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Simple Summary: Neuroblastoma, the most common extracranial malignancy of childhood, shows
a highly variable course of disease ranging from spontaneous regression or maturation into a
benign tumor to an aggressive and intractable cancer in up to 60% of patients. To adapt treatment
intensity, risk staging at diagnosis is of utmost importance. The A-NB94 trial was the first in Austria
to stratify therapy intensity according to tumor staging, patient’s age, and MYCN amplification
status, the latter being a biologic marker turning otherwise low-risk tumors into high-risk disease.
Recent publications showed a prognostic impact of various genomic features including segmental
chromosomal aberrations (SCAs). We retrospectively investigated the relevance of SCAs within this
risk-adapted treatment strategy. The A-NB94 approach resulted in an excellent long-term survival
for the majority of patients with acceptable long-term morbidity. An age- and stage-dependent
frequency of SCAs was confirmed and SCAs should always be considered in future treatment
decision making processes.

Abstract: We evaluated long-term outcome and genomic profiles in the Austrian Neuroblastoma
Trial A-NB94 which applied a risk-adapted strategy of treatment (RAST) using stage, age and MYCN
amplification (MNA) status for stratification. RAST ranged from surgery only to intensity-adjusted
chemotherapy, single or multiple courses of high-dose chemotherapy (HDT) followed by autologous
stem cell rescue depending on response to induction chemotherapy, and irradiation to the primary
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tumor site. Segmental chromosomal alterations (SCAs) were investigated retrospectively using multi-
and pan-genomic techniques. The A-NB94 trial enrolled 163 patients. Patients with localized disease
had an excellent ten-year (10y) event free survival (EFS) and overall survival (OS) of 99 ± 1% and
93 ± 2% whilst it was 80 ± 13% and 90 ± 9% for infants with stage 4S and for infants with stage
4 non-MNA disease both 83 ± 15%. Stage 4 patients either >12 months or ≤12 months but with
MNA had a 10y-EFS and OS of 45 ± 8% and 47 ± 8%, respectively. SCAs were present in increasing
frequencies according to stage and age: in 29% of localized tumors but in 92% of stage 4 tumors
(p < 0.001), and in 39% of patients ≤ 12 months but in 63% of patients > 12 months (p < 0.001). RAST
successfully reduced chemotherapy exposure in low- and intermediate-risk patients with excellent
long-term results while the outcome of high-risk disease met contemporary trials.

Keywords: neuroblastoma; Austrian trial A-NB94; biomarkers

1. Introduction

Neuroblastoma is the most common extracranial malignancy of childhood and orig-
inates from the sympathetic nervous system. It shows a highly heterogeneous behavior
ranging from spontaneous regression or maturation into a benign ganglioneuroma to
an aggressive and intractable disease. Risk classification systems are using clinical and
biological characteristics to predict survival and adapt treatment intensity [1,2].

At this study’s initiation, recognized risk driving factors included stage defined by
the International Neuroblastoma Staging System (INSS), age at diagnosis, and MYCN
oncogene amplification (MNA) status [3]. MNA, a strong biologic marker associated with
rapid tumor growth [4,5], transforms otherwise favorable risk profiles of infants [6,7] and
children with localized resectable [8,9] or unresectable [10] disease into high-risk [11].
Metastatic disease in children older than 18 months constitutes per se an unfavorable risk
group regardless of MYCN status [12]. Intratumoral heterogeneous MNA (hetMNA) refers
to the coexistence of clustered or scattered single MNA cells and non-MYCN-amplified
(non-MNA) tumor cells [13], a phenomenon that was largely unexplored at the initiation
of A-NB94. A recent study highlights the importance of viewing it separately from the
MNA profile and its unfavorable risk implication, however, prognostication and therapy
allocation are still unsolved issues [14,15].

