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Introduction
Identifying the underlying cause of foot and ankle pain 
can be challenging due to the complex anatomy and 
function of the foot and ankle.[1] Conventional imaging 
including plain radiography, ultrasound, computed 
tomography (CT), and magnetic resonance imaging 
(MRI) is frequently required as an adjunct to clinical 
assessment to guide further management. Following initial 
radiographic assessment, MRI is often favored due to its 

superior soft-tissue contrast and ability to demonstrate 
osseous abnormalities.[2,3] Earlier studies attempted to use 
technetium-99m methylene diphosphonate (Tc-99m MDP) 
bone scintigraphy to identify pathological changes in bone 
metabolism related to foot and ankle pain. Although 
sensitive, the low spatial resolution made it difficult to 
accurately localize the areas of abnormal uptake and 
correlate findings with radiological studies.[1] Tc-99m 
MDP single-photon emission computed tomography/
CT (SPECT/CT) overcomes this problem, allowing 
accurate localization of abnormal bone metabolism 
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by fusing these data with corresponding CT images. 
A number of potential applications have been described 
in the foot and ankle, including imaging of osteoarthritis 
(OA), stress fractures, tarsal coalition, sesamoiditis, 
osteochondral lesions (OCLs), tendonitis, plantar fasciitis, 
and impingement syndromes.[4-6] As a result, there has 
been growing interest in Tc-99m MDP SPECT/CT with 
a number of studies evaluating the impact of SPECT/CT 
on the investigation and management of foot and ankle 
pain.[7-12] The purpose of this review is to highlight the 
advantages of this modality and describe the appearances 
of common pathologies that may be encountered when 
performing Tc-99m MDP SPECT/CT in patients with foot 
and ankle pain.

Added Value of Single-photon 
Emission Computed Tomography/

Computed Tomography
Many studies have reported the advantages of SPECT/
CT over planar or SPECT imaging with either more 
accurate localization or additional sites of uptake 
identified [Table 1].[7,8,10] In a small group of 25 patients, 
Mohan et al. found that the SPECT/CT study provided 
additional information compared to planar scintigraphy 
in 20/25 (80%) patients, with more accurate pathology 
localization in 16/25 (64%) and new abnormalities in 10/25 
(40%) patients.[7] Similarly, Gnanasegaran et al. reported 
additional information from the SPECT/CT study in 
25/31 (81%) patients with foot and ankle pathology.[8] In 
a cohort of patients with impingement syndromes and 
soft‑tissue pathology, improvement in localization and 
characterization of uptake with SPECT/CT was reported in 
76% (31/43) patients when compared to clinical assessment 
and conventional two-phase bone scan.[10]

Additional information derived from SPECT/CT may lead 
to revision of the initial diagnosis and subsequent change to 
the management plan [Table 1].[6‑12,16,17] Mohan et al. reported 
that SPECT/CT influenced management in 10/19 (53%) 

patients in whom follow-up data were available.[7] Similarly, 
Gnanasegaran et al. reported a change in management in 
62% of patients based on additional diagnostic information 
provided by SPECT/CT.[8] More recently, a study of 52 
patients with degenerative joint disease of the foot and 
ankle suggested a difference in the site responsible for the 
patient’s symptoms in 23 (44%) patients following SPECT/
CT when compared to initial assessment based on history, 
examination, and radiographs. Following input from 
orthopedic surgeons, the site of intra‑articular injection 
was modified in 19/23 cases based on the SPECT/CT 
findings.[16] A larger discrepancy between SPECT/CT and 
the initial diagnosis based on clinical examination and plain 
radiography was reported by Singh et al. in 39/50 (78%) 
cases. Although the cohort was limited to patients where 
there was continued diagnostic uncertainty following 
initial evaluation, the study still highlights the added 
value of SPECT/CT as a problem-solving tool in these 
patients. Most of the cases where there was disagreement 
between initial assessment and SPECT/CT were related 
to difficulties identifying osteoarthritic joints within 
the mid-foot on initial evaluation.[11] This has also been 
reported by other authors.[9,12] Kretzschmar et al. reported 
disagreement between clinical assessment and SPECT/CT 
findings in 16/30 (53%) cases. Of these cases, disagreement 
was recorded in all 9 patients with mid-food symptoms 
compared to only 7/21 (33%) patients with hindfoot 
pathology.[9] Similarly, Claassen et al. found that changes 
in diagnoses and symptomatic improvement following 
SPECT/CT-guided treatment were more frequent in 
the more complex Chopart and Lisfranc joints when a 
subgroup analysis was performed for different regions of 
the foot and ankle.[12]

Single-photon Emission Computed 
Tomography/Computed Tomography 
Guided Local Anesthetic Injections

The complex anatomy of the foot and ankle can make it 
challenging to localize the source of symptoms.[18] Local 

