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Summary

In large-scale production processes, metabolic con-
trol is typically achieved by limited supply of essen-
tial nutrients such as glucose or ammonia. With
increasing bioreactor dimensions, microbial produc-
ers such as Escherichia coli are exposed to chang-
ing substrate availabilities due to limited mixing. In
turn, cells sense and respond to these dynamic con-
ditions leading to frequent activation of their regula-
tory programmes. Previously, we characterized
short- and long-term strategies of cells to adapt to
glucose fluctuations. Here, we focused on fluctuat-
ing ammonia supply while studying a continuously
running two-compartment bioreactor system com-
prising a stirred tank reactor (STR) and a plug-flow
reactor (PFR). The alarmone ppGpp rapidly accumu-
lated in PFR, initiating considerable transcriptional
responses after 70 s. About 400 genes were repeat-
edly switched on/off when E. coli returned to the
STR. E. coli revealed highly diverging long-term tran-
scriptional responses in ammonia compared to glu-
cose fluctuations. In contrast, the induction of
stringent regulation was a common feature of both
short-term responses. Cellular ATP demands for
coping with fluctuating ammonia supply were found
to increase maintenance by 15%. The identification
of genes contributing to the increased ATP demand

together with the elucidation of regulatory mecha-
nisms may help to create robust cells and processes
for large-scale application.

Introduction

Aerobic, large-scale production processes are bound by
technical limits such as maximum oxygen transfer rate
(typically 150–180 mmol l�1 h�1) or cooling capacity.
Basically, such limits mirror the design compromise
between technical feasibility and economic constraints.
Consequently, the metabolic activity of the producer cells
needs to slow down during the production phase to stay
within given borders. This necessary control of metabolic
activity is typically achieved by limiting nutrient supply.
Besides carbon limitation (e.g. glucose), nitrogen limita-
tion (e.g. ammonia) is often used to control the fermenta-
tion process. It has been found that nitrogen limitation
even increased cell specific glucose uptake rates (Hua
et al., 2004) which is highly desirable in microbial pro-
duction processes.
However, as bioreactor dimensions increase, spatial

inhomogeneities (e.g. in nutrients, dissolved gases and
pH) arise in the cellular microenvironment mainly due to
insufficient mixing caused by limited power input (Bylund
et al., 1998; Humphrey, 1998; Lapin et al., 2006; Takors,
2012). The nutrient gradients are frequently crossed by
the cultured cells, thereby triggering intracellular changes
in response to the changes in external nutrients.
Our knowledge concerning the fundamental regulatory

processes that enable Escherichia coli to successfully
adapt to changing nutrient availabilities is already pro-
found (Hua et al., 2004; Traxler et al., 2008; Shimada
et al., 2011; You et al., 2013; Wulffen et al., 2016). How-
ever, such studies have been performed in ‘well-mixed’
systems that do not mirror well the fluctuating environ-
ment of large-scale bioreactors. Examples revealing neg-
ative effects of substrate gradients (e.g. lowering of
biomass yield and by-product formation) on large-scale
process performance are rare (Larsson et al., 1996;
Bylund et al., 1998), not taking into account the impact
of fluctuating nitrogen supply. Ammonia and glucose are
both essential nutrients whose extracellular availability is
crucial for the coordinated allocation of intracellular
resources that eventually lead to formation of biomass
and product (Doucette et al., 2011; You et al., 2013).
Therefore, this report aims at elucidating the
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transcriptional responses of E. coli under fluctuating
ammonia availability.
Today, the so-called scale-down devices, which simu-

late large-scale gradients, are often used to investigate
both cellular response and sensitivity at the transcrip-
tional (Schweder et al., 1999; Lara et al., 2006; Buch-
holz et al., 2014; L€offler et al., 2016), proteomic
(Limberg et al., 2016) and product level (Neubauer et al.,
1995; Lemoine et al., 2015). Usually, batch or fed-batch
cultivations are performed with and without imposing gra-
dients to identify phenotypic differences in the fermenta-
tions. Such approaches possess the inherent drawback
that process dynamics superimposed on gradient-
induced regulation dynamics make it difficult to decipher
the latter independent of the former. Alternatively, we
have presented a continuous cultivation approach con-
sisting of a stirred tank reactor (STR) coupled to a plug-
flow reactor (PFR; L€offler et al., 2016). In this way, a
steady-state reference state without gradients and a sub-
sequent period with gradients can be investigated sepa-
rately and the two states compared. Using this
approach, the tactical (short-term) and the strategic
(long-term) response of wild-type E. coli to periodically
changing glucose availability could be deciphered.
Based on these results, strategies to engineer E. coli
strains more suitable for large-scale production were
suggested, including identifying candidates for gene
deletion that could help to minimize unwanted ATP loss
caused by the periodic switching on and off of genes.
Similar experiments were performed in this study with

a focus on ammonia availability instead of glucose. The
aim of the study was then to investigate short- and long-
term responses to a fluctuating ammonia supply, while
mimicking large-scale bioreactor conditions. The data
obtained were compared with previously reported glu-
cose induced transcriptional dynamics (L€offler et al.,
2016) to elucidate substrate-related similarities and dif-
ferences. The results should allow an understanding of
how E. coli adapts to changes in the environment of a
bioreactor; it is promising that this will support future
bacterial strain engineering and bioreactor design for
large-scale applications.

Results

Experimental design of the periodic stimulation studies

The cellular response to fluctuating ammonia availability
was examined using the STR-PFR two-compartment
system previously described in L€offler et al. (2016) using
similar operating conditions. In the STR, cells are grown
under conditions of limited ammonia from which a frac-
tion is then continuously drained into the PFR loop. In
the PFR, cells shift from ammonia limitation to ammonia
starvation mode as they consume and exhaust any

residual ammonia before they return to the STR. Five
sample ports (P1–P5) were located along the PFR to
monitor the short-term cellular response, while long-term
effects were followed via sampling from the STR sample
port S (Fig. 1). The set-up was characterized using tra-
cer experiments to confirm plug-flow behaviour in the
PFR (Bodenstein number Bo = 84) and to determine the
average residence time �s of the cells in each compart-
ment (sSTR = 6.2 min and sPFR = 125 s) (for details, see
Methods S1 and L€offler et al., 2016). Figure 1 further
depicts the individual residence times determined for
each PFR sample port. The PFR-to-STR volume ratio of
1:3 was designed based on the results of Lapin et al.
(2006) who simulated the growth performance of E. coli
under ideally and poorly mixed fed-batch conditions. A
recent study indicates that large-scale starvation zones
might even encompass 50% of the total reactor volume
(Haringa et al., 2016). Hence, the experimental setting in
our study still agrees with large-scale recirculation times
(Junker, 2004; Noorman, 2011) and the configurations
used in other scale-down studies (Schweder et al.,
1999; Amanullah et al., 2001).
As first described in L€offler et al. (2016), the STR-PFR