Here, we present long-term outcomes of the Austrian neuroblastoma trial A-NB94,
initiated in 1994 to apply a risk-adapted strategy of treatment (RAST) based on age
(≤/>12 months), INSS stage and MYCN Status (Table 1). Encouraging results of the Lyon-
Marseille-Curie-Est cooperative group (LMCE2) [16] using tandem high-dose chemother-
apy (HDT) followed by autologous stem cell rescue (ASCR) prompted the adoption of a
similar approach for patients with incomplete response to induction therapy. In addition,
we show a post hoc genomic analysis to investigate pattern and potential influence of
biomarkers on long-term outcomes.

Table 1. Overview of the A-NB94 risk-adapted strategy of treatment.

Risk-Adapted Strategy of Treatments in the A-NB94 Trial

Stage Age MYCN Non-Amplified MYCN Amplified

1, 2

≤12

surgery

surgery
if microscopic incomplete resection:

6 × CAV, radiotherapy

>12
surgery

if microscopic incomplete resection:
3 × alternating CAV + CBDCA/VP16, radiotherapy
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Table 1. Cont.

Risk-Adapted Strategy of Treatments in the A-NB94 Trial

Stage Age MYCN Non-Amplified MYCN Amplified

3

≤12 4–6 × CV
surgery

3 × alternating CAV + CBDCA/VP16
surgery

radiotherapy

>12

3 × alternating CAV + CBDCA/VP16
surgery

3 × alternating HD-CAV + CDDP/VP16
surgery

radiotherapy

4

≤12

3 × alternating HD-CAV + CDDP/VP16
surgery

HDT/ASCR (single or multiple)
radiotherapy

>12

3 × alternating HD-CAV + CDDP/VP16
surgery

HDT/ASCR (single or multiple)
radiotherapy

4S ≤12

observation (up to 3 months)
if progression: surgery

if life-threatening symptoms: CV
option to escalation: CBDCA/VP16

-

Details on Chemotherapy

Chemotherapy Abbreviation Substance Dosage Days Given

CV
CYC cyclophosphamide 5 mg/kg 1–5

VCR vincristine 0.05 mg/kg 1

CAV
CYC cyclophosphamide 300 mg/m2 1–5

ADR doxorubicin 60 mg/m2 5

VCR vincristine 1.5 mg/m2 1, 5

CBDCA/VP16
CBDCA carboplatin 200 mg/m2 1–3

VP16 etoposide 150 mg/m2 1–3

HD-CAV
CCY cyclophosphamide 70 mg/kg 1, 2

ADR doxorubicin 25 mg/m2 1–3

VCR vincristine 1 (1.5) mg/m2 1–3 (9)

CDDP/VP16
CDDP cisplatin 40 mg/m2 1–5

VP16 etoposide 150 mg/m2 3–5

single HDT
VP16 etoposide 60 mg/kg −4

CBDCA carboplatin 500 mg/m2 −4–2

MEL melphalan 180 mg/m2 −2

multiple
HDT

1st course
THIO thiotepa 200 mg/m2 −5–3

CBDCA carboplatin 500 mg/m2 −5–3

2nd course
THIO thiotepa 200 mg/m2 −5–3

CYC cyclophosphamide 1500 mg/m2 −4–2

3rd course
VP16 etoposide 40 mg/kg −3

MEL melphalan 140 mg/m2 −2

Therapy intensity was adapted by the risk-stratifying factors of age (≤/>12 months), disease stage according to the International
Neuroblastoma Staging System (INSS), and MYCN amplification (MNA) status. In treatment arms including neoadjuvant chemotherapy,
surgery was attempted after 4 cycles. Radiotherapy to the primary tumor was 24 Gray (Gy) for patients ≤ 12 months and 30 Gy for patients
≥ 12 months. Dosage for infants was calculated according to their bodyweight instead of body surface area.
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2. Results
2.1. Trial Population and Overall Outcome