Table 1: Added value of single‑photon emission computed tomography/computed tomography
Number of 

patients
Additional 

information (%)
Change 

management (%)
Symptomatic 

improvement (%)
Other

Mohan et al., 2007[7] 25 80 53 Intraobserver reliability κ=0.86
Interobserver agreement κ=0.92Gnanasegaran et al., 2008[8] 31 81 62

Pagenstert et al., 2009[13] 20
Kretzschmar et al., 2010[9] 30 53 90
Wiewiorski et al., 2011[14] 15 100
Leumann 2011[17] 25 48
Meftah et al., 2011[6] 22 100
Chicklore et al., 2013[10] 43 72 56
Singh et al., 2013[11] 50 78 92
Claassen et al., 2014[12] 86 69 93
Parthipun et al., 2015[16] 52 37 90
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anesthetic injections have long been used as a diagnostic 
tool to help identify the source of symptoms in patients 
with foot and ankle pain and differentiate between pain 
arising from an articulation and the adjacent soft tissues. 
Accurate localization of symptoms is important to help 
guide subsequent management including arthrodesis 
of the symptomatic arthritic joint.[18-21] Poor correlation 
between radiographic and CT findings, and response 
to local anesthetic injection, has been reported. This 
emphasizes the difficultly in determining the source 
of symptoms when relying on radiological changes 
alone.[18,19]

A number of studies have demonstrated significant 
symptomatic improvement when local anesthetic 
injection has been directed by SPECT‑CT findings.[9,11,16] 
In a study of thirty patients with chronic foot pain, 27 
(90%) reported reduction in pain intensity of 50% or more 
immediately post-CT-guided local anesthetic injection 
by targeting the most active SPECT/CT structures. 
Interestingly, when cases were subdivided, there were 
higher response rates in 25/26 (96%) cases where uptake 
and injections were centered on an articulation compared 
to 2/4 cases where uptake was centered on bone and 
the periosseous soft tissues were infiltrated. Both the 
patients who failed to respond to periosseous injection 
demonstrated bone-centered uptake after calcaneal 
osteotomies. The authors suggested that the osseous 
uptake may have been an asymptomatic postsurgical 
finding, which could have explained the poor response 
to treatment.[9] A similar improvement in symptoms 
was also reported in a subset of 25/26 (96%) patients 
from a larger study of fifty patients who received 
SPECT/CT-guided local anesthetic and steroid intra-
articular injection.[11] More recently, a study consisting 
of patients with degenerative joint disease also described 
symptomatic improvement, with an improvement in 
visual analog score (VAS) of at least 50% in 43/48 (90%) 
patients where injection was performed for the most avid 
joints depicted by SPECT/CT.[16] In four cases where the 
clinician disagreed with the SPECT/CT findings, local 
anesthetic injection was injected into a joint, different to 
that indicated by SPECT/CT. Three of these four patients 
also responded to the injection.[16]

Fluoroscopic guidance is commonly used to guide 
intra-articular local anesthetic and steroid injections. 
However, this can prove difficult when there is 
significant anatomical distortion following previous 
fracture or OA.[19,22,23] CT guidance provides a useful 
alternative in these difficult cases with a high success 
rate described.[23] SPECT-CT offers the advantage 
of providing a road map of the joint to be injected, 
highlighting any potential difficulty which may favor 
the use of CT over fluoroscopic guidance. False‑positive 

results may occur from communications between 
joints of the foot[24] which could lead to spreading of 
intra-articular steroid and local anesthetic to other 
joints. Therefore, addition of a contrast medium may 
help identify the spread of the injectate and visualize 
communication between joints which may affect results.

The reported response rates for SPECT/CT-guided 
local anesthetic injection were higher (90%–96%) when 
compared to a previous study (57%) where CT‑guided 
injections were performed for patients referred from a 
foot and ankle clinic presumably following initial clinical 
and radiographic assessment before consideration 
of arthrodesis.[23] Based on a successful response to 
SPECT/CT‑guided treatment in 96% of patients, Singh 
et al. discussed the potential use of SPECT/CT as a 
replacement for arthrographic injection. However, the 
authors highlighted the therapeutic benefit in 15/26 
patients who had improvement in symptoms following 
the local anesthetic and steroid injection without a need 
for further intervention. The total length of follow-up 
was not specified for this group of patients.[11]

Technetium-99m-labeled 
Diphosphonate Uptake Mechanism

Bone is composed of cells held within a matrix 
comprising organic and inorganic components. 
Osteoblasts secrete osteoid which forms the organic 
matrix that is later mineralized by hydroxyapatite 
crystals.[25] Following intravenous administration, 
Tc-99m-labeled diphosphonates bind to hydroxyapatite 
crystals by chemisorption which depends on regional 
blood flow and osteoblastic activity.[26,27] Tc-99m-labeled 
diphosphonate uptake, therefore, serves as a marker 
of pathological changes in vascularity and osteoblastic 
activity.

