when intraperitoneal injection with pristane and specific
abrogation of Nlrp3-R258W expression in myeloid cells
conferred a therapeutic benefit to lupus Nlrp3-R258W mutant
(Lu et al., 2017).

Since the publication of histological classification criteria for LN,
much attention has been focused on glomerulopathy in patients with
LN and on the mechanisms of glomerular lesions. Subsequent
revisions of previous knowledge have also been based on the
pathological characteristics of glomerular damage (Azzouz et al.,

2019; Dörner and Furie, 2019; Zhou et al., 2019). Endothelial cells,
basement membrane, and podocytes form a glomerular filtration
barrier, which plays a key role in maintaining the structure and
function of the kidney (Nawata et al., 2018). Currently, research on
NLRP3 in the context of LN mainly focuses on podocytes. The
NLRP3 inflammasome activated in glomerular podocytes results in
severe proteinuria in mouse lupus models and in patients with LN
(Fu et al., 2017; Fu et al., 2019). Studies support a role for the NLRP3
inflammasome in promoting podocyte injury and proteinuria
during LN. The level of activated caspase-1 in podocytes from
LN NZM2328 mice with severe proteinuria is elevated, as well as
in urine and tissue biopsies from patients with active LN. MCC950,
an NLRP3 inhibitor, significantly inhibited caspase-1 in NZM2328
mouse podocytes by preventing NLRP3 inflammasome activation,
ameliorated proteinuria, and reduced renal tissue damage. In vitro,
sera from LN NZM2328 mice activated the NLRP3 inflammasome
and increased the IL-1β level in podocytes by inducing ROS (Fu
et al., 2017).

Evidence of RIP3 and necrotic pathway activity was found in
podocytes from class IV LN patients and in the kidney of lupus-
prone mice. GSK872, an inhibitor of RIP3, reduced anti-dsDNA
antibody titer and the size and weight of the spleen, as well as RIP3
activation in podocytes. The upregulation of NLRP3, caspase-1
p20, and IL-1β levels induced by serum IgG from LN diseased
NZM2328 mice could be inhibited by GSK872 (Guo et al., 2019).

As pointed out above, several studies have demonstrated that
NLRP3 inflammasome components are involved in the pathogenesis
of LN. Therefore, modulating NLRP3 inflammasome signals may
represent a significant and promising target for LNmanagement (Fu
et al., 2019; Yang et al., 2020) (Table 1).

FIGURE 1 | Overview of the molecular mechanisms of the NLRP3 inflammasome pathway.
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TABLE 1 | Researches on NLRP3 inflammasome in lupus nephritis (LN).

Research type Study subject Mechanism Ref.

Clinical research LN patients NLRP3 rs10754558 was more frequent da Cruz et al. (2020)
Clinical research LN patients Increased NLRP3 in tubular cells of LN class IV, positively correlated with the activity

index (AI) score
Huang et al. (2020)

Experiment
research

Pristane-induced female BALB/c mice Upregulated NF-κB, iNOS, and NLRP3 Bonomini et al.
(2019)

Experiment
research

Podocytes of lupus-prone NZM2328mice
and LN patients

Activated NLRP3 inflammasome, caspase-1, and IL-1β Fu et al. (2017)

Experiment
research

Human podocytes Enhanced NLRP3 inflammasome, caspase 1- p20, caspase 1, and IL-1β via
stimulated with anti-dsDNA-positive serum

Fu et al. (2019)

Experiment
research

Podocyte of lupus-prone NZM2328 mice Detected interactions between RIP3 and NLRP3, upregulated NLRP3, and
caspase-1 p20

Guo et al. (2019)

Experiment
research

Female MRL/lpr mouse NLRP3 was significantly high at 14 weeks Honarpisheh et al.
(2016)

Experiment
research

Pristane-induced female Nlrp3-R258Wmice Increased anti-dsDNA, total IgG, urine protein excretion, BUN, and urine creatinine Lu et al. (2017)