system was operated in continuous mode (Novick and
Szilard, 1950) with ammonia as the growth-limiting sub-
strate which was fed continuously into the STR. To
achieve this, we established steady-state conditions in the
STR prior to and during connection of the PFR cell recycle
loop. In this way, a distinct reference state was estab-
lished. By contrast, in conventional scale-down set-ups
conducted in fed-batch mode, the overall effects resulting
from changing process conditions and/or various external
stimuli (e.g. changes in residence time distribution) often
make an appropriate interpretation of observations diffi-
cult. The two-step cultivation process is illustrated in
Fig. 1. First, the reference steady state (S0) with a growth
rate of 0.2 h�1 was established in the STR. The exem-
plary dilution rate of 0.2 h�1 was chosen to allow compa-
rability to previously performed glucose experiments
(L€offler et al., 2016). Moreover, it met the demand of com-
prehensively studying fluctuations between ammonia limi-
tation and depletion, while mimicking large-scale
conditions. However, the system is not restricted to these
conditions as smaller (or higher) growth rates may be
installed accordingly providing the possibility to study a
multitude of physiological responses. To characterize the
intrinsic steady-state fluctuations, S0 was sampled three
times during a 16 h period following establishment of the
steady state. Then, the PFR was connected and the cul-
ture was thoroughly characterized by measuring key pro-
cess parameters (biomass, glucose, ammonia, oxygen
and carbon dioxide), the intracellular level of ppGpp and
the transcriptome (RNA-sequencing analysis). Using the
observed ammonia uptake rate of 56 lg l�1 s�1 and
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assuming a detection limit of 2.5 mgam l�1 as the residual
amount that entered the loop, ammonia should be fully
depleted after 45 s. Consequently, the PFR can be
divided into a growth zone with ammonia (bordered by a
45 s residence time) and a non-growth zone without
ammonia. Because the average growth rate of the total
STR-PFR remained at 0.2 h�1, the effective growth in the
ammonia containing compartment was lSTR = 0.24 h�1

(for details, see also L€offler et al., 2016). The STR-PFR
cultivation was performed twice under identical experi-
mental conditions.

Short-term response to ammonia shortage

Intracellular levels of the alarmone ppGpp accumulated
along the PFR with an average increase of 3.5-fold
(Fig. 2, Fig. S1). The level nearly doubled after only 30 s
of ammonia shortage. The small variance bars indicate
that the response was highly repeatable, showing similar
patterns irrespective of the process time.
Analogous to the study conducted by L€offler et al.

(2016), RNA-sequencing data were obtained. After
exclusion of very poorly expressed genes by primary fil-
tering, 3889 genes remained for analysis. The fast tran-
scriptional response to ammonia shortage was
determined by comparing PFR samples with STR equiv-
alents taken at the same process times. About half of
the genes with a false discovery rate (FDR) < 0.01
showed fold changes below 1.5. The number of

differentially expressed genes (DEGs) along the PFR
with fold changes ≥ 1.5 is shown in Fig. 3A. Within
110 s, we found DEGs with log2 fold changes ranging
from between �3.8 and 3.2 corresponding to 14-fold
down- and ninefold upregulation respectively. During the
first 70 s, 40 and 78 genes were up- or downregulated
at least 1.5-fold respectively. Subsequently, the number
of up- and downregulated DEGs at the PFR outlet
quickly increased to 57–112 and 165–384 respectively.
Analogous to the ppGpp profiles, the DEG profiles

Fig. 2. Short-term accumulation of ppGpp over residence time in
the PFR. Samples from two independent STR-PFR cultivations were
analysed at different process time points. Time profiles show the
average ppGpp concentration in lmol g (DW)�1 at process times of
25 min, 120 min and 28 h (mean � SD).

Fig. 1. Experimental design of the two-compartment system. The two-compartment device consists of a stirred tank reactor (STR) connected to
a plug-flow reactor (PFR). The STR-PFR was designed to give a simplified representation of some of the periodic substrate variations experi-
enced by cells in large-scale bioreactors: the limiting substrate is fed into the well-mixed STR (limitation zone) and residual substrate is quickly
consumed when microbial cells enter the PFR, leading to the development of a starvation zone. A continuous process strategy was chosen to
maintain a constant volume and average dilution rate of D = 0.2 h�1 in the system. The steady state prior to PFR onset at time zero was used
as the reference state (S0). Samples were taken at eleven distinct time points over 28 h. The system is equipped with five PFR sample ports
(P1-5) at defined residence times s (s), as well as STR sample port S. The residence times in the connecting loops from the STR outlet to P1
and P5 to the PFR outlet were 31 and 15 s respectively. This results in a total mean PFR residence time of sPFR = 125 s (for calculations see
Methods S1). F = feed; H = harvest.
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(A)

(C)

(B)

Fig. 3. Transcriptional responses to short-term nitrogen shortage. A. Number of DEGs whose expression was increased (grey circles) or
reduced (black circles) between PFR and STR. Time courses are shown as mean � SD calculated from samples withdrawn at 25 min,
120 min and 28 h after PFR onset. DEGs are defined as having an FDR < 0.01 and log2 fold change ≥ |0.58|. B. COG functional categories
(Tatusov et al., 2000) and (C) sigma factor regulation (Salgado et al., 2013) pattern for the comparison of PFR sample port P5 vs. S, visualized
as spider graphs. Because no COG or sigma factor annotation was found for 559 and 428 of 3889 genes, respectively, these genes were
excluded from the statistical analysis. The t-statistics pattern from GAGE (Luo et al., 2009) is shown for three representative time points: 25 min
(gold dotted line), 120 min (magenta line) and 28 h (blue line) after the PFR was coupled to the STR. Sets including less than 10, or above 500,
genes were omitted from the analysis. Functional groups that were significantly changed with an FDR < 0.05 at a minimum of one time point using
either GAGE (black asterisk) or hypergeometric distribution (grey asterisk) analysis are indicated. Overlapping sigma factor sensitivities: gene reg-
ulation may occur by each of the sigma factors depicted because multiple promoters exert control.
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revealed high reproducibility over process time (Fig. 3A).
Only P1 values showed relatively high variance as the
data set at 120 min encompassed unique expression
events that could not be fully explained mechanistically.
Gene expression patterns were assigned to 21 func-