Osteoarthritis
Previous trauma is the most common cause of ankle 
OA, affecting a younger subgroup of patients compared 
to primary ankle OA.[28] Radiographic changes of OA 
are well documented and comprise four key features: 
loss of joint space, subchondral cysts, osteophytes, 
and subchondral sclerosis.[29] CT enables tomographic 
assessment which can aid visualization of these 
changes.[30]

Cartilage thickness and therefore joint space reduces with 
age. This occurs due to wear of collagen fibers within 
the cartilage and abnormal hydrophilic proteoglycan 
molecule formation by chondrocytes, which prevents 
retention of water molecules within cartilage with 
subsequent loss of chondral thickness. When the articular 
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cartilage is disrupted, fissures can form which may 
permit passage of joint fluid into subchondral bone 
under pressure and result in subchondral cysts evident 
on imaging.[31] Osteophytes result from endochondral 
ossification of cartilaginous proliferation at the bone – 
articular cartilage interface of a joint in response to joint 
instability.[31,32] Radiologically evident subchondral 
sclerosis may be present due to bone remodeling in 
response to changes in mechanical stress as described by 
Wolff’s law.[33] It has also been suggested that increased 
bone formation may be an important feature in the 
pathophysiology of OA based on the association between 
increased bone mineral density and osteophytosis.[15,34]

Remodeling of cartilage and bone at the cellular level 
with osteoblast activation are some of the earliest features 
of OA.[32] Subchondral osteoblasts have an important 
role in the progression of OA[32,34] with increased uptake 
reported to be predictive of joint space and therefore 
cartilage loss.[35] Increased levels of technetium-labeled 
diphosphonate uptake have also been shown to correlate 
with the severity of radiographic changes.[36]

More recently, Paul et al. correlated the SPECT/CT and 
histologic findings in patients with end‑stage ankle 
OA.[37] Abnormal bone remodeling in OA leads to an 
abundance of unmineralized osteoid and collagen.[34,38] 
These pathological changes in subchondral bone were 
found in areas of increased Tc‑99m 3,3‑diphosphono‑
1,2‑propanodicarboxylicacid (DPD) uptake on SPECT/
CT, in which active osteoblasts and increased randomly 
organized collagen fibers were observed.[37]

SPECT/CT is increasingly used to assess degenerative 
changes in the foot and ankle given the added anatomical 
information and improved uptake localization.

Pagenstert et al. found that mean interobserver and 
intraobserver reliability was significantly higher for the 
assessment of degenerative joint disease with SPECT/
CT than CT alone, bone scintigraphy, or CT and bone 
scintigraphy in combination. When subgrouped according 
to anatomical regions of the foot, a significant improvement 
in interobserver reliability was only described for SPECT/
CT when compared to the combined use of CT and bone 
scintigraphy for the naviculocuneiform and tarsometatarsal 
joints, supporting its use for more complex joints where 
anatomical localization may prove difficult [Figure 1]. 
The authors also evaluated differences in intraobserver 
reliability for different levels of training, including a 
musculoskeletal radiologist, orthopedic consultants, and 
residents. In contrast to the other methods of uptake 
localization, a significant difference in intraobserver 
reliability was not present between radiologists and 
orthopedic residents for SPECT/CT, suggesting the 
modality lends itself well to less experienced readers.[13]

The correlation between pain and increased uptake of 
99mTc-labeled diphosphonates has long been described.[39] 
Kim et al. observed a correlation between uptake of 99mTc-
MDP and knee symptoms, as measured by VAS and 
Western Ontario and McMaster Universities Arthritis 
Index score in a small group of thirty patients with 
knee OA.[40] An association between pain and pattern of 
uptake was also described by McCrae et al. in a group of 
100 patients with knee OA with a generalized pattern of 
uptake found to correlate with pain (odds ratio 45.1).[36]

More recently, SPECT/CT has been used to guide intra‑
articular injections in the foot and ankle with improvement 
in VAS reported in 90%–96% of patients.[9,11,16]

Alignment
SPECT/CT has also been used to investigate the 
relationship between Tc-99m DPD uptake and hindfoot 
alignment. Although the degree of malalignment 
did not correlate with uptake on conventional planar 
scintigraphy, Knupp et al observed a relationship 
between alignment and ankle zone uptake measured by 
SPECT‑CT. Significantly increased medial zone uptake 
and lateral zone uptake was evident in varus and valgus 
deformities, respectively, suggesting the ability of SPECT‑
CT to identify pathologically increased metabolism in 
response to eccentric loading of the malaligned ankle.[41]

Osteochondral Lesions
In the ankle, the term OCL is used to describe lesions 
involving articular cartilage and the subchondral bone of 
the talus or tibial plafond.[42] Although several etiologies 
have been suggested, a previous history of trauma is 
often present.[43] Two main lesion patterns have been 
described involving the anterosuperior aspect of the 
lateral talar dome and the posterosuperior aspect of 

