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Abstract: Egg yolk contains bioactive components that improve plasma inflammatory 

markers and HDL profiles in metabolic syndrome (MetS) under carbohydrate restriction. 

We further sought to determine whether egg yolk intake affects peripheral blood 

mononuclear cell (PBMC) inflammation and cholesterol homeostasis in MetS, as HDL and 

its associated lipid transporter ATP-binding cassette transporter A1 (ABCA1) reduce the 

inflammatory potential of leukocytes through modulation of cellular cholesterol content 

and distribution. Thirty-seven men and women classified with MetS consumed a moderate 

carbohydrate-restricted diet (25%–30% of energy) for 12 weeks, in addition to consuming 

either three whole eggs per day (EGG) or the equivalent amount of yolk-free egg substitute 

(SUB). Interestingly, lipopolysaccharide-induced PBMC IL-1β and TNFα secretion 

increased from baseline to week 12 in the SUB group only, despite increases in PBMC 

toll-like receptor 4 (TLR4) mRNA expression in the EGG group. Compared to baseline, 

ABCA1 and 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase mRNA expression 

increased by week 12 in the EGG group only, whereas changes in PBMC total cholesterol 

positively correlated with changes in lipid raft content. Together, these findings suggest 

that intake of whole eggs during carbohydrate restriction alters PBMC inflammation and 

cholesterol homeostasis in MetS. 
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1. Introduction 

Chronic, low-grade inflammation is commonly associated with obesity-related metabolic diseases, and 

is often indicative of organ stress and insufficient resolution of inflammatory immune responses [1–3]. 

Elevated levels of plasma inflammatory markers have been reported in cardiovascular disease (CVD), 

type 2 diabetes mellitus (T2DM), and metabolic syndrome (MetS) [4,5]. These cytokines, chemokines, 

adhesion molecules, and acute phase proteins may be derived from metabolically stressed adipose 

tissue, liver, and skeletal muscle, in addition to activated leukocytes [1–3]. 

Recent studies have specifically focused on the role of leukocytes in contributing to metabolic 

disease progression [6,7], as well as how obesity can affect basic leukocyte properties and function in 

conferring immunity [8]. Multiple studies have demonstrated that factors related to obesity increase the 

basal inflammatory profile of lymphocytes [9,10], in addition to promoting greater pro-inflammatory 

responses upon stimulation and activation [11,12]. The consequences of these actions can include 

altered monocyte and lymphocyte migration and adhesion patterns, impaired immunity, prolonged 

systemic inflammation, and greater difficulty in resolving acute inflammatory responses. These 

changes have further been linked to greater progression of atherosclerosis, arterial dysfunction, adipose 

tissue inflammation and dysfunction, and insulin resistance [7,11,12]. Therefore, it is important that 

therapeutic intervention strategies targeting markers of chronic low-grade inflammation similarly 

address dysregulated leukocyte signaling. 

Dietary and lifestyle therapies that promote weight loss and improved diet quality have been shown 

to effectively ameliorate markers of systemic inflammation, including inflammatory cytokines and 

acute phase proteins such as C-reactive protein (CRP) and lipoprotein-associated serum amyloid A 

(SAA) [13–15]. Moderate weight loss (~5% of body weight) has additionally been shown to reduce 

inflammatory gene expression and nuclear factor κB (NF-κB) DNA binding activity in peripheral 

blood mononuclear cells (PBMC) from obese women [9]. PBMC inflammation is also differentially 

affected by consumption of diets rich in monounsaturated vs. saturated fats [16], and may be reduced 

by intake of antioxidant-rich foods [17]. 

In addition to weight loss and dietary manipulation, the regulation of leukocyte cholesterol flux  

has recently garnered significant attention due to its implications for inflammation, immunity, 

atherosclerosis, and metabolic disease [18–20]. Leukocytes with elevated levels of cholesterol have 

been shown to be more inflammatory and hyperproliferative [18,21,22], which may lead to 

inappropriate inflammatory hyper-responsiveness to stimuli, impaired resolution of inflammation, or 

misguided immune responses. 