Between June 1994 and March 2006, a total of 163 patients were enrolled to the A-
NB94 trial (Table 2) with most patients (n = 153) treated in five major Austrian centers.
Histopathology revealed ganglioneuroblastoma (GNB) in 24/109 localized disease patients.
Primary tumor locations were retroperitoneal-adrenal (n = 126; 77%), thoracic (n = 28;
17%), lumbar-pelvic (n = 5; 3%), and cervical (n = 4; 3%). The median age at diagnosis
was 17 months (range: 4 days to 20 years); 63 patients were ≤12 months (39%), 22 patients
between 12-18 months (13%) and 78 patients ≥ 18 months (48%). There were 86 males and
77 females. The 10-year (10y) EFS and OS were 80 ± 3% and 85 ± 3% for the whole trial
population. The median observation time was twelve years.

Table 2. Characteristics of the A-NB94 study cohort.

Total Non-MNA MNA hetMNA

Age <12 ≥12 Total % <12 ≥12 Total <12 ≥12 Total <12 ≥12 Total

INSS
Stage

GNB 2 22 24 15% 2 22 24

1 16 30 46 28% 14 29 43 1 1 2 1 1

2 9 7 16 10% 8 7 15 1 1

3 14 9 23 14% 12 5 17 1 4 5 1 1

4 12 32 44 27% 6 18 24 5 14 19 1 1

4S 10 10 6% 10 10

Total 63 100 163 100% 52 81 133 7 19 26 4 4

% 39% 61% 100% 32% 50% 82% 4% 12% 16% 2% 2%

Characteristics of the A-NB94 study cohort including risk-stratifying factors of disease stage according to the International Neuroblastoma
Staging System (INSS), age (≤ or >12 months), and MYCN oncogene amplification (MNA) status including heterogeneous MNA (hetMNA).
To appreciate differences in histopathology, we separated ganglioneuroblastoma (GNB) from other localized disease.

2.2. Influence of Stage

Patients presenting with localized (stage 1–3) neuroblastoma (n = 109) had a 10y-EFS
and OS of 93 ± 2% and 99 ± 1% (Figure 1A), respectively. Six relapses were reported and
all affected non-MNA patients ≤ 12 months of age (n = 39). Four of these patients had
loco-regional relapses: two were salvaged by six cycles cyclophosphamide/vincristine
(CV), one by second surgery, and one was only observed as the parents declined further
chemotherapy and the tumor ultimately regressed. Two infants had a relapse in infant
age developing liver metastases, very much in line with a stage 4S pattern. They revealed
no adverse genomic features at relapse, were closely observed, and ultimately showed
spontaneous regression without further therapy. GNB was only found in localized non-
MNA tumors and included the nodular (n = 4) or intermixed (n = 20) subtype. All
patients with localized disease became long-term survivors, apart from one GNB patient
with underlying neurofibromatosis type 1 dying later outside and unrelated to the A-
NB94 trial, resulting in a 10y-EFS of 93 ± 3% for localized neuroblastoma versus 96 ± 4%
for GNB (p = 0.584) with a 10y-OS of 100% versus 96 ± 4% (p = 0.062), respectively.
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Infants with stage 4S neuroblastoma (n = 10) had a 10y-EFS and OS of 80 ± 13% and 
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vention while four patients underwent surgery of the primary tumor. Chemotherapy 
was given to two infants with clinical symptoms: one received electively four cycles of 
vincristine monotherapy and surgery whereas the other one, suffering from congenital 

Figure 1. EFS and OS by (A) prospective International Neuroblastoma Staging System (INSS) as outlined in the A-NB94 trial;
(B) post hoc grouping according to the International Neuroblastoma Risk Group (INRG) Staging System; (C) presence
or absence of segmental chromosomal aberrations (SCAs); (D) effect of MYCN amplification (MNA) status in INSS stage
4 patients only.