Figure 1: Moderate degenerative change of the right 
naviculocuneiform joint in a 66-year-old female. Axial computed 

tomography and fused technetium-99m methylene diphosphonate 
single-photon emission computed tomography/computed 

tomography images show subchondral sclerosis with mild irregularity 
of the joint margins and corresponding increased uptake of tracer at 
the articulation between the navicular and intermediate cuneiform
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the medial talar dome.[43] Based on the radiographic 
appearances, Berndt and Hardy initially described a 
four‑stage classification of OCLs: (1) compression injury, 
(2) avulsion of an undisplaced chip of bone, (3) detached 
but undisplaced lesion, and (4) detached and displaced 
fragment.[44] Although useful for initial assessment, 
OCLs can be radiographically occult with only 50% of 
OCLs identified in a previous study.[45] Early studies 
have emphasized the added value of bone scintigraphy 
to improve sensitivity and CT to improve localization 
and evaluation of OCLs.[45,46] When assessing OCLs with 
CT, Loomer et al. found a radiolucent fibrous lesion in 
77% of cases which led them to propose an additional 
5th grade to be incorporated into the initial classification 
described by Berndt and Harty.[45] MRI is often favored 
for the assessment of OCLs with the added advantage 
of assessing the integrity of the overlying cartilage 
and stability of the lesion based on the presence of 
circumferential high T2 signal.[47,48] More recently, studies 
have compared SPECT/CT and MRI for the assessment 
of OCLs. Meftah et al. reviewed MRI and SPECT/CT 
imaging in 22 patients with OCLs to determine the 
added value of SPECT/CT. Although MRI confirmed 
the presence of OCLs, SPECT/CT was felt to aid the 
decision to proceed to surgery and have a significant 
impact on the surgical approach. In particular, SPECT/
CT improved preoperative planning by establishing the 
most active foci to be targeted in large or multiple lesions. 
In addition, SPECT/CT was felt to demonstrate the 
depth of lesions more accurately than the bone marrow 
signal changes present on the corresponding MR studies. 
Ten patients were managed conservatively as SPECT/
CT demonstrated minimal or absent OCL uptake, or a 
separate focus of uptake despite the presence of OCLs 
or subchondral edema on MRI. In the four cases where 
a separate focus of uptake was evident on SPECT/CT, 
the MRI demonstrated no corresponding abnormality. 
The authors also described the benefits of SPECT/CT 
for evaluating early OCLs where pronounced SPECT/
CT activity was observed in the presence of minimal 
subchondral edema on MRI.[6] The impact of SPECT/CT 
and MRI on the management of chronic OCLs has also 
been evaluated. When compared to MRI alone, SPECT/
CT resulted in a change to the treatment plan in 48% of 
cases. This increased to 52% when MRI and SPECT/
CT findings were evaluated together compared to MRI 
alone. Interestingly, the only good correlation between 
modalities was for the assessment of articular cartilage. 
Interpretation of other features of the OCL including 
the subchondral bone plate demonstrated substantial 
variation between modalities.[17] Similarly, discrepancies 
were also noted between the area of increased tracer 
uptake and bone marrow edema, a finding also described 
by other authors [Figure 2 a and b].[6,49] The authors 
suggested that the poor intraobserver correlation 
highlighted the differences in information provided by 

both modalities, supported by the change in treatment 
decision when interpreting both studies in combination.

SPECT/CT has also been used to evaluate patients 
following osteochondral autologous transplantation 
and revision procedures for the treatment of OCLs.[50,51] 
The authors described the use of SPECT/CT to assess 
the disruption of the subchondral plate, cyst formation, 
osseous bridging, and uptake surrounding the graft. 
Increased uptake was observed due to increased 
remodeling related to failed osseous integration[14] or in 
the setting of subchondral bone plate instability.[50]

More recently, SPECT/CT has been used to direct 
CT-guided local anesthetic injections in symptomatic 
patients demonstrating OCL uptake with all patients 
experiencing immediate improvement in symptoms 
(≥50% reduction in VAS) postprocedurely.[14]

Stress Fractures
Stress fractures occur more commonly in the lower 
extremity in seemingly normal bone subjected to 
unaccustomed stress and physical activity.[52]

Many classifications for stress fractures have been 
described. Wilson and Katz described 4 radiographic 
patterns: Type I, only fracture line demonstrable; Type II, 
focal sclerosis with endosteal callus; Type III, periosteal 

Figure 2: Lateral talar dome osteochondral lesion in a 32-year-old 
male. (a) Coronal fused technetium-99m methylene diphosphonate 

single-photon emission computed tomography/computed 
tomography image demonstrates a subchondral lucency in keeping 
with Type 5 lesion as described by Loomer et al. with surrounding 
increased uptake of tracer. The subchondral bone plate appears 

intact. (b) Coronal short tau inversion recovery image demonstrates 
a subchondral abnormality which correlates with the site of the 

lucency seen on the corresponding single-photon emission 
computed tomography/computed tomography image. Note the 

discrepancy between the area of increased uptake on (a) single-
photon emission computed tomography/computed tomography and 
high signal marrow edema on the (b) magnetic resonance imaging