HDL-associated lipid transporters, including ATP-binding cassette transporter A1 (ABCA1) and 

ATP-binding cassette G1 (ABCG1), have been shown to play significant roles in the modulation of 

leukocyte cholesterol content. While the anti-atherogenic properties of both ABCA1 and ABCG1 have 

been well documented due to their capacity to participate in the initiation of reverse cholesterol 
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transport through efflux of macrophage foam cell lipids to HDL [23–25], these proteins additionally 

possess the capacity to reduce inflammatory responsiveness through depletion of lymphocyte cholesterol 

content and lipid raft formation [26,27]. Cellular cholesterol depletion impairs the formation of lipid rafts 

within the plasma membrane where transmembrane proteins and receptors such as toll-like receptor 4 

(TLR4) reside, thereby blunting the activation of inflammatory signaling [26–28]. ABCA1 expression in 

leukocytes has additionally been implicated in cellular recruitment and migration, as deletion of 

leukocyte-specific ABCA1 results in more advanced atherosclerotic lesions, as well as increased 

leukocyte counts in the liver, spleen, and peripheral blood [29]. Further, ABCA1 is thought to efflux 

LPS to HDL as a means of neutralizing its inflammatory effects, while also serving as a transport 

system for excretion of LPS from the body via the bile [30–32]. 

With previous findings coming from animal and cell studies, we set out to determine whether the 

dynamics between leukocyte inflammation and cholesterol flux could be altered by diet in human 

subjects classified with MetS—individuals at increased risk for developing CVD and T2DM [33].  

We have previously demonstrated that daily consumption of whole egg during moderate carbohydrate 

restriction exerts favorable effects on inflammatory markers and HDL profiles in MetS. Intake of 

whole eggs for 12 weeks reduced plasma tumor necrosis factor α (TNFα) and SAA [13], in addition to 

altering HDL lipid composition and the ex vivo cholesterol-accepting capacity of subject serum from 

cholesterol-loaded macrophages [34]. These benefits were not observed in subjects consuming egg 

white-based, yolk-free egg substitute, suggesting that these effects are attributable to components 

present in egg yolk. While egg whites contain a variety of bioactive proteins with anti-microbial,  

anti-hypertensive, and antioxidant properties, egg yolks contain various anti-inflammatory factors, 

including the antioxidant carotenoids lutein and zeaxanthin, and a wide range of bioactive 

phospholipid species. [34–36]. Therefore, we sought to determine whether whole egg intake during 

carbohydrate restriction could further modulate inflammatory properties of PBMCs in MetS, and 

whether any observed changes correspond to alterations in cellular cholesterol content and distribution 

in lipid rafts. 

2. Experimental Section 

2.1. Study Design and Dietary Intervention 

Men (n = 12) and women (n = 25) classified with MetS according to the National Cholesterol 

Education Program (NCEP): Adult Treatment Panel (ATP) III criteria [33] were recruited to 

participate in a 12-week parallel, randomized, single-blind intervention study. Inclusion criteria for 

participation included age of 30–70 years old and no history of chronic or metabolic disease.  

All subjects were instructed to follow a moderate carbohydrate-restricted diet (25%–30% of energy 

from carbohydrate, 25%–30% of energy from protein, 45%–50% of energy from fat) throughout the  

12-week intervention, in addition to consuming either three whole eggs per day (EGG group, n = 20) 

or the equivalent amount of egg white-based, yolk-free egg substitute (SUB group, n = 17). 

Assignment to EGG and SUB groups was random, with subjects matched on the basis of age, gender, 

and body mass index. Liquid whole egg (EGG group) and egg substitute (SUB group) products  

(Sysco Corporation, Houston, TX, USA) were provided to subjects on a biweekly basis in coded 
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containers. The daily serving of whole eggs provided 186 kcal, 0 g carbohydrate, 16 g protein, 12 g fat, 

and 534 mg cholesterol, whereas the egg substitute provided 60 kcal, 2 g carbohydrate, 14 g protein,  

0 g fat, and 0 mg cholesterol. Additional details of this intervention have been previously  

described [13,34,35,37]. This study was approved by the Institutional Review Board at the University 

of Connecticut (Protocol #: H10-173). 

2.2. Blood Collection and Body Weight 

Fasting blood samples were collected at baseline and week 12 of the intervention for isolation  

of PBMCs and serum for cell culture assays. All samples were processed under sterile conditions. 

Serum was aliquoted and stored at −80 °C. Body weight was measured biweekly from baseline to 

week 12. As expected with moderate carbohydrate-restriction, average body weight loss in both groups 

was ~4% with no difference between EGG and SUB groups [13]. 