tional categories based on the database of clusters of
orthologous groups (COG) (Tatusov et al., 2000). In total,
3330 of the 3889 genes (86%) could be grouped by
COG. The cellular response at maximum ammonia short-
age (P5 samples) is indicated by the COG distribution of
transcripts determined using the GAGE gene set (Luo
et al., 2009) and hypergeometric distribution analysis. For
each COG category, the resulting t-values are repre-
sented in a spider graph (Fig. 3B). Significant changes
are defined with a FDR < 0.05. Highly increased tran-
scripts found at the PFR outlet could be linked to energy
production and conversion (C), amino acid (E) and carbo-
hydrate (G) transport and metabolism. Decreased gene
expression during PFR passage was observed for the
genes assigned to ribosomal structure and biogenesis
(J), replication, recombination and repair (L), nucleotide
(F) and coenzyme (H) transport and metabolism. Maxi-
mum expression changes were found in the ‘120 min’
samples and almost returned to starting values after
28 h. In contrast, genes assigned to post-translational
modification, protein turnover and chaperones (O) and
cell motility (N) showed increased up- and downregula-
tion at 28 h.
Furthermore, we investigated the influence of alterna-

tive sigma factors on the observed transcriptional
response. In this case, 3461 of 3889 genes (89%) were
annotated using the information about sigma factor–gene
interactions derived from Regulon DB (Salgado et al.,
2013). Then, GAGE and hypergeometric analyses were
performed in an analogous manner as was used for
COG functional testing (Fig. 3C). Notably, genes regu-
lated by the nitrogen stress response sigma factor rN

(RpoN) were typically more abundant at the PFR outlet
(FDR < 0.05). Additionally, we found an induction of the
rS (RpoS) regulon, which mediates the general stress
response, and an induction of genes that are sensitive
for either rS, or the housekeeping factor rD (RpoD) or
ppGpp (Fig. S2A). This was accompanied by the down-
regulation of transcripts regulated by sigma factor rF

(FliA) which is specific for the transcription of genes
involved in cell motility and flagellar synthesis.

Repeated ammonia shortage triggers transcriptional
long-term responses

After PFR onset (0 h), cells were repeatedly exposed to
ammonia shortage in the PFR. Subsequently, they
returned to the STR and intermixed with the remaining
culture. The adaptation process from the initial steady

state S0 (STR) to the novel steady state S1 in the STR-
PFR was monitored for 28 h by STR sampling and mea-
surement of transcriptional changes as shown in
Fig. 4A.
After PFR connection, biomass concentrations and

specific uptake rates of ammonia and glucose remained
almost constant, but respiratory activity (oxygen uptake
and carbon dioxide production rate) increased about
10% (Table S1). Intracellular ppGpp levels fluctuated
from around 0.5 lmol g (DW)�1 to 1.5 lmol g (DW)�1 in
the STR (Fig. S1) showing no distinct long-term trend. In
contrast, short-term accumulation profiles in the PFR
were much more pronounced (Fig. 2).
Distinct changes in STR transcriptome patterns were

already observed 5 min after PFR connection as is
shown in the multidimensional scaling plot (Fig. 4A). The
steady state S0 before PFR connection was character-
ized by a 95% confidence ellipse computed from the
independent measurements. Transcript dynamics slowed
down and finally converged to a new steady state (S1)
which is defined by a second 95% confidence ellipse
based on the samples taken at 25, 26 and 28 h. Nota-
bly, there was no overlap between S0 and S1 confidence
ellipses underscoring the existence of transcriptional dif-
ferences. After 28 h, we identified 60 up- and 63 down-
regulated DEGs compared to S0. During the transition
from S0 to S1, 487 genes were found to be differentially
expressed to at least one time point with log2 fold
changes lying between �7.3 and 4.6 (24-fold up- and
153-fold downregulated). Figure 4A also demonstrates
the formation of a new steady state at PFR P5 (P1).
Thus, transcript dynamics at P5 and in STR follow the
same tendency, but with a clear offset. As shown in
Fig. 4A, each STR condition can be linked to P5 by
tracking the transcript changes along the PFR.
GAGE analysis on COG functional genes sets was

performed on STR data. The resulting COG distribution
is again depicted for the process times of 25 min,
120 min and 28 h in Fig. 4B. Interestingly, gene expres-
sion for amino acid transport and metabolism (E) in S1

was lower than in S0, which had already occurred
25 min after connecting the PFR. In contrast, cell motility
(N) was already markedly upregulated after 10 min and
lasted until 28 h. The latter is further confirmed by the
increased expression of genes regulated by flagellar
sigma factor rF (Fig. 4C). Transient upregulation was
observed for translation, ribosomal structure and biogen-
esis (J) and carbon transport and metabolism (G). Con-
sistent with the downregulation of amino acid transport
and metabolism genes was the reduced long-term
expression of the rN regulon coordinating the response
to nitrogen stress. Moreover, genes of the rS-mediated
stress response were downregulated, which was also
true for ppGpp-controlled genes (Fig. S2B).
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(A)

(C)

(B)

Fig. 4. Long-term dynamics to repeated ammonia shortage. A. Multidimensional scaling analysis of transcriptomes obtained at eleven process
time points and over residence time s in the PFR; Grey arrows follow the adaptation trajectories from the STR (squares) S0 (0 h) to S1 (28 h)
and PFR P5 (circles) and P1 (28 h) respectively. Coloured arrows follow the transition between STR and PFR clusters at 25 min (gold),
120 min (magenta) and 28 h (blue). Ellipses indicate the 95% confidence interval of replicate samples taken at S0 (orange) and S1 at 25, 26
and 28 h after PFR addition (blue). The proportion of variance in the data accounted for by the MDS solution from two independent cultivations:
R2 = 0.75. Data points represent the mean of n = 2. B. COG functional categories (Tatusov et al., 2000) and (C) sigma factor regulation
(Salgado et al., 2013) pattern for the comparison of STR sample ports S vs. S0, visualized as spider graphs. Because no COG or sigma factor
annotation was found for 559 and 428 of 3889 genes, respectively, these genes were excluded from the statistical analysis. The t-statistics pat-
tern from GAGE (Luo et al., 2009) is shown for three representative time points: 25 min (gold dotted line), 120 min (magenta line) and 28 h
(blue line) after PFR addition. Sets including less than 10, or above 500, genes were omitted from the analysis. Functional groups that were sig-
nificantly changed with an FDR < 0.05 at a minimum of one time point using GAGE (black asterisk) and hypergeometric distribution (grey aster-
isk) analysis are indicated. Overlapping sigma factor sensitivities: gene regulation may occur by each of the sigma factors depicted because
multiple promoters exert control.
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Comparing transcriptional responses on fluctuating
ammonia and glucose supply