Experiment
research

Female NZB/W F1 mice Upregulated ROS, NF-κB-p65,p- NF-κB-p65, NLRP3, caspase-1, and IL-1β Yang et al. (2020)

Experiment
research

Female MRL/lpr mouse Increased P2X7, NLRP3, ASC, caspase-l p20, and IL-1β Zhao et al. (2013a)

Experiment
research

Female MRL/lpr mouse Enhanced p-IκB, NF-κb-p65, NLRP3, ASC, and caspase-1 p20 Zhao et al. (2013b)

FIGURE 2 | Chemical structures of different phytochemicals blocking NLRP3 inflammasome pathways in LN.
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PHYTOCHEMICALS TARGETING THE
NLRP3 INFLAMMASOME IN LN

Common treatments for LN predominantly involve corticosteroids,
antimalarial drugs, immunosuppressive agents, and biologics, which,
although effective, are commonly associated with immunogenicity
(Singh et al., 2016; Fava and Petri, 2019). Currently, available drugs do
not meet the clinical demands for LN patients and are limited by
suboptimal efficacy and severe side effects (Dall’Era et al., 2019;
Murphy and Isenberg, 2019). There is increasing concern that drugs
targeting the NLRP3 pathway may be appropriate for LN therapy
(Lin T.-J. et al., 2019; Wu et al., 2020). Phytochemicals are secondary
metabolites of plants with various bioactivity and are found in many
herbs, fruits, and vegetables. Evidence suggests that phytochemicals
have broad biological activities, including antioxidant, antiviral, and
anti-inflammatory effects, and hold good prospects to treat
autoimmune diseases and improve lipid metabolism among other
diseases (Du et al., 2019; Guo et al., 2019; Hu et al., 2019a; McKee
et al., 2020). To date, several phytochemicals have been shown to affect
LN progression by inhibiting the NLRP3 inflammasome (Figure 2).

Epigallocatechin-3-Gallate (EGCG)
EGCG is a bioactive polyphenol contained in green tea. EGCG
has anti-inflammatory and antioxidant activities and represents a
promising drug for the treatment of inflammatory diseases (Mi
et al., 2017; Byun et al., 2018). EGCG reduced the ROS level in
serum and urine of lupus-prone NZB/W F1 mice. This effect
occurred likely through inhibition of the production of renal
NAD(P)H oxidase, mediated by the nuclear factor E2-related
factor 2 (Nrf2). This pathway could be the cause of the
downregulation of NLRP3 mRNA and protein and subsequent
attenuation of IL-1β and IL-18 secretion, resulting in lower
proteinuria and improved renal functions (Tsai et al., 2011).

Citral
Citral is a principal compound present in lemongrass and citrus
fruits. It owes its therapeutic effects to its antioxidant (Li C.-C.
et al., 2018) and antitumor activities Nigjeh et al., 2019). In a
model of accelerated and severe LN (ASLN) in NZBxW F1 mice
induced by lipopolysaccharide (LPS), citral treatment inhibited
NLRP3 inflammasome signaling and IL-1β secretion by reducing
ROS and COX-2. It also improved Nrf2 activation, ameliorated
albuminuria secretion and renal function, and reduced the
glomerulonephritis activity score and fibrinoid necrosis in the
glomerulus. Consistent with these findings, citral inhibited
caspase-1 activation and IL-1 secretion in ATP-induced
macrophages in vitro (Ka et al., 2015).

Baicalein
Baicalein is a flavonoid compound derived from the rhizome of
the plant Scutellaria baicalensisGeorgi. It has a broad spectrum of
activities, including anticancer (Wu R. et al., 2018) and
antioxidation (Woo et al., 2005). In a model of LN induced by
pristane injections in BALB/C mice, baicalein treatment
downregulated ROS production and enhanced Nrf2 activation.
This effect was accompanied and prevented by NLRP3
inflammasome activation. Baicalein reduced albuminuria and

improved renal function. Consistent with this effect, in vitro
baicalein upregulated Nrf2 signaling and inhibited the NLRP3
inflammasome in LPS-primed myeloid-derived suppressor cells
(MDSCs) (Li et al., 2019).