ba
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reaction and external callus; and Type IV, mixed 
combinations of the above.[52] 99mTc bone scintigraphy 
allows visualization of early physiological changes 
enabling stress fractures to be identified weeks before 
radiographic changes.[53] Initially, when the fracture is 
2–4 weeks old, increased uptake on the early and blood 
pool phases may also be seen which is likely to represent 
acute inflammation and angiogenesis related to trauma 
and subsequent healing.[54] Tracer accumulation has also 
been demonstrated in areas of increased stress and bone 
remodeling in the absence of a fracture.[53] In a recent study 
comparing imaging appearances of early tibial stress 
injuries, Gaeta et al. found MRI (88%) to be more sensitive 
than CT (42%) and bone scintigraphy (74%). However, 
CT was able to better evaluate cortical osteopenia related 
to early cortical bone fatigue.[55] The combination of 
metabolic information in addition to the structural detail 
to depict features such as cortical osteopenia may make 
SPECT/CT a useful modality to evaluate early tibial stress 
injury. Although sensitive, planar scintigraphy lacks 
specificity[56] and has demonstrated false-positive uptake 
in the lower extremities of asymptomatic young athletes.[57] 
This may be less problematic for SPECT/CT with the 
CT component, allowing assessment of any coexisting 
structural abnormality and improving uptake localization.

As Wolff’s law describes, changes to internal architecture 
and configuration occur in response to changes in 
mechanical stress. The histologic changes in response to 
bone stress in an animal model have been described in 
detail by Li et al.[58] Initial changes include congestion and 
dilatation of the Haversian canal vasculature followed 
by osteoclastic resorption and cavity formation, findings 
which correlate with the early cortical changes on CT 
and MRI described by Gaeta et al.[55]

Small numbers of osteoblasts are present within the 
cavities, which are slowly filled with lamellar bone in 
a reparative response. During this time, the periosteum 
thickens with an abundance of capillaries, subperiosteal 
osteoblastic activity, and new woven bone formation.[58] 
Microscopic fractures of the cancellous bone appear 
which, despite osteoblastic new bone formation, may 
propagate into a stress fracture in the presence of 
continued stress.[58‑60] The increased vascularity and 
osteoblastic remodeling explain the increased uptake seen 
in early tibial stress injury and stress fractures [Figure 3].

Coalition
Tarsal coalition describes the fusion of two or more 
tarsal bones, which may be osseous (synostosis), fibrous 
(syndesmosis), or cartilaginous (synchondrosis).[61]

Although acquired coalition may occur secondary to 
trauma, inflammatory arthropathies, joint degeneration, 

and infection, congenital tarsal coalition remains the 
most common form. Calcaneonavicular and talocalcaneal 
coalition involving the middle facet of the joint have been 
reported as the most common types of congenital tarsal 
coalition.[62] Coalition occurs from failure of segmentation 
of the primitive mesenchyme, a finding supported by 
previous fetal studies.[63‑65]

The radiographic features of tarsal coalition are 
well described in the radiology literature. [66,67] In 
addition to visualizing these changes, CT may also 
provide valuable information regarding the extent of 
the coalition, associated degenerative changes, and 
regional anatomy, useful for surgical planning.[68,69] 
Osseous coalition would be apparent on CT as an 
osseous bar communicating between the tarsal bones 
with bridging trabeculae and cortex. Fibrous or 
cartilaginous calcaneonavicular coalition may appear 
as approximation of the calcaneal and navicular cortices 
with sclerosis and irregularity of the margins. In 
addition, axial CT images may demonstrate broadening 
of the medial aspect of the anterior and dorsal calcaneus 
adjacent to the navicular [Figure 4].[66,69] Similar 
findings are also described in fibrous or cartilaginous 
talocalcaneal coalition.[67] However, in a study of a small 
group of patients correlating imaging findings with 
surgical specimens, CT was found to underestimate 
the presence of fibrous coalition when compared to 
MRI. Although CT can demonstrate detailed bony 
anatomy, it lacks the contrast resolution required to 
appreciate the fibrous component of a coalition,[70] 
when compared to MR where the signal characteristics 
of the coalition help discriminate between fibrous and 

Figure 3: Distal tibial stress fracture in a 48-year-old female. 
Coronal computed tomography image demonstrates a cortical 

lucency through the medial aspect of the distal tibia with a subtle 
periosteal reaction (arrow). The fused technetium-99m methylene 

diphosphonate single-photon emission computed tomography/
computed tomography image shows associated increased 

technetium-99m methylene diphosphonate uptake in keeping with 
osseous remodeling
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cartilaginous coalition.[71] Abnormal subtalar motion 
related to talocalcaneal coalition may also result in 
additional imaging findings. A bony projection, known 
as a talar beak, has been described in the region of 
the talar ridge, the site of insertion of the talocrural 
joint capsule and talonavicular ligament.[72] It has 
been suggested that abnormal subtalar joint motion in 
talocalcaneal coalition may result in excessive traction at 
the talonavicular ligament insertion on the talus leading 
to periosteal elevation and new bone formation.[66] The 
importance of the coronal plane has been stressed to 
best evaluate talocalcaneal coalition.[71] In particular, 
the coronal plane allows evaluation of the position 
of the articulation of the middle facet and the inferior 
margin of the sustentaculum tali which has a more 
horizontal orientation in patients with coalition than 
the superomedial angulation that is normally seen. This, 
in addition to the valgus angulation of the calcaneus in 
cases of talocalcaneal coalition, results in the C sign seen 
on the lateral radiograph described by Lateur et al.[73] 