The short- and long-term responses to fluctuations in ammo-
nia levels were compared to an analogous study examining
the effects of fluctuations in glucose levels (L€offler et al.,
2016) that used an identical experimental design.
Strikingly, rapid accumulation of ppGpp in the PFR was

detected in both studies even demonstrating similar pro-
files (Fig. S3). The influence of short-term starvation
stress on gene expression was investigated by compar-
ing the transcriptional profiles of cells sampled after 28 h
at PFR sample port P3 or P5 to STR sample port S under
glucose and ammonia shortage respectively (for details,
see Methods S1). In summary, the expression levels of
25 (25%) and 209 genes (54%) were collectively chan-
ged at P3 and P5, respectively, being mostly downregu-
lated (Fig. 5A and B). Consequently, they mirror the
transcriptional response to short-term starvation irrespec-
tive of glucose or ammonia shortage. Interestingly, no
distinct COG group was found to be dominant. Instead,
the 160 genes (Fig. 5B) are distributed over a wide vari-
ety of COGs, including biosynthetic (H, F), information
processing (J, L, K) and signalling (M, T) pathways. How-
ever, common upregulation was found for some genes
that are assigned to the ppGpp/rS-regulon and post-
translational modification, protein turnover and chaper-
ones (Fig. 5B, Figs S4A–S6A). Individual, nutrient-

specific short-term regulation was observed for 73 ammo-
nia- and 91 glucose-specific genes after 110 s respec-
tively. Additionally, 11 genes were significantly changed
under glucose and ammonia limitation but in opposite
directions. Among these, amino acid transport and
biosynthesis were significantly upregulated under ammo-
nia shortage, whereas nucleotide transport and metabo-
lism were downregulated under glucose shortage.
By analogy, the long-term transcriptional responses to

glucose and ammonia fluctuations were analysed com-
paring S28 h with S0 (Fig. 5C, Methods S1). Only 19
genes (~10%) showed similar long-term responses under
both nutrient conditions, whereas 14 genes were even
oppositely regulated under either ammonia or glucose
fluctuation. The majority of genes showed nutrient-speci-
fic regulation with 96 (50%) and 63 (33%) genes being
primarily differentially expressed under glucose or
ammonia respectively. Accordingly, cells cultured under
long-term ammonia fluctuations upregulated cell motility/
rF-dependent genes and downregulated genes associ-
ated with amino acid transport and metabolism (Fig. 5C,
Figs S4B–6B). In contrast, repeated glucose starvation
caused a significant induction of ppGpp/rS-controlled
transcripts. No significant functional groups were found
in commonly regulated genes, suggesting that there
exists a highly divergent long-term transcriptional strat-
egy in response to the two nutrient conditions.

Fig. 5. Venn diagrams representing (overlapping) sets of differentially expressed genes derived from repeated ammonia (this study) or glucose
shortage (L€offler et al., 2016) STR-PFR tests. Short-term response observed for the following comparisons at PFR sample port (A) P3 vs. S
(s = 70 s) and (B) P5 vs. S (s = 110 s) conducted after 28 h of process time. C. Long-term response (S vs. S0) conducted after 28 h. The num-
ber of up- and downregulated genes in each set is indicated by regular and underlined numbers respectively. The number of overlapping genes,
which were regulated in the ammonia and glucose sets with comparable strength but in opposing directions, is shown in italics. For each gene
set, a hypergeometric distribution analysis was performed to identify significantly over-represented functional categories (FDR < 0.05, grey
boxes). DEGs were defined as having an FDR < 0.01 and log2 fold change ≥ |0.58| in either ammonia or glucose data sets. Complete gene lists
of the Venn diagrams are available in Tables S6 - S10 of the Supplementary information.
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Discussion

Cellular responses to ammonia shortage

When E. coli cells were shifted from ammonia-limited
growth in the STR to full ammonia depletion in the PFR,
they repeatedly showed similar short-term responses
irrespective of the process time. The alarmone ppGpp
rapidly accumulated in the cells during passage through
the PFR, reaching final intracellular concentrations of
about 2 lmol g (DW)�1 between 70 and 110 s (Fig. 2).
Comparable ppGpp responses in response to nitrogen
starvation have been reported in other studies (Irr, 1972;
Villadsen and Michelsen, 1977; Traxler et al., 2011).
Nitrogen stress leads to amino acid starvation, which
then leads to ribosome stalling because of the presence
of uncharged tRNAs, all of which ultimately hampers
translation. In turn, the ppGpp synthetase RelA is stimu-
lated to synthesize ppGpp. As the effector molecule of
the stringent response, ppGpp allows cells to quickly
reprogram transcription in response to nutrient variations
(Potrykus and Cashel, 2008). Increased ppGpp levels
were already observed at P1 (30 s), suggesting a grad-
ual tactical response to the suboptimal growth conditions
as has been proposed by Traxler et al. (2011) rather
than a classical on/off switch.
The biggest increases in short-term gene expression

were found after 70 s (Fig. 3A), which matched with
increasing ppGpp amounts. Nearly all of the DEGs
(> 97%) identified at P3 showed ongoing expression
until they reached P5 after 110 s. For comparison, no
significant up- or downregulation of transcripts was
observed during the first 30 s. This finding suggests the
existence of a cellular ‘reaction time’ of 30–70 s before
considerable transcriptional responses are initiated. This
conclusion is in line with the similar glucose study
(L€offler et al., 2016) which also revealed a concerted
transcriptional response occurring no earlier than 70 s
after glucose shortage. Moreover, the reported time-
scales are in accordance with those observed in other
scale-down studies (Schweder et al., 1999; Lara et al.,
2006; Buchholz et al., 2014).
Analysis of gene expression patterns (Fig. 3C)