2.3. Peripheral Blood Mononuclear Cell Isolation 

Fasting blood (50 mL) was collected into EDTA vacutainer tubes for isolation of PBMCs at 

baseline and week 12 of the intervention. Due to low blood recovery in four subjects, PBMCs were 

collected from 34 EGG (n = 18) and SUB (n = 15) group participants. PBMCs were isolated by density 

gradient centrifugation using Ficoll Paque PLUS (GE Healthcare, Pittsburgh, PA, USA) according to 

the manufacturer’s instructions. Whole blood was diluted with sterile PBS, layered over Ficoll Paque 

PLUS, and centrifuged at 400× g for 35 min using a Beckman Coulter centrifuge with a swing-bucket 

rotor to separate the PBMC buffy coat. PBMC buffy coats were collected, washed twice with PBS,  

and resuspended in RPMI. Aliquots of freshly isolated PBMCs were taken for collection of RNA,  

nuclear extracts, and whole cell lysates as described below. Remaining cells were diluted 1:1 with 

cryopreservation media (RPMI containing 20% fetal bovine serum, 10% dimethyl sulfoxide) and 

frozen at a controlled rate in CoolCell containers (BioCision, LLC, Larkspur, CA, USA) at −80 °C for 

at least 24 h. PBMC samples were then transferred to liquid nitrogen for long-term storage. PBMC 

recovery from whole blood was not sufficient to conduct every experiment on samples from each 

subject. Sample sizes for each measurement are reported below. 

2.4. Quantitative Real-Time RT-PCR 

PBMC mRNA expression of inflammatory genes was determined by quantitative real-time  

RT-PCR (qRT-PCR) [38,39]. RNA was extracted from freshly isolated PBMCs using TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. One µg of RNA  

was treated with DNase I (Promega, Madison, WI, USA) and reverse transcribed by MMLV reverse 

transcriptase (Promega, Madison, WI, USA) using a Bio-Rad C1000 Thermal Cycler (Bio-Rad, Hercules, 

CA, USA). qRT-PCR analysis was performed using the Sybr Green procedure with a Bio-Rad CFX96 

system (Bio-Rad, Hercules, CA, USA). Primer sequences were designed according to the GenBank 

database, and are presented in Table 1. Expression of mRNA values was calculated using the threshold 

cycle (Ct) value. Relative expression levels of each target gene were calculated using the comparative 

2
−ΔΔCt

 method following normalization to 18S rRNA expression [38–40]. 
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Table 1. Quantitative real-time RT-PCR primer sequences. 

Gene Forward Primer Reverse Primer 

ABCA1 5′-TTTCTCAGACAACACTTGACCAAGTA-3′ 5′-GGTTTTTGTGTAATGAGAGGTCTTTTAA-3′ 

ABCG1 5′-CGGAGGGCAGCTGTGAAC-3′ 5′-GGGTCCTTCAGGAACCGAAT-3′ 

HMGCR 5′-CCCAGTTGTGCGTCTTCCA-3′ 5′-TTCGAGCCAGGCTTTCACTT-3′ 

IL-1β 5′-ACGATGCACCTGTACGATCACT-3′ 5′-CACCAAGCTTTTTTGCTGTGAGT-3′ 

IL-6 5′-GCTGCAGGCACAGAACCA-3′ 5′-GCTGCGCAGAATGAGATGAG-3′ 

LDLR 5′-ACTGGGTTGACTCCAAACTTCAC-3′ 5′-GGTTGCCCCCGTTGACA-3′ 

TLR4 5′-GCAGGTGCTGGATTTATC-3′ 5′-GTAGAGAGGTGGCTTAGG-3′ 

TNFα 5′-GGGACCTCTCTCTAATCA-3′ 5′-CTACAACATGGGCTACAG-3′ 

18S RNA 5′-CGGCTACCACATCCAAGGAA-3′ 5′-GCTGGAATTACCGCGGCT-3′ 

2.5. NF-κB p65 DNA Binding Activity 

Nuclear fractions were collected from freshly isolated PBMCs using a Nuclear Extraction kit 

(Active Motif, Carlsbad, CA, USA) following the manufacturer’s instructions [38,41]. Nuclear 

fractions were stored at −80 °C until analysis. Total nuclear protein was determined by BCA assay 

(Pierce, Rockford, IL, USA), then used to determine the DNA binding activity of the NF-B p65 

subunit using the TransAM
®

 NF-κB p65 Kit (Active Motif, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. Data are presented as the spectrophotometric reading at optical density 

(OD) 450 nm. 