Impingement between the lateral process of the talusand 
adjacent calcaneus, with  broadening orrounding of the 
lateral process of the talus related to calcaneal valgus 
angulation has also been described.[66,67] Degenerative 
changes with narrowing of the posteriortalocalcaneal 
facet may also be present.[66,67,74]

Accumulation of 99mTc MDP has been described in 
patients with coalition and foot and ankle pain.[75‑77] De 
Lima and Mishkin suggested that increased uptake in 
the region of the coalition may be related to increased 
bone remodeling related to abnormal force vectors, 
whereas Goldman et al. suggested that the lack of motion 
at the site of the coalition would cause a lack of bone 
turnover and the increased uptake seen was likely to be 
explained by abnormal forces at the articular surfaces 
of the joints adjacent to the site of fusion. However, 

histological studies have demonstrated features of 
repetitive mechanical stress at the bone-coalition 
interface, with microfractures, osteoblastic activity, bone 
remodeling, and degenerative changes, in patients with 
nonosseous coalition,[78] which is likely to result in tracer 
accumulation at the coalition site [Figure 4]. Goldman 
et al. also identified increased uptake in the region of the 
superior talus and talonavicular joint. This was attributed 
to the overriding of the navicular on the talus and the 
talar beak,[75] which is attributed to to relate to new bone 
formation relating to traction from the talonavicular 
ligament.

Sesamoids
The medial and lateral sesamoids are embedded in the 
tendons of the medial and lateral heads of the flexor 
hallucis brevis muscle. In addition, the medial sesamoid 
also receives attachments from the abductor hallucis and 
the lateral sesamoid from the oblique and transverse heads 
of adductor hallucis.[79] The sesamoids are believed to have 
a similar function to the patella, providing a mechanical 
advantage by increasing leverage and modifying forces 
from the adjacent musculature.[80] The sesamoids are 
susceptible to acute trauma, chronic weight‑bearing 
stresses, and can be affected by a range of other pathologies 
which include intra-articular disease processes.[79,81]

Acute fractures are rare and typically involve direct 
trauma or forced dorsiflexion, with the medial sesamoid 
more frequently involved.[79,82] The failure of ossification 
centers to fuse can result in partite sesamoids, again 
more commonly seen involving the medial sesamoid, 
which may be confused with fractures.[79,80] However, 
features have been described which favor the diagnosis 
of a fracture including the degree of separation and 
irregularity of the margins.[82,83] Skeletal scintigraphy 
has been used to localize abnormal bone metabolism 
and aid in the diagnosis of sesamoid pathology.[84] 
Previous studies have demonstrated increased uptake in 
acute sesamoid fractures later confirmed at surgery, in 
contrast to normal bipartite sesamoids which typically 
do not accumulate tracer.[1] CT is a useful modality to 
provide further detail regarding fracture fragments, bony 
alignment, and malunion.[81]

Sesamoiditis has been used to describe a painful 
inflammatory process with edematous marrow and 
soft-tissue changes on MRI and increased uptake of 
radiotracer.[85,86] However, the definition varies in the 
literature, and more recently, has been described as 
generic term encompassing several pathological processes 
including chronic repetitive stress, avascular necrosis, 
chondrosis, and joint degeneration.[84,87] Bone scintigraphy 
has proved to be useful in this group of disorders,[84,87‑90] 
helping to localize pathological uptake to the sesamoids 

Figure 4: Calcaneonavicular coalition in a 37-year-old male. Sagittal 
computed tomography and fused technetium-99m methylene 

diphosphonate single-photon emission computed tomography/
computed tomography images demonstrate approximation of the 
calcaneal and navicular cortices with broadening of the anterior 

process of the calcaneus in keeping with fibrocartilaginous coalition. 
Increased uptake is seen in the region of the coalition on the fused 
images in keeping with mechanical stress and bone remodeling at 

the bone-coalition interface
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before radiographic changes.[84,91] Although the sensitivity 
may be superior to other modalities, uptake alone does 
not reliably differentiate between pathologies[90] and has 
been identified in asymptomatic patients.[92] In these 
cases, the CT component of the SPECT/CT study may 
add value to help demonstrate pathological changes in 
the appearances of the sesamoids.[90] Stress fractures of 
the sesamoids have been described following strenuous 
exercise in the absence of acute trauma[80] which can be 
identified by increased uptake on bone scintigraphy.[93] 
Like stress fractures elsewhere in the foot and ankle, 
SPECT/CT may be a useful modality to demonstrate 
changes in structure and bone remodeling [Figure 5].