Sophocarpine
Sophocarpine (SPC) is a natural quinolizidine alkaloid
compound mainly found in the traditional Chinese herb
Sophorae flavescentis. Numerous studies suggest that it exhibits
various effects, including anti-inflammatory (Zou et al., 2019)
and antitumoral (Zhang et al., 2016). Li et al. (2018)
demonstrated that weekly gavage of MRL/lpr female mice
suffering from LN with 100 mg/kg sophocarpine reduced the
level of NLRP3 protein, ASC, caspase-1, and IL-1β in renal tissue,
possibly through inhibition of the NF-κB activator IKKs.
Treatment reduced serum and renal IL-1β, IL-6, and TNF-α.
It also diminished proteinuria, reduced immune complex
deposition in kidney, and significantly improved kidney
function (Li et al., 2018a).

Icariin
Icariin is a flavonol glucoside extracted from the herb
Epimedium. Increasing evidence suggests that icariin possesses
various pharmacological properties, such as antioxidant (Wu B.
et al., 2018) and anti-inflammatory properties (El-Shitany and
Eid, 2019).

In lupus-prone mice, treatment with 10 mg/kg/day of icariin
for eight weeks reduced serum anti-dsDNA titer, decreased renal
deposition of immune complexes, improved renal function, and
alleviated the pathology. Moreover, icariin decreased IL-1β and
TNF-α production in MRL/lpr mice, likely by inhibiting the NF-
κB signaling pathway and the activation of NLRP3 and caspase-1
in kidney (Su B. et al., 2018).

Glycyrrhizic Acid (GA)
GA is a natural extract of Glycyrrhiza uralensis. Clinical and
experimental studies showed that it has many effects, including
antioxidative (Umar et al., 2019) and immunoregulatory (Wu
et al., 2016). In MRL/lpr mice, GA reduced serum uric acid and
creatinine levels, thereby preventing severe renal injury. It exerted
a protective activity by virtue of downregulating the NF-κB
signaling pathway and reducing NLRP3 inflammasome
activation. Assessment of proteins from the NF-κB and
NLRP3 pathways by Western blot showed that GA inhibited
the phosphorylation of NF-κB and IκBα and the activation of
NLRP3, ASC, and caspase-1 in renal tissues and decreased serum
and kidney IL-1β, IL-6, and TNF-α levels in treatedMRL/lpr mice
(Wang Y. Y.et al., 2017).

Phloretin
Phloretin is a natural phenolic compound extracted from fruits.
Recent studies revealed numerous significant activities of
phloretin, including antioxidative, antiallergic (Huang et al.,
2017a), and anti-inflammatory properties (Wu et al., 2019).

In MRL/lpr mice, phloretin attenuates renal injury and
inhibits immune complex deposition (Hu and Yu, 2019b).
Phloretin treatment decreased NLRP3, caspase-1, IL-1β, and
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TNF-α protein levels in renal tissue, as well as the levels of serum
IL-1β and TNF-α. To further explore the regulation of NLRP3 by
phloretin, Hu and colleagues assessed the NF-κB signaling
pathway in vitro. Phloretin inhibited the cytoplasmic
expression of p-IκB and p65 translocation to the nucleus and
prevented NLRP3 inflammasome activation through inhibition
of the NF-κB pathway.

Magnolol (MG)
MG is a hydroxylated biphenyl compound extracted from
Magnolia officinalis. Previous studies suggested that it has a
variety of activities; it is used in treatment of melanoma
(Emran et al., 2019) and anti-inflammatory (Liu et al., 2019).

In MRL/lpr mice, MG exhibited protective effects on
glomerular and vascular lesions, decreased TNF-α in serum
and renal tissues, and inhibited NLRP3 activation and IL-1β
secretion through increased phosphorylation of IκB and level of
IKK-α and NF-κB-p65 in kidney tissues (Huang et al., 2017b).