2.6. PBMC Stimulation Assays 

Inflammatory responses to LPS were assessed in a subset of subject PBMCs (EGG: n = 5; SUB: n = 5). 

PBMCs were rapidly thawed in a 37 °C water bath, then quantified and assessed for viability using an 

automated cell counter (Bio-Rad, Hercules, CA, USA) with trypan blue exclusion. Maintenance of 

viability was further confirmed in cultured PBMCs. 2 × 10
6
 viable cells/mL/well were plated in  

12-well plates, then treated with or without lipopolysaccharide (LPS; 500 ng/mL) for 6 hours at 37 °C  

in serum-free RPMI. Media was then collected and assayed for TNFα (BD Biosciences, San Jose,  

CA, USA), IL-1β, and IL-10 (Abcam, Cambridge, MA, USA) by ELISA according to the 

manufacturer’s instructions. 

2.7. Quantification of PBMC Cholesterol Content 

PBMC cholesterol content (EGG: n = 15; SUB: n = 13) was measured by gas chromatography/mass 

spectrometry (GC/MS) using an Agilent 7890 GC/MS equipped with an Agilent HP-5MS capillary 

column with dimensions: 30 m × 0.25 mm (0.25 μm film thickness). PBMC cholesterol was extracted 

by isopropyl alcohol following the addition of 5α-cholestane as an internal standard. PBMC lipids 

were dissolved in hexane prior to injection. Run conditions were: Initial temperature = 150 °C; Temp 

ramp = 15 °C/min to 225 °C (hold for 5 min); Temp ramp = 15 °C/min to 300 °C (hold for 10 min); 

with a total run time of 25 min. Helium was used as the carrier gas. Cholesterol values were 

normalized to total cell protein as determined by BCA assay (Pierce, Rockford, IL, USA). 
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2.8. Quantification of PBMC ABCA1 Protein 

Whole cell lysates were collected from freshly isolated PBMCs (EGG: n = 11; SUB: n = 10) as 

described by Rasmussen et al. [39]. Briefly, following isolation, PBMCs were pelleted and 

resuspended in whole cell lysis buffer (150 mmol/L NaCl, 25 mmol/L Tris-HCL, pH 7.4, 1% Triton  

X-100) containing Protease Inhibitor Cocktail set III (Calbiochem, Darmstadt, Germany) for 20 min 

on ice. Cells were repelleted to collect the supernatant for storage at −80 °C until analysis. ABCA1 

protein content was determined by ELISA (BIOTANG Inc., Waltham, MA, USA). Data are presented 

as ng protein per 1 × 10
6
 cells. 

2.9. Lipid Raft Staining, Microscopy, and Quantification 

Lipid rafts were quantified using the Vybrant Alexa Fluor 488 Lipid Raft Labeling Kit  

(Molecular Probes, Eugene, OR, USA) according to the manufacturer’s instructions. Briefly, 

cryopreserved PBMCs were rapidly thawed at 37 °C, quantified and assessed for viability. 1 × 10
6
 

viable cells were then labeled with a fluorescent cholera toxin subunit B (CT-B)-Alexa Fluor 488 

conjugate, which binds to the pentasaccharide chain of plasma membrane ganglioside GM1 localized 

within lipid raft domains. It has previously been shown that leukocyte lipids rafts are maintained 

following freezing [42]. An anti-CT-B antibody was then added to induce crosslinking of the 

fluorescent conjugate. PBMCs were loaded onto chamber slides to visualize lipid raft fluorescence 

using a Leica TCS SP2 Laser Scanning Confocal microscope (Leica Microsystems Inc., Buffalo 

Grove, IL, USA) and 40X oil objective. Total lipid raft fluorescence was quantified using a fluorescence 

plate reader at excitation 488 and absorbance/emission 495/519, then normalized to cell protein as 

determined by BCA assay (Pierce, Rockford, IL, USA). 