revealed significant changes in four sigma regulons (rS,
rN, rF and rE) and one overlapping sigma regulon
(rS,D). A dominant role was found for the rS-regulon
(Gentry et al., 1993; Traxler et al., 2011) closely net-
worked with ppGpp-mediated control (Fig. 3B and C,
Fig. S2A). The rapid transcriptional upregulation of
amino acid transport and metabolism, post-translational
modification, protein turnover and chaperones (E, O in
Fig. 3B) as well as catabolic pathways (C, G in Fig. 3B)
was accompanied by downregulation of several cellular
processes including translation, replication, cell motility

and nucleotide/coenzyme biosynthesis (J, L, F, H, N in
Fig. 3B). This transcriptional switch is a primary charac-
teristic of the stringent response (Durfee et al., 2008;
Traxler et al., 2008), whereby downregulation of macro-
molecular synthesis together with altered expression of
catabolic genes provides metabolic capacity for amino
acid biosynthetic pathways and stress-protective func-
tions. Nitrogen shortage is known to be primarily sensed
as glutamine limitation (Zimmer et al., 2000; Gyanesh-
war et al., 2005b). Accordingly, the limited supply of glu-
tamine required for tryptophan and histidine synthesis
seems to be compensated for by the upregulation of cor-
responding genes such as trpLE, mtr and hisLG.
Furthermore, rN-controlled gene expression was

found to be amplified with increasing ammonia starvation
(Fig. 3C). Many rN-induced genes are involved in nitro-
gen assimilation and are additionally controlled by NtrC,
the major regulator of the nitrogen-regulated (Ntr)
response (Reitzer and Schneider, 2001; Van Heeswijk
et al., 2013). Eleven of the 21 known NtrC-regulated
operons (Brown et al., 2014) were induced after 110 s at
PFR P5 (i.e. glnK-amtB, nac, gln and ddp operons;
Table S2). Additionally, zraSR, zraP, rtcBA, rpoH and
the 50 end genes of the prp, hyc and hyp operons
(Table S3) were also upregulated. These genes seem to
be partly involved in nitrogen assimilation under stress
conditions (e.g. pH or proton gradient decoupling) (Reit-
zer and Schneider, 2001). However, other physiological
roles more directly connected to nitrogen metabolism
have not yet been identified.
In summary, the short-term response to ammonia limi-

tation started after 30–70 s and consisted mainly of two
activities: the initiation of the stringent response (medi-
ated by the concerted control of rS and ppGpp) and the
induction of rN-dependent Ntr response which is gener-
ally described as scavenging response (Zimmer et al.,
2000). A relationship between both regulatory responses
was first discovered by Brown et al. (2014) who found
that NtrC induces relA expression, thereby mediating
ppGpp accumulation. Our studies, however, did not
reveal increased relA levels in the PFR, although intra-
cellular ppGpp levels more than doubled. This observa-
tion suggests there are alternative routes (e.g. via
uncharged tRNA) for quickly controlling ppGpp levels
besides the strategic regulation discovered by Brown
et al. (2014). In addition, the cellular nitrogen status is
sensed by the complex ammonia assimilation system
which assesses glutamine and a-ketoglutarate availabili-
ties, finally leading to the activation of NtrC (Van Hees-
wijk et al., 2013; Chubukov et al., 2014). The
simultaneous downregulation of transcripts controlled by
rF and rE may as well be attributed to a fast and com-
plex redistribution of transcriptional capacity (i.e.
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availability of RNA polymerase) in the favour of rS and
rN-dependent genes better counteracting ammonia
shortage along the PFR.
The basic characteristic of our experimental set up is

the frequent recycling of cells from PFR to STR. As a con-
sequence, the regulatory programmes for Ntr stress and
the stringent response were only induced briefly and may
not even have been completed, because cells were
relieved from severe ammonia shortage after 125 s at
which time they re-entered the STR. Within this time, the
ppGpp response was induced, but may not have yet
reached maximum levels which would take between 10 to
20 min as shown by Wang et al. (2007) and Traxler et al.
(2011). Yet, the relatively small ppGpp increase already
induced transcriptional changes immediately. Similar stud-
ies with glucose (L€offler et al., 2016) revealed a frequent
on/off switching of several hundred genes between the
bioreactor compartments. Our study unravelled the
repeated up- and downregulation of about 250 and 100
genes respectively. Although glucose fluctuations caused
an increase in ATP maintenance demands of 40–50%,
nitrogen stress increased ATP demands by only 15% (for
details see Methods S2). This finding underscores the fact
that glucose limitation affects both catabolic and anabolic
functions, whereas ammonia limitation mainly affects
solely anabolism. Of particular note, genes with high on/
off switching costs were mainly associated with amino
acid transport and metabolism (E) and nitrogen regulation
(e.g. glnK, glnH, trpLE, hisG in Table S4) underscoring the
fact that cells have to expend energetic effort to compen-
sate for ammonia shortage.
Transcript analysis of samples at P5 showed that only

the genes closest to the operon 50 end were significantly
upregulated in large operons. This likely illustrates the
time restrictions for transcription changes to occur in the
PFR. However, evidence was found that transcription,
once initiated in the PFR, can propagate into the STR.
Examples are the trp and his operons which were
strongly induced in the PFR. In both cases, increases in
the gene expression levels of the genes downstream of
trpLE and hisLG were found in the STR, which highlights
that transcription, must have continued in the STR after
it had been initiated in the PFR. Further studies to model
this phenomenon are ongoing.