Infants with stage 4S neuroblastoma (n = 10) had a 10y-EFS and OS of 80 ± 13%
and 90 ± 9% (Figure 1A), respectively. The tumors of four patients regressed without
intervention while four patients underwent surgery of the primary tumor. Chemotherapy
was given to two infants with clinical symptoms: one received electively four cycles of
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vincristine monotherapy and surgery whereas the other one, suffering from congenital
neuroblastoma, showed uncontrollable disease progression, and died of respiratory failure
despite chemotherapy escalation.

The 10y-EFS and OS of patients with metastasized neuroblastoma (n = 44) were
50 ± 8% and 52 ± 8% (Figure 1A), respectively. Six patients ≤ 12 months had non-MNA
disease, a constellation associated with favorable outcome [6,7], but one patient died
of progression during induction therapy. The subgroup at high risk for poor outcome
including patients > 12 months with stage 4 (n = 33) and ≤ 12 months with MNA disease
(n = 5) had a 10y-EFS and OS of only 45 ± 8% and 47 ± 8%.

In order to compare risk stratification of the A-NB94 trial with a more contemporary
system, a retrospective assessment according to the International Neuroblastoma Risk
Group (INRG) [2] was performed on this population. While patients with localized MNA
tumors were upstaged to high-risk, localized, stage 4S, or stage 4 ≤ 12 months non-
MNA patients remained low- or intermediate-risk, and stage 4 > 12 months and/or MNA
patients remained in a high-risk group (Table A1). Outcome analysis resulted in 10y-EFS of
90 ± 3% for low- (n = 102), 100% for intermediate (n = 4), and 50 ± 8% for the high-risk
group (n = 43) (p < 0.001) while 10y-OS was 97 ± 2%, 100%, and 52 ± 8% (p < 0.001)
(Figure 1B), respectively.

Anti-GD2 monoclonal antibody ch14.18/SP0/2 became available in 1996 for compas-
sionate use in 12 stage 4 patients. The landmark time identified the median time between
HDT and initiation of immunotherapy as 87 days. When comparing the anti-GD2 mono-
clonal antibody pilot population (n = 12) to the pre-immunotherapy population accrued in
the A-NB94 trial and considering only stage 4 patients without progressive disease at the
landmark time point of 87 days after HDT, no difference in outcome was observed shown
by a 10y-EFS of 67 ± 14% versus 64 ± 13% (p = 0.77) and a 10y-OS of 67 ± 14% versus
71 ± 12% (p = 0.907).

2.3. Role of Age

Using a cutoff at 12 months as part of RAST, 10y-OS was significantly better with
94 ± 3% for patients ≤ 12 months (n = 63) as compared to 80 ± 4% for patients > 12 months
(n = 100) (p = 0.035); EFS was 83 ± 5% and 79 ± 4% (p = 0.717), respectively. An ad
hoc cutoff at 18 months showed similar results with a 10y-OS of 93 ± 3% for patients
≤ 18 months (n = 85) versus 77 ± 5% for patients > 18 months (n = 78) (p = 0.009) and a
10y-EFS of 85 ± 4% versus 75 ± 5% (p = 0.201).

2.4. Occurrence and Influence of Biomarkers

MYCN status was evaluated for all patients prospectively during the risk stratification
process. MNA was observed in 6% (7/109) of localized, in 43% (20/44) of stage 4, and in
none of the stage 4S tumors (p < 0.001). We found four infants harboring hetMNA; one of
them was only recognized in a later tumor sample and this patient was treated according
to the original result as per MNA protocol. The other three patients were treated in the
non-MNA arm.

MYCN retained predictive power in the total trial population showing a 10y-EFS
of 84 ± 3% for non-MNA (n = 133), 60 ± 10% for MNA (n = 26), and 100% for hetMNA
(n = 4) (p = 0.034), and a 10y-OS of 64 ± 10%, 89 ± 3%, and 100% (p = 0.008), respectively.
However, MYCN amplification did not have any additional stratifying effect on outcome in
patients with stage 4 neuroblastoma as 10y-EFS and OS was 50 ± 11% for both subgroups
(Figure 1D).