2.10. Statistical Analysis 

All statistical analyses were performed using SPSS version 18. Paired t tests were used to test 

differences between baseline vs. week 12 values within EGG or SUB groups. Independent t tests were 

used to compare the differences in absolute or percent change in variables between groups. Bivariate 

Pearson correlations were used to determine relationships between parameters. Data are reported as 

mean ± SEM unless noted otherwise. P < 0.05 was considered significant. 

3. Results 

3.1. Effects of Egg Intake during Moderate Carbohydrate Restriction on Inflammatory Gene Expression 

We sought to determine whether our dietary intervention modulated inflammatory PBMC gene 

expression. Interestingly, while we did not observe changes in IL-6 (Figure 1B), IL-1β (Figure 1C), or 

TNFα (Figure 1D) mRNA expression in either group, TLR4 mRNA expression increased from 

baseline to week 12 in the EGG group only (Figure 1A). No significant changes in PBMC NF-κB p65 

DNA binding activity were observed in either group (data not shown). 
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Figure 1. Whole egg intake during moderate carbohydrate restriction increases PBMC 

mRNA expression of TLR4. PBMC mRNA expression of pro-inflammatory genes at 

baseline and week 12 of a moderate carbohydrate-restricted diet plus whole egg (n = 18) or 

egg substitute (n = 15) intake. qRT-PCR was used to measure PBMC mRNA expression of 

(A) TLR4; (B) TNFα; (C) IL-1β; and (D) IL-6. All data were normalized to 18S rRNA 

expression and expressed as mean ± SEM. * P = 0.011, paired t test comparing PBMC 

TLR4 mRNA expression between baseline and week 12 in the EGG group. 

 

3.2. Inflammatory Challenge 

We further assessed the inflammatory potential of PBMCs following egg intake during moderate 

carbohydrate restriction by measuring TNFα, IL-1β, and IL-10 secretion in response to LPS stimuli. 

Under basal, non-stimulated conditions, no significant changes in PBMC TNFα (Figure 2A) or IL-1β  

(Figure 2B) production from baseline to week 12 were observed in either group. Conversely, LPS-induced 

PBMC production of TNF and IL-1β were increased from baseline to week 12 in the SUB group, 

whereas no changes in TNFα or IL-1β were observed in the EGG group (Figure 2A,B). No significant 

differences in IL-10 levels were observed under LPS or non-stimulated conditions (data not shown). 
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Figure 2. Egg substitute intake during carbohydrate restriction increases PBMC 

inflammatory responsiveness to LPS. Whole egg (n = 5) and egg substitute (n = 5) intake 

during carbohydrate restriction differentially affected LPS-induced PBMC cytokine 

secretion. (A) ELISA analysis for PBMC TNFα and (B) IL-1β secretion with or without 

stimulation with LPS for 6 h at baseline and week 12 of the dietary intervention. Data are 

represented as mean ± SEM. * P < 0.05, ** P < 0.01; paired t test comparing the difference 

between baseline vs. week 12 in SUB group. 
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mRNA expression were also observed from baseline to week 12 (Figure 3C), whereas no changes in 

ABCG1 (Figure 3B) or LDLR mRNA expression were observed in either group (Figure 3D). 

Figure 3. Egg intake during carbohydrate restriction alters PBMC cholesterol gene  

expression. PBMC expression of cholesterol genes at baseline and week 12 of a moderate 

carbohydrate-restricted diet plus whole egg (n = 18) or egg substitute (n = 15) intake.  

qRT-PCR was used to measure PBMC mRNA expression of (A) ABCA1; (B) ABCG1;  

(C) HMGCR; and (D) LDLR. qRT-PCR data were normalized to 18S rRNA expression. 

Differences between baseline and week 12 determined by paired t test; (E) ABCA1 protein 

was quantified in whole cell lysates collected from freshly isolated PBMCs (EGG: n = 11; 

SUB: n = 10) at baseline and week 12 of the intervention. Data are represented as % 

change in ABCA1 (ng/1 × 10
6
 cells) from baseline to week 12. * P < 0.05; paired t test 

comparing the difference between baseline vs. week 12 in EGG group.
 #

 P = 0.057; 

independent t test comparing the difference in % change in ABCA1 protein expression 

between EGG and SUB groups. 