Curcumin
Curcumin is a polyphenol extensively used in clinical treatment for
cancer, bowel inflammation, and osteoarthritis (Marquardt et al.,
2015; Bannuru et al., 2018; Burge et al., 2019). Curcumin can decrease
proteinuria in female lupus-prone NZB/W F1 mice (Lee et al., 2013)
and reduce PBMCs proliferation in patients with LN (WangM. et al.,
2017). In MRL/lpr mice, curcumin treatment downregulated serum
anti-dsDNA antibody level, ameliorated proteinuria, reduced renal
inflammation, and decreased caspase-1 p20 and renal IL-1β. In
agreement with these findings, curcumin inhibited dsDNA-induced
NLRP3 inflammasome activation in podocytes in vitro by reducing
NLRP3 and caspase-1 p20 expression (Zhao et al., 2019).

Procyanidin B2 (PCB2)
PCB2 is a bioactive phenolic compound isolated from apples,
cocoa, and grapes. Previous research found that it holds diverse
properties, such as modulation of the gut microbiota and anti-
inflammatory and antioxidant effects (Su H. et al., 2018; Jiang et
al., 2018; Endo et al., 2020). Recent evidence demonstrated that
PCB2 directly represses the NLRP3 gene (He et al., 2018).

In MRL/lpr mice, treatment with PCB2 ameliorated LN renal
lesions and decreased IL-18 and IL-1β levels in serum and renal

tissues. PCB2 diminished anti-dsDNA antibody level and
downregulated immune complex deposition in kidney. Moreover,
He and colleagues also showed in MRL/lpr mice that silencing the
NLRP3 gene reduced the production of IL-18 and IL-1β. A similar
effect was found in PCB2 treated mice (He et al., 2018).

Summary
ROS constitute a class of oxygen-containing compounds involved in
cell metabolism (Reczek and Chandel, 2015; Lin et al., 2019; White
et al., 2019). Under exogenous stimuli, such as silica and asbestos, ROS
induces thioredoxin (TXN) dissociation from the thioredoxin-
interacting protein (TXNIP). TXN binds and activates the NLRP3
inflammasome (Ding et al., 2018; Li et al., 2018b). Moreover,
complexes deposited in the kidney activate the complement system
and induce inflammatory cells that release proinflammatory factors
and produce a large amount of ROS, inflammasome, thereby
activating the NLRP3 inflammatory pathway and participate in the
LN pathogenesis (Zhang et al., 2018). EGCG, citral, and baicalein
downregulate NLRP3 levels by decreasing ROS, thereby reducing IL-
1β and IL-18 secretion.

When externally stimulated, TLR signaling activates the
transcription factor nuclear factor κB (NF-κB), upregulates NLRP3
expression, and promotes the production of the proinflammatory
cytokines pro-IL-1β and pro-IL-18 in LN (Yi et al., 2017; Zhang et al.,
2018). Sophocarpine, icariin, GA, phloretin, and magnolol could
improve renal function by inhibiting the NF-kB pathway and
reducing the expression of NLRP3. In addition, curcumin and
PCB2 also could inhibit the expression of NLRP3 and have the
potential to treat LN, according to the evaluation of anti-dsDNA
antibody level and biochemical indexes (Table 2).

CONCLUSION AND FUTURE
PERSPECTIVES

SLE is an autoimmune disease involving multiple system damage. LN
is an important renal complication of SLE, its clinical manifestations
are complex and diverse, and the course of the disease is protracted
and difficult to heal. If not treated in time, LN seriously affects the
quality of life and survival rate of the patients. So far, the etiology and
pathogenesis of LN remain unclear. As indicated above, activation of

TABLE 2 | Studies on phytochemicals inhibiting NLRP3 inflammasome activation in LN.

Molecular mechanisms Phytochemicals Category Animal model Dosage Ref.