Long-term adaption to repeated ammonia shortage

Over the long-term, repeated periods of ammonia shortage
caused a switch from the transcriptional steady state S0 to
S1 in the STR (Fig. 4A). A detailed analysis of STR gene
expression patterns revealed that S1 mainly differs from S0

by rF-dependent induction of genes involved in cell motility
(N), carbohydrate metabolism (G) and repression of amino
acid transport and metabolism (E), as well as repression of

rN and rS-induced genes (blue lines, Fig. 4B and C). Dur-
ing the transition from S0 to S1, we found transient upregu-
lation of translation and ribosome biogenesis (J).
Apparently, transcriptional programmes that were initiated
in the PFR were repeatedly counter-acted in the STR. ATP
demands required for these changes are relatively low, so
that E. coli can energetically afford frequent reprogram-
ming of nitrogen responses.
In principle, E. coli is able to quickly reset regulatory

responses. For example, Gyaneshwar et al. (2005a)
found decreased transcription of genes involved in cell
motility during downshifts in nitrogen or sulphur levels
and subsequent upregulation during nitrogen or sulphur
upshifts. This behaviour resembles our short- and long-
term observations under ammonia fluctuations. As a first
line of defence against ammonia starvation (short-term
response), E. coli uses its capacities to utilize nitrogen-
containing compounds (Zimmer et al., 2000) rather than
to seek new sources (Ntr stress response). Moreover,
rD-dependent transcription of the flhDC operon that
encodes the master regulator of the flagellar cascade is
directly inhibited by ppGpp (Lemke et al., 2009), which
is consistent with our PFR data showing on average 1.5-
to twofold downregulation of flhDC. This mechanism
may be essential under very poor nutritional conditions
and also in the stationary phase. However, under the fre-
quently changing conditions of large bioreactors, mir-
rored in our experimental set-up, it causes the frequent
re-induction of flagella and chemotaxis genes under the
less stressful STR conditions (long-term response). In
particular, genes for chemotaxis receptors mediating
taxis towards amino acids and dipeptides (tsr, tap and
tar) were upregulated (Fig. S7).
Hierarchical expression of flagella and chemotaxis

genes commenced after 5 min with the induction of the
master operon encoding FlhDC, which then initiated the
downstream cascade (Fig. S7). As late filament and taxis
genes were significantly upregulated 45 min after PFR
addition, we conclude that the essential hook basal body,
which forms a developmental checkpoint for their induc-
tion (Chilcott and Hughes, 2000), is functionally present.
Accordingly, cellular maintenance demands were likely to
increase because of the additional efforts required for flag-
ella synthesis and cell motility (Macnab, 1996). While wild-
type strains may be well prepared to compensate for their
additional ATP needs, high-producer strains with addi-
tional, product-driven demands for ATP and other building
blocks may reach energetic limits (L€offler et al., 2016).

Characteristics of periodically changing ammonia or
glucose availability

The implementation of glucose or ammonia shortage in
the PFR caused ppGpp responses characterized by a
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gradual accumulation beginning after 30 s and subse-
quent transcriptional changes being observed after about
70 s. Even though the relative increase in ppGpp level
(~threefold) and profiles were alike under both, ammonia
and glucose nutrient conditions, ppGpp basal levels
measured in the STR reached higher values under
ammonia fluctuations (Fig. S3). Under intermediate nutri-
ent limitation, slightly elevated ppGpp levels are known
to be maintained (Traxler et al., 2011); differences may
then be related to the type of substrate stress reflecting
the homoeostatic balance under the respective nutrient
conditions.
Short-term ammonia and glucose transcriptional

responses resembled each other with increasing resi-
dence time in the PFR (Fig. S8, Fig. 5A and B). After
110 s, 54% of the genes showed comparable transcrip-
tional responses (Fig. 5B). Within this group, ppGpp-
mediated regulation turned out to be a common strategy,
which is exemplified by significant induction of several
ppGpp/rS-dependent genes. Accordingly, the stringent
response encompassed downregulation of several genes
related to translation, replication, cell wall/membrane bio-
genesis and signal transduction as well as nucleotide/
coenzyme transport and metabolism. This indicates the
rapid induction of a general protective starvation
response that is independent of the original limitation
(hunger response) as proposed by Ferenci (2001).
We also identified nutrient-specific regulation in the

PFR (46% of the genes in Fig. 5B), i.e. enhanced upreg-
ulation of amino acid biosynthesis and transport and
downregulation of nucleotide biosynthesis and transport.
Such nutrient-specific regulatory programmes mirror the
individual interaction between nitrogen limitation and
anabolic functions (Zimmer et al., 2000) and carbon limi-
tation with catabolism and energy (L€offler et al., 2016).
Unlike short-term regulation, the long-term transcrip-

tional responses revealed fundamental differences in cel-
lular strategies to adapt to fluctuating ammonia and
glucose supply. Only 19 genes (10%) showed similar
expression ratios under both conditions (Fig. S8,
Fig. 5C). Although the ppGpp-mediated stringent
response was induced in the PFR for both glucose and
ammonia triggers, only in the glucose study did a like-
wise long-term regulatory programme became manifest
(L€offler et al., 2016) (Fig. 5C). In the case of nitrogen,
short-term induction of the stringent response stimuli
was reset for long-term transcriptional adaptation
(Figs 2A, 3C and 4C). Although the general stress
response plays an essential part during ammonia deple-
tion (Gyaneshwar et al., 2005a), rS levels under ammo-
nia shortage were found to be only slightly increased
and were lower than those seen in glucose starvation
(Mandel and Silhavy, 2005). Unlike upon glucose starva-
tion, rS is not stabilized upon ammonia starvation

suggesting that cells can modulate rS activity under
nitrogen shortage (Mandel and Silhavy, 2005; Peterson
et al., 2005). Accordingly, following periodic glucose
shortage, stabilized rS may accumulate over time
thereby mediating propagation of the signal into the
STR. In contrast, the quick modulation of rS activity
seen under ammonia deprivation may open the door to
other adaptation programmes. In this context, the broad
induction of cell motility/rF genes, which was the most
prominent long-term response specific to repeated
ammonia starvation (Figs 4B–C and 5C), may present a
strategic cellular reaction to actively seek for nitrogen
sources in response to environmental ammonia gradi-
ents. Additionally, it may be interesting whether genetic
mutations may have occurred during the course of the
experiments. Therefore, variant calling was performed
based on the RNA-seq data. However, only one non-
synonymous variant was identified in the coding region
for an uncharacterized protein YccE after 28 h of cultiva-
tion in the STR-PFR system (Methods S4, Table S5).
In summary, ammonia and glucose gradients in the

PFR induce strong transcriptional responses after 70 s,
which remarkably resemble those seen after 110 s.
However, the long-term strategies for adaptation differ
significantly between ammonia and glucose starvation.
This may be caused by differences in rS stabilities
under the two conditions. The cellular needs required to
adapt to ammonia fluctuations are less costly than for
glucose, which may encourage the application of related
scenarios for the control of production processes on a
large scale.