 

3.4. Effects of Egg Intake on PBMC Cholesterol and Lipid Raft Content 

Total PBMC cholesterol content was measured to determine whether egg consumption altered 

leukocyte cholesterol levels. There was a strong trend towards a decrease in PBMC cholesterol content 

from baseline to week 12 in the EGG group (P = 0.057), whereas no changes in cellular cholesterol 

levels were observed in the SUB group (Figure 4A). No difference in baseline PBMC cholesterol 

content was observed between groups (P = 0.14; data not shown). We further sought to determine 

whether our intervention altered the cellular distribution of cholesterol and lipid raft formation. Lipid 

rafts were labeled with the Vybrant Alexa Fluor 488 Lipid Raft Labeling Kit and visualized using a 

EGG SUB

0

1

2

3

4

Week 0 Week 0 Week 12 Week 12

P = 0.9

P = 0.013

ABCA1
*

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s

io
n

 

EGG SUB

0.0

0.5

1.0

1.5

2.0

2.5

Week 0 Week 0 Week 12 Week 12

P = 0.9

P = 0.010*
HMGCR

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n
 

EGG SUB

0.0

0.5

1.0

1.5

2.0

Week 0 Week 0 Week 12 Week 12

P = 1.0

P = 0.9

ABCG1

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n
 

EGG SUB

0

1

2

3

Week 0 Week 0 Week 12 Week 12

P = 0.7

P = 0.4

LDLR

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n
 

EGG SUB

-5

0

5

10

15

20

25

ABCA1
protein

P = 0.057

#

%
 C

h
a
n

g
e
 i
n

 P
B

M
C

 A
B

C
A

1
 p

ro
te

in
 

(n
g

/1
 x

 1
0

6
 c

e
ll
s
) 
fr

o
m

 b
a
s
e
li
n

e

A

E

B

C D



Nutrients 2014, 6 2659 

 

 

Leica TCS SP2 Laser Scanning Confocal microscope (Figure 4B). Total lipid raft fluorescence was 

quantified using a fluorescence plate reader, and revealed no changes in lipid raft formation from 

baseline to week 12 in either EGG or SUB group (data not shown). However, we found that changes in 

PBMC total cholesterol positively correlated with percent changes in lipid raft content (Figure 4C). 

Figure 4. Effects of egg intake and carbohydrate restriction on PBMC cholesterol and lipid 

raft content. (A) PBMC cholesterol was measured by GC/MS and normalized to cell 

protein. Values are presented as mean ± SEM. 
#
 P = 0.057 for paired t test between 

baseline and week 12 in the EGG group. EGG: n = 15; SUB: n = 13; (B) PBMC lipid rafts 

were labeled with the Vybrant Alexa Fluor 488 Lipid Raft Labeling Kit (Molecular Probes, 

Eugene, OR, USA) and visualized using a Leica TCS SP2 Laser Scanning Confocal 

microscope (Leica Microsystems Inc., Buffalo Grove, IL, USA), 40× oil objective;  

(C) Relationship between percent changes in total lipid raft fluorescence (quantified by 

fluorescence plate reader) and PBMC cholesterol content as determined by Pearson 

correlation. 

 

4. Discussion 

Elevated levels of basal leukocyte inflammation have been demonstrated in obesity and metabolic 

syndrome [9,10,43], and have been implicated in leukocyte-driven progression of metabolic disease [6,7]. 

HDL-leukocyte interactions via ABCA1 further modify cellular cholesterol flux and inflammatory 

potential; therefore, dietary strategies that alter HDL-leukocyte dynamics may have profound  

effects on obesity-related disease progression. Since we have previously demonstrated that bioactive 

nutrient-rich egg yolk improves plasma inflammatory markers and HDL profiles in metabolic 

syndrome (MetS) under carbohydrate restriction, we further sought to determine whether egg yolk 

intake affects peripheral blood mononuclear cell (PBMC) inflammation and cholesterol homeostasis in 

MetS. Interestingly, whole egg intake during carbohydrate restriction did not alter inflammatory 

PBMC responsiveness to LPS, whereas LPS-induced PBMC TNFα and IL-1β secretion was increased 

by moderate carbohydrate restriction and egg substitute intake. These differences were observed 

despite increases in PBMC TLR4 mRNA expression in the whole egg group. We additionally detected 

significant increases in PBMC ABCA1 and HMGCR mRNA expression from whole egg intake only, 

in addition to a trend toward greater increases ABCA1 protein. Further, we observed a positive 

correlation between changes in PBMC cholesterol and lipid raft content. Together, these findings 
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suggest that PBMC inflammation and cholesterol homeostasis can be modulated by egg intake and 

moderate carbohydrate restriction in MetS. 