Suppression of ROS Epigallocatechin-3-
gallate

Polyphenol Female NZB/W F1 mice 120 mg/kg for 22 weeks Tsai et al. (2011)

Citral Monoterpenoid Female NZB/W F1 mice 200 mg/kg for 5 weeks Ka et al. (2015)
Baicalein Flavonoid Pristane-induced female BALB/

c mice
25 or 100 mg/kg for
8 weeks

Li et al. (2019)

Inhibition of NF-κB signaling
pathway

Sophocarpine Quinolizidine alkaloid Female MRL/lpr mice 100 mg/kg for 18 weeks Li et al. (2018a)
Icariin Flavonoid glucoside Female MRL/lpr mice 10 mg/kg for 8 weeks Su B. et al. (2018)
Glycyrrhizic acid Triterpene Female MRL/lpr mice 20 or 40 mg/kg for 7 days Wang Y. Y. et al.

(2017)
Phloretin Phenolic Female MRL/lpr mice 400 mg/kg for 8 weeks Hu and Yu (2019b)
Magnolol Hydroxylated

biphenyl
MRL/lpr mice 5 mg/kg for 8 weeks Huang et al. (2017b)

Others Curcumin Polyphenol Female MRL/lpr mice 200 mg/kg for 8 weeks Zhao et al. (2019)
Procyanidin B2 Phenolic Female MRL/lpr mice 100 mg/kg for 8 weeks He et al. (2018)
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the NLRP3 inflammasome can promote the occurrence and
development of the pathological processes leading to LN by
causing inflammatory responses. With extensive research on
inflammasomes, our understanding of its impact and mechanism
of action on LNhas become deeper and broader. Treatments targeting
the NLRP3 inflammasome have attracted increasing attention (Li
et al., 2020). Current studies on NLRP3 inflammasome in LNmainly
focus on the canonical NLRP3 inflammasome pathway and lacks the
detection of noncanonical NLRP3 inflammasome-related indicators,
such as caspase-11, caspase-4, and caspase-5. Compared with the
inactive LN subgroup and healthy controls, the serum level of caspase-
8 increased significantly in active LN (Petrackova et al., 2017). It is
worth further verification whether caspase-8 is involved in the
pathogenesis of LN through an alternative NLRP3 inflammasome
pathway. The research on the noncanonical NLRP3 inflammasome
and alternative NLRP3 inflammasome pathway is still in infancy, but
whether they are involved in LN and what role they play in it deserve
our attention and exploration.

At present, treatment options for LN are limited. The main
treatments consist of corticosteroids, antimalarials, and
immunosuppressants, but these induce adverse reactions, such
as immunosuppression and increased infection susceptibility.
Therefore, it is extremely valuable to develop more effective
treatments involving drugs with safety. This article
summarizes the research progress made in recent years related
to the therapeutic effects of phytochemicals on LN, acting
through the NLRP3 inflammasome (Figure 2). The research of
phytochemicals on NLRP3 in LN is limited to NLRP3 itself and

the inflammatory factors IL-1β and pro-IL-18. In the context of
lupus, there may be more specific targets upstream or
downstream of NRLP3. This could help identify the role of
phytochemicals on these specific molecules in other types of
pathology and be tested in the context of lupus. A better
understanding of the activation mechanisms of the NLRP3
inflammasome in LN will provide new ideas and approaches
for the treatment of LN by phytochemicals. In addition, the
clinical treatment of LN requires long-term medication, and the
safety evaluation of the therapeutic dose and duration of
phytochemicals needs to be further verified. This is a
promising area, but there are many gaps that we need to fill
in. There are significant differences in the incidence and severity
of LN between different regions and races globally, and women
are higher thanmen (Almaani et al., 2017). As summarized in this
article, most of the studies on NLRP3 inflammasome in LN
reported so far have been conducted in mouse models, and
studies on LN patients with different genetic backgrounds will
further determine the role of NLRP3 inflammasome.
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