Experimental procedures

Bacterial strain, pre-culture and media

In this study, bacterial cultivations were performed using
the Escherichia coli K-12 W3110 LJ110 strain (Zeppen-
feld et al., 2000; Trachtmann et al., 2016), kindly pro-
vided by G. Sprenger (University of Stuttgart). Baffled
shaking flasks (2 l) containing 300 ml of minimal media
were inoculated with glycerol stock seed cultures. The
minimal media consisted of (per litre) 4 g glucose, 3.2 g
NaH2PO4.� 2 H2O, 11.7 g K2HPO4, 8 g (NH4)2SO4,
0.01 g thiamine, and a trace element solution (0.11 g
Na3C6H5O7, 0.00835 g FeCl3� 6 H2O, 0.00009 g ZnSO4�
7 H2O, 0.00005 g MnSO4� H2O, 0.0008 g CuSO4� 5
H2O, 0.00009 g CoCl2� 6 H2O, 0.0044 g CaCl2� 2 H2O,
0.1 g MgSO4� 7 H2O). Pre-cultures were grown overnight
at 37°C with agitation (130 rpm).

Batch and STR-PFR chemostat cultivations

One hundred and fifty millilitres of pre-culture were used
as an inoculum for the batch bioreactor cultivation. The
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bioreactor cultivations were performed using a two-com-
partment bioreactor system consisting of an STR with a
recycle loop (PFR) as described in L€offler et al. (2016).
The STR volume was 3 l (Bioengineering, Wald,
Switzerland) with a 1.5 l working volume, a constant aer-
ation rate (1.5 l min�1) and a total pressure of 1.5 bar.
The reactor was equipped with a six-blade Rushton type
impeller applying a constant power input of 5 W. pH and
pO2 were measured using Mettler Toledo (Columbus,
OH, USA) and PreSens (Regensburg, Germany) probes
respectively. A pH set point of 7.0 was adjusted using
3 M NaOH and 2.5 M H3PO4 and broth temperature was
maintained at 37°C. To preserve foam formation,
50 lL h�1 antifoam (Struktol J 647; Schill+Seilacher,
Hamburg, Germany) was added constantly during the
chemostat phase. Bioreactor cultivations were carried
out with a minimal medium containing (per litre) 19.0 g
glucose, 1.0 g NaH2PO4.� 2 H2O, 2.6 g K2HPO4, 3.8 g
(NH4)2SO4 and a trace element solution with the same
composition as that used in the shaking flask minimal
medium. A constant dilution rate (D = 0.2 h�1) was
established after the end of the batch phase and was
verified via dissolved oxygen and off-gas analysis levels.
Circulation through the PFR was started, after steady-
state conditions were achieved in the STR (reached after
five residence times). The continuous recirculation flow
of the bio-suspension from the STR to the PFR was pro-
vided using a diaphragm metering pump (Sigma/1 S1Cb,
ProMinent, Heidelberg, Germany) and flow was mea-
sured using a Coriolis flow meter (Cubemass DCI RS-
485, Endress+Hauser, Weil am Rhein, Germany).
The combined working volume was maintained at a

constant 1.5 l. The volumetric proportion was 75% in the
STR (VSTR = 1.12 l) and 25% in the PFR
(VPFR = 0.38 l). The PFR, with an inner tube diameter of
20 mm, features five sample ports with an additional air
sparger placed at sample port P1 to ensure an oxygen
saturation over 10% (air flow: 0.15 l min�1). Dissolved
oxygen was controlled close to sample ports P1 and P5.
The broth temperature in the PFR was kept constant at
37°C using a curing bag (Calorex EPDM, Chemietechnik
GmbH and Co., Heidelberg, Germany) and isolation
material (HT Armaflex, Armacell International S.A, Lux-
embourg, Luxembourg). Process control and data pro-
cessing were performed using LabVIEW� 2010 (National
Instruments, Austin, TX, USA). All samples were taken
from the STR-PFR system using a low-dead-volume
rapid sampling device consisting of a steam sterilizable
miniature valve coupled to a HPLC capillary (Theobald
et al., 1993). Additionally, overpressure in the system
ensured rapid transfer of the bio-suspension into the
sampling tube. Cells passed the device in < 0.75 s and
were harvested into pre-cooled sampling tubes contain-
ing the stabilizing reagents.

Biomass, ammonia and phosphate determination

Biomass concentration was quantified gravimetrically in
quadruplicate as described in L€offler et al. (2016). The
extracellular substrates ammonia and phosphate were
measured using Hach Lange Kits LCK 348 and LCK 303
(Hach Lange, Duesseldorf, Germany) respectively,
according to the manufacturer’s protocol.

Organic acid and ppGpp quantification

An isocratic HPLC equipped with an RI detector (1200
Series; Agilent, Santa Clara, CA, USA) and a Rezex
ROA-Organic Acid H+ (300 9 7.8 mm, 8 lm, Phenom-
enex, Torrance, CA, USA) column, protected by a Rezex
ROA guard column Carbo-H (50 9 7.8 mm, Phenom-
enex), was used for the quantification of glucose and the
by-products acetic acid, succinic acid, lactic acid, formic
acid and ethanol. Sample preparation was performed as
described by Buchholz et al. (2014).
ppGpp was extracted from 2 ml of bio-suspension by

direct sampling into 0.5 ml precooled (�30°C) perchloric
acid (35% (v/v)) and incubated with shaking for 15 min
at 6°C (Theobald et al., 1997; Cserjan-Puschmann et al.,
1999). The pH of the samples was neutralized by adding
KH2PO4 and KOH. After centrifugation (15 min, 4°C,
7000 g), the supernatant was collected and analysed via
HPLC (1200 Series; Agilent, Santa Clara, CA, USA)
equipped with a RP-C18 (octadecyl) phase column
(SupercosilTM LC-18-T, 3 lm, 150 9 4.6 mm) and a
diode array detector (DAD). Gradient elution was per-
formed at a flow rate of 1 ml min�1 using buffer A
(0.1 M KH2PO4, 0.1 M K2HPO4, 4 mM TBAS, pH 6) and
buffer B (0.1 M KH2PO4, 0.1 M K2HPO4, 4 mM TBAS,
pH 7.2 + 30% methanol) to produce the following gradi-
ent: 3.5 min, 0% B; 20 min, 30% B; 22 min, 35% B;
40 min, 60% B; 48 min, 100% B; 55 min, 100% B;
60 min 0% B; 67 min, 0% B. Quantification of ppGpp
was conducted using a 7-point external calibration curve
with a ppGpp standard (TriLink BioTechnologies, San
Diego, CA, USA). In all analytical steps, special attention
was given to the continuous cooling of samples (< 6°C).