Previous studies have reported reductions in inflammatory gene expression in PBMCs following 

moderate weight loss [9]. This phenomenon is thought to be indicative of global improvements in 

metabolic tissue stress and function, thereby reducing the presence of pathogenic factors capable of 

activating leukocytes, while also promoting the resolution of inflammatory responses [1,7,9]. 

However, despite moderate weight loss and decreases in plasma TNFα and SAA from whole egg 

consumption in this population [13], we did not observe reductions in PBMC mRNA expression of 

TNFα, IL-1β, or IL-6 from baseline to week 12. Conversely, whole egg intake increased PBMC 

mRNA expression of TLR4—a member of the TLR family of pattern recognition receptors that 

recognizes exogenous and endogenous ligands, including Gram-negative bacteria-derived LPS and 

fatty acids [44]. Although the subjects in this study reduced body weight by an average of ~4% [13],  

it is possible that changes in body weight were not significant enough to alter inflammatory gene 

expression in PBMCs. It is also possible that the moderate carbohydrate-restricted diet, which 

provided 45%–50% of energy from fat [13], blunted any changes in inflammatory gene expression 

associated with weight loss. High-fat diets have been associated with increased PBMC mRNA 

expression of IL-8 [45], higher nuclear NF-κB p65 protein levels [16], and greater TLR4 expression in 

a variety of tissues, including the intestine [46] and adipose tissue [47]. While dietary fat intake did not 

differ between EGG and SUB groups as previously reported [13], it is possible that the fatty acids 

provided by whole eggs were more bioavailable due to the abundance of yolk phospholipids [34,48,49], 

which may have contributed to the EGG group-specific increases in TLR4 mRNA expression in PBMCs. 

Despite observed changes in TLR4 gene expression, our study is limited in that only mRNA levels 

of TLR4 were measured due to a lack of available sample to assess protein levels. While various 

inflammatory factors differentially regulate TLR4 mRNA expression, functional activity of this 

receptor is further regulated at the level of protein translation, cell surface localization, accessory 

molecule availability and expression, and plasma membrane composition [50]. Interestingly, omega-3 

fatty acids have been shown to inhibit LPS- or saturated fatty acid-induced TLR4 activation by altering 

plasma membrane lipid raft composition, thereby preventing the assembly of TLR4 homodimers and 

signaling component complexes that is critical for inflammatory signal transduction [51]. Similar 

impairments in TLR4 signaling have been demonstrated via depletion of cellular cholesterol—an 

important structural component of lipid rafts [22,27]. Therefore, simply observing changes in TLR4 

mRNA expression does not necessarily signify changes in cellular inflammatory potential. 

Accordingly, daily whole egg intake for 12 weeks rendered PBMCs less responsive to LPS-induced 

cytokine secretion when compared to responses from egg substitute consumption during carbohydrate 

restriction. These findings suggest that (1) carbohydrate restriction (in conjunction with egg substitute 

intake) induced greater inflammatory responses upon PBMC stimulation with LPS; and (2) a 

component of the egg yolk blunted increased PBMC responsiveness to LPS induced by carbohydrate 

restriction. Egg yolks contain various anti-inflammatory factors, including the antioxidant carotenoids 

lutein and zeaxanthin, and numerous bioactive phospholipid species [34–36]. Additionally, given the 

changes in HDL composition and the increased cholesterol-accepting capacity of serum from egg 

intake described in previous studies [34,52], we hypothesized that the differences in PBMC 

inflammatory potential between the EGG and SUB groups could be due to changes in cellular 
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cholesterol content, lipid raft formation, and ABCA1 expression. TLR4 signaling is dependent upon 

plasma membrane composition and lipid raft integrity to facilitate the convergence of LPS receptor 

complex components required for LPS/TLR4-mediated inflammatory signaling [50,53]. The inflammatory 

potential of leukocytes is further regulated through modulation of the HDL-associated lipid transporter 

ABCA1, where greater expression of these membrane transporters is known to deplete lipid raft 

cholesterol and suppress TLR4-mediated inflammatory signaling [22,27]. Therefore, it is possible that 

the effects of egg intake during carbohydrate restriction on PBMC inflammatory potential may be 

attributable to alterations in HDL-leukocyte dynamics. 