Increased Tc-99m MDP uptake in the presence of 
sclerosis and fragmentation on plain radiography has 
been described in histologically confirmed sesamoid 
osteonecrosis. Specimens demonstrated new bone 
formation related to necrotic trabeculae and degenerative 
changes of the articular cartilage,[91,94] both of which could 
contribute to increased uptake of tracer. The superior 
localization of SPECT/CT may help differentiate between 
new bone formation within the necrotic sesamoid and 
degenerative uptake at the articular margins.

Given that the hallux sesamoids form part of a synovial 
articulation, they can also be involved in degenerative and 
inflammatory arthropathies. Erosions have been described 
in rheumatoid, crystal, and seronegative arthropathies.
[95] Periostitis and enthesopathy of the sesamoids in 
seronegative arthropathies have also been described with 
periosteal and entheseal new bone formation causing a 
whiskering appearance of the sesamoid margins.[85,95,96]

Accessory Ossicles
Accessory ossicles arise from unfused accessory 
ossification centers and appear as small, mature ossific 

foci adjacent to the main parent bone.[97,98] Although 
often asymptomatic and noted as an incidental finding, 
accessory ossicles may be mistaken for fractures and 
can become symptomatic.[97] Several accessory ossicles 
have been described in the foot. The accessory navicular 
and os trigonum are among the most common[90] and 
may be subject to degenerative and stress-related 
changes at the synchondrosis.[99] Three types of 
accessory naviculars have been described: Type 1 is 
a sesamoid bone located within the distal posterior 
tibial tendon; Type II is an accessory ossification 
center, connected to the navicular by a cartilaginous 
synchondrosis; and Type III is an enlarged medial 
tuberosity of the navicular, also described as 
a cornuate navicular.[100] The Type II accessory 
navicular may become symptomatic due to stress 
across the synchondrosis.[101] Histological analysis 
of surgically resected specimens from patients with 
symptomatic accessory naviculars has demonstrated 
chondro-osseous changes at the synchondrosis in 
keeping with chronic trauma and stress reaction. The 
proliferation of vascular mesenchymal tissue and 
cartilage, with bone remodeling, increased osteoblastic 
and osteoclastic activity has been described in these  
patients who reported symptomatic relief following 
surgical resection.[100,101] This bone remodeling is 
likely to explain the increased uptake on planar bone 
scintigraphy reported in patients with symptomatic 
accessory naviculars.[100-103] Although uptake has been 
reported to be side specific in patients with bilateral 
accessory naviculars and unilateral symptoms,[101] 
more recently, Chiu et al. found that increased uptake 
was also present in the contralateral asymptomatic 
Type II accessory navicular in a small group of patients 
with bilateral accessory naviculars.[103]

The os trigonum represents an unfused posterolateral 
talar tubercle secondary ossification center. [104] 
Tc99m MDP bone scintigraphy has also been used to 
identify the presence of a symptomatic os trigonum 
in patients with ankle pain.[99,104‑106] Like the type II 
accessory navicular, histological evidence of chronic 
chondro-osseous disruption has also been described 
following resection of the symptomatic os trigonum.[99] 
Bony impingement of the os trigonum between the 
posterior tibia and calcaneus has been described as 
a cause of ankle pain and is associated with extreme 
or forced plantar flexion, for example, during the en 
pointe position in ballet, while playing football or 
running downhill.[104,107,108] The synchondrosis may 
also be acutely disrupted by a single‑plantar flexion 
injury or subject to chronic injury following repetitive 
stress. Similarly, the posterolateral talar process 
may be acutely fractured or subject to chronic stress 
injury.[105,108] In some cases, differentiation between 
a previous fracture and an os trigonum can prove 

Figure 5: Medial sesamoid stress fracture in a 31-year-old female. 
The coronal oblique computed tomography and fused technetium-
99m methylene diphosphonate single-photon emission computed 
tomography/computed tomography images demonstrate a well-
defined lucency through the center of the medial sesamoid with 

associated increased uptake in keeping with increased osteoblastic 
activity
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difficult.[106] With an overlap of imaging features and 
symptoms, many terms have been used to describe 
the presence of pain in patients with pathology of the 
posterolateral talar process or os trigonum with os 
trigonum syndrome favored by some authors.[105,106] 
CT may be able to differentiate acute fractures from 
chronic chondro-osseous disruption between the os 
trigonum and talus, with cystic and sclerotic changes 
observed adjacent to the synchondrosis in the latter.[105]