RNA-sequencing analysis

Cell samples taken from independent duplicate biological
STR-PFR cultivations were used for gene expression
analysis. Sampling was performed by placing the culture
sample directly into RNAprotect Bacteria Reagent (Qia-
gen, Hilden, Germany) and the pellet was stored at
�70°C after centrifugation. The RNeasy mini kit, includ-
ing on column RNase-Free DNase I treatment (both Qia-
gen), was used for total RNA isolation (RNA ≥ 200
bases), according to the manufacturer’s protocol. RNA
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quality was determined by a Lab-on-a-Chip-System Bio-
analyzer 2100 (Agilent, Boeblingen, Germany). For
library preparation, ribosomal RNA was depleted from
1 lg of total RNA using the Ribo-ZeroTM Magnetic Kit
(Bacteria) (Epicentre, Madison, WI, USA). Next, mRNA
libraries were prepared using the TruSeq mRNA Library
Prep Kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s instructions. Library size (approxi-
mately 400 bp) was confirmed using the Bioanalyzer
2100 and the concentration (approximately 40 ng/ll)
was determined using Qubit Fluorometric Quantitation
(Thermo Fisher Scientific, Waltham, MA, USA). The
library was denaturated according to the manufacturer’s
instructions and diluted to 9 pM. Samples were
sequenced on an Illumina HiSeq 2500 platform (Illumina,
San Diego, CA, USA) in the HighOutput mode (68
cycles, single end reads), sequencing approximately 10
million clusters per sample. The blc2fastq Conversion
Software v. 1.8.4 from Illumina (http://support.illumina.c
om/downloads.html) was used to translate cluster inten-
sity values into fastq files. Cutadapt v. 1.8.3 (Martin,
2011) was used to remove remaining sequencing adap-
ter bases for the following alignment step. As a refer-
ence, reads were aligned against the NCBI E. coli
K12 W3110 genome (GenBank: AP009048.1) using the
RNA-sequencing aligner STAR v. 2.4.2a (Dobin et al.,
2013), resulting in 98% mapped reads (on average).
Aligned reads were counted for each gene based on the
respective annotations available from UCSC genome
browser (http://genome.ucsc.edu) for the chosen refer-
ence sequence applying HTseq-count v. 0.6.1 (Anders
et al., 2015) in the intersection-nonempty mode. On
average 94% of the sequenced reads could be assigned
uniquely to annotated features making up about 9 � 1.4
million reads per sample covering approximately 90% of
all annotated genes by at least 10 reads.

Transcriptome data analysis

Differential gene expression analysis was performed with
the R-package edgeR v. 3.8.6 (Robinson et al., 2010),
downloaded from Bioconductor (Gentleman et al., 2004;
http://www.bioconductor.org). HTseq-derived raw counts
were used as input, after removal of residual rRNA and
tRNA molecules and a non-specific filtering step to
remove low coverage genes with fewer than two counts
per million (16–20 reads) in more than 25% of the data-
set. The design matrix was set up by grouping the sam-
ples by replicates and combining sample time and
location (STR or PFR) into one experimental factor. A
negative binominal was fitted to the data and the robust
genewise dispersions were estimated (Zhou et al.,
2014). Then, a generalized linear model was fitted to the
data using the estimated dispersions and design.

Differential expression for a given contrast was tested
using genewise likelihood ratio tests. Multiple hypothesis
testing correction was performed on the resulting P-
values, to control the false discovery rate (FDR) accord-
ing to Benjamini and Hochberg (1995). Genes were
regarded as significantly differentially expressed with
FDR adjusted P-values < 0.01 and log2 fold changes ≥ |
0.58|. The reproducibility of biological replicates was esti-
mated by calculating Spearman’s rank correlation coeffi-
cient. In this way, three outlier observations (PFR P5
75 min/330 min/26 h) were removed from the data set.
The outliers contained extremely high counts of some
transcripts which can be an issue in RNA samples within
an experimental group (Zhou et al., 2014; George et al.,
2015). As a measure of mRNA abundance in a sample,
the estimated fraction of transcripts formed by a distinct
gene was computed in R and scaled by multiplying by
106 to get transcripts per million (TPM) as previously
described (Li and Dewey, 2011).
Based on their TPM values, the 600 genes with the

largest standard deviation between samples were
selected for multidimensional scaling (MDS) analysis.
Metric MDS was performed using edgeR’s plotMDS
function (Robinson et al., 2010) with Euclidean distance
as a proximity measure. Confidence ellipses were drawn
by estimating the covariance matrix, assuming the data
came from a multivariate t-distribution with a confidence
level of 95% (Fox and Weisberg, 2010). The coefficient
of determination R2 was obtained by computing and
squaring the correlation between the original distances
and the distances determined from the two-dimensional
MDS solution.
Gene set enrichment and over-representation analysis

of clusters of up- and downregulated genes were per-
formed using Bioconductor’s R-package GAGE v. 2.16.0
(Luo et al., 2009) and R’s Hypergeometric test respec-
tively. With both methods, gene sets were selected as
significantly different with an FDR adjusted P-value
< 0.05 (Benjamini and Hochberg, 1995). Functional
annotation for the statistical tests was derived from the
Cluster of Orthologous Groups (COG) database (Tatu-
sov et al., 2000; http://www.ncbi.nlm.nih.gov/COG, last
modified: 4-2-2015), the experimental sigma factor–gene
interaction dataset from RegulonDB v. 8.0 (Salgado
et al., 2013) (http://regulondb.ccg.unam.mx/, last modi-
fied: 9-15-2015) as well as a list of genes requiring
ppGpp, rS and Lrp for their induction identified by
mutant studies (Traxler et al., 2011). The RNA-sequen-
cing data derived from periodic ammonia stimulation
experiments have been deposited in NCBI’s Gene
Expression Omnibus (GEO) (Edgar et al., 2002) and are
accessible through GEO series accession number
GSE90743 (https://www.ncbi.nlm.nih.gov/geo/query/acc.c
gi?acc=GSE90743). Raw count and processed data
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from the glucose tests can be found in the Supplemen-
tary information of L€offler et al. (2016). Data analysis
was performed using the free statistical computing envi-
ronment R v. 3.1.3.
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