Correspondingly, we observed that egg consumption trended toward decreasing PBMC cholesterol 

content after 12 weeks with concomitant increases in ABCA1 expression. In addition to EGG  

group-specific increases in ABCA1 mRNA expression, we additionally observed increased PBMC 

mRNA expression of HMGCR in the EGG group only, whereas no changes in ABCG1 or LDLR were 

observed in either EGG or SUB group. While the change in PBMC cholesterol content in the EGG 

group did not reach significance (P = 0.057), slight shifts in cellular content or compartmentalization 

may explain the observed increase in HMGCR mRNA expression, traditionally driven by sterol 

regulatory element binding protein-2 (SREBP2)-mediated activation in response to reduced cellular 

cholesterol levels [54]. 

Increased ABCA1 mRNA expression observed in this study may be due to the improved metabolic 

and inflammatory milieu from egg intake during moderate carbohydrate restriction. ABCA1 

expression is reduced in patients with obesity-related metabolic diseases such as hypertension and 

T2DM [55,56], mouse models of insulin resistance and diabetes [57], and by pro-inflammatory 

mediators such as TNFα and CRP [58,59]. We have previously demonstrated that whole egg intake 

during moderate carbohydrate restriction reduces TNFα and SAA in this same MetS population [13], 

whereas no changes were observed in the group consuming egg substitute. Further, insulin resistance 

(HOMA-IR) was reduced to a greater extent in subjects consuming whole eggs [37]. Together, these 

findings suggest that whole egg intake during moderate carbohydrate restriction promotes global 

metabolic improvements that favors ABCA1 expression. 

ABCA1 has repeatedly been shown to serve as a link between cellular cholesterol flux and 

inflammatory potential. Landry et al. [60] demonstrated that ABCA1 expression leads to significant 

redistribution of cholesterol and sphingomyelin from lipid rafts to non-raft regions of cell membranes 

through its ATPase-related and efflux functions [60]. Cholesterol serves as an essential structural 

component of lipid rafts, which are dynamic cholesterol-rich microdomains within the exoplasmic 

leaflets of the phospholipid bilayer of plasma membranes where transmembrane proteins and  

receptors reside—including pattern recognition receptors such as TLR4 [28]. Elevated levels of cellular  

cholesterol favor the formation of lipid rafts, and have been associated with increased pro-inflammatory 

responses in macrophages and T lymphocytes due to lowered cellular activation thresholds [18,21,22]. 

ABCA1-mediated reductions in lipid raft content have been shown to increase ADAM17-mediated 

cleavage of TNF and TNF receptors, which may result in reduced TNFα signaling [61]. Lipid raft 

structure also affects TLR signaling, as TLR4 and MyD88/TRIF-mediated inflammatory gene 

expression was significantly increased in peritoneal macrophages isolated from ABCA1
−/−

, ABCG1
−/−

, 

and ABCA1
−/−

ABCG1
−/−

 mice [19]. ApoA-I-ABCA1 interactions have also been shown to trigger 

JAK2-mediated activation of STAT3, which can suppress LPS-induced pro-inflammatory gene 
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expression of TNFα and IL-6 in macrophages [62,63]. Interestingly, changes in PBMC cholesterol 

levels between baseline and week 12 positively correlated with percent changes in PBMC lipid raft 

content. This is the first study to our knowledge that has investigated the effects of diet on leukocyte 

lipid rafts within the context of human intervention trials. Together, these findings further support our 

observations that egg intake concomitantly increases ABCA1 expression while blunting the increases 

in LPS-induced cytokine secretion from carbohydrate restriction. 

5. Conclusions 

We have demonstrated that whole egg intake during moderate carbohydrate restriction alters  

PBMC inflammation and cholesterol homeostasis. The data presented in this study highlight a novel 

perspective on the anti-inflammatory and lipid-modulating properties of this dietary intervention. 

Given the significant role of leukocytes in immunity and chronic disease, regulation of cellular 

cholesterol flux and lipid raft formation may have important implications for the physiological 

consequences of obesity. Therefore, our findings support the need for future studies to determine the 

clinical consequences of our observations in relation to metabolic disease progression and immunity. 
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