Soft tissue
Chicklore et al. investigated the added value of Tc-
99m MDP SPECT/CT in patients with impingement 
syndrome and soft-tissue pathology compared to 
clinical assessment and conventional two-phase bone 
scan. Common pathologies encountered included 
impingement syndromes, plantar fasciitis, and 
tendonitis [Figure 6 a and b].[10] In over half of the cases 
(24/43), the pathology demonstrated by SPECT/CT was 
not suspected by the clinician. Although pathological 
uptake was also apparent on planar scintigraphy in 
all but one case (42/43) the improved localization and 
characterization of SPECT/CT provided additional 
information to the planar study in 76% (31/43) of cases. 
Despite this, the authors still favored the initial use of 
MRI or ultrasound in the assessment of impingement 
syndromes and soft-tissue pathology in patients with 
foot and ankle pain following a normal radiograph. 
The authors suggested reserving SPECT/CT for cases 
where soft-tissue pathology was suspected and there 
was a contraindication to MRI (e.g., metallic implant, 
claustrophobia) or where an osseous pathology was 
suspected despite a normal radiograph. Although MRI 
is often preferred because of its superior soft-tissue 
contrast and high sensitivity,[2,3,109] a recent study has 

demonstrated comparable sensitivities for SPECT/
CT and MRI for symptomatic osseous, ligamentous/
tendinous, and joint pathology of the foot and ankle 
with SPECT/CT demonstrating significantly higher 
specificity.[109]

Plantar Fascia
The plantar fascia is a strong fibrous structure within 
the sole of the foot[110] which has an important role in  
supporting the longitudinal arch.[111] The plantar fascia 
arises from the posteromedial calcaneal tuberosity and 
divides into central, lateral, and medial bands. The 
central component is the largest and functionally most 
important component.[110,112] The term plantar fasciitis 
has been used to describe changes in the proximal fascia 
close to its calcaneal insertion associated with heel 
pain.[113,114] Bone scintigraphy typically demonstrates 
increased uptake in the region of the calcaneus 
and along the plantar fascia on blood pool imaging 
suggesting hyperemia and increased vascularity, with 
more focal calcaneal uptake on delayed imaging.[115] 
Although histological specimens demonstrate thin-
walled capillaries and increased vascularity in areas 
of plantar fascia degeneration, only degenerative 
changes of collagen tissue have been described without 
evidence of inflammation.[116-118] The authors have 
therefore proposed using the terms plantar fasciosis or 
fasciopathy[116,119] to describe this process which involves 
microtrauma, degeneration, and inadequate reparative 
attempts.[117,118] MRI and ultrasound demonstrate 
significant thickening of the plantar fascia in patients 
with plantar fasciitis [Figure 7a],[120,121] a finding that can 
also been observed on the CT component of the SPECT/
CT study.[122,123] As with the plantar fascia, specimens 
have also demonstrated increased vascularization of the 
calcaneal bone marrow[116] which is likely to explain The 
presence of calcaneal uptake on the dynamic and early 
blood pool phases. Calcaneal spurs, or enthesophytes, 
in the region of the plantar fascia origin may also 
be evident on the CT component of the SPECT/CT 
study. Plantar calcaneal enthesophytes can vary in 
location relative to the plantar fascia[124,125] and have 
been reported in symptomatic and asymptomatic 
subjects.[120,126,127] Formation of plantar enthesophytes is 
believed to be related to tractional forces from plantar 
muscles and the plantar fascia which interdigitate with 
each other and insert on the calcaneus.[124] Associated 
periosteal inflammation and periosteal new bone 
formation has been reported[116,124,128] which is likely 
to account for localized calcaneal uptake on delayed 
scintigraphy in patients with plantar fasciitis/fasciosis 
[Figure 7b]. Similar patterns of uptake have also been 
described in patients with underlying seronegative 
arthropathy.[129] It has been suggested that periosteal 

Figure 6: Left peroneal tendinosis in a 48-year-old male. (a) 
Axial unfused technetium-99m methylene diphosphonate single-
photon emission computed tomography/computed tomography 
images demonstrate increased uptake at the posterior aspect of 
the left lateral malleolus which demonstrates no associated bony 

abnormality on the computed tomography component of the study. 
(b) Axial image from the computed tomography component (soft 

tissue windows) at a more inferior slice demonstrates thickening and 
poor definition of the left peroneal tendons when compared to the 

normal right side
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inflammation of the os calcis may be responsible for 
the associated heel pain[129] although others suggest 
symptoms may arise from the plantar fascia itself.[130]

The combination of increased metabolic activity related 
to the plantar fascial calcaneal insertion and plantar 
fascial thickening on SPECT/CT has therefore been 
used to identify patients with plantar fasciitis or plantar 
fasciosis.[122,123]

Conclusion
Hybrid Tc-99m MDP SPECT/CT is a useful tool for the 
assessment of a number of pathologies seen in the foot 
and ankle. The fusion of functional information with high 
resolution CT enables accurate localization of sites of 
abnormal bone metabolism and evaluation of coexisting 
structural changes. This review summarizes recent 
studies evaluating the use of Tc-99m MDP SPECT/CT 
for the assessment of foot and ankle pathology, many 
of which have emphasized the added value of this 
modality, particularly for the small joints of the mid‑
foot. The studies have also highlighted the subsequent 
impact on patient management with revision of initial 
diagnoses, altered sites of local anesthetic injection, and 
modified surgical approaches.
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