1ploss was recorded prospectively during the active trial period and data were available
for 122 patients. Quantity and quality of frozen tumor samples allowed for post hoc
genomic analysis of 108 patients (multiplex ligation-dependent probe amplification (MLPA),
n = 68; single nucleotide polymorphism (SNP) array, n = 32; interphase fluorescent in-situ
hybridization (iFISH), n = 8) including SCAs for 1qgain/1qloss, 2pgain, 3ploss, 4ploss, 5ploss,
6qloss, 9ploss, 11qloss, 14qloss, 17ploss, 17qgain, 19qloss, and 22qloss. Only in two cases of GNB,
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genomic analysis was interpretable and revealed no SCAs (data included in mentioned
numbers); in the other Schwann cell stroma-rich GNB tumors, the neoplastic clone was
masked by the normal Schwann cells [17].

SCAs were observed in 92% of stage 4 but only in 29% of localized tumors (p < 0.001).
Patients > 12 months showed tumor SCAs in 63% while SCAs were found in only 39% of
patients ≤ 12 months (p < 0.001) (Figure 2).
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Figure 2. Presence of SCAs, ATRX deletion, and TERT gain within groups by age and stage. Presence of segmental
chromosomal alterations (SCAs) that were associated with a significantly lower event-free (EFS) and overall survival (OS)
in a univariate analysis within groups differentiated by age (≤/>12 months) and stage by International Neuroblastoma
Staging System (INSS) (localized/4S or stage 4).

This analysis found patients with tumors showing one or more SCAs (n = 56) with
a 10y-EFS and OS of 64 ± 6% and 69 ± 6% while it was 87 ± 5% (p = 0.014) and 96 ± 3%
(p < 0.001) for patients without SCAs (n = 52) (Figure 1C). In univariate analysis, presence
of 1ploss, 1qgain/1qloss, 3ploss, 11qloss, or 17qgain had significant predictive power for worse
10y-EFS and/or OS (Table 3). To investigate the potential added impact of segmental
chromosomal alterations (SCAs), we performed a multivariate analysis (MVA) corrected
by the risk-stratifying factors of age (≤/>12 months), INSS stage and MYCN amplification
status. Neither model A nor model B (Table 4) was able to identify an added risk for SCAs
in the investigated trial population. ATRXdel (n = 3) and TERTgain (n = 4) were found only
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in stage 4 patients > 18 months of age and were mutually exclusive. All but one patient
with TERTgain died with progressing disease.

Table 3. Summary of 10-year outcomes with reference to biologic markers.

Biologic Criterion EFS OS

Marker n Events 10y p Deaths 10y p

MYCN

normal 133 21 84 ± 3

0.035

14 89 ± 3

0.008MNA 26 10 60 ± 10 9 64 ± 10

hetMNA 4 0 100 0 100

SCAs
absent 52 7 87 ± 5

0.014
2 96 ± 3

<0.001
present 56 20 64 ± 6 17 69 ± 6

1p
normal 89 14 84 ± 4

0.015
10 89 ± 3

0.004
loss 33 12 64 ± 8 10 69 ± 8

1q
normal 91 18 81 ± 4

<0.001
10 89 ± 3

<0.001
gain/loss 6 6 0 6 0

2p
normal 80 18 78 ± 5

0.702
11 86 ± 5

0.562
gain 12 2 83 ± 11 2 83 ± 11

3p
normal 83 18 78 ± 5

0.007
11 87 ± 4

0.002
loss 10 6 40 ± 15 5 50 ± 16

4p
normal 87 21 76 ± 5

0.512
14 87 ± 5

0.119
loss 7 1 86 ± 13 0 100

11q
normal 80 15 81 ± 4

0.002
8 90 ± 3

<0.001
loss 17 9 47 ± 12 9 47 ± 12

14q
normal 70 17 75 ± 5

0.971
12 83 ± 5

0.982
loss 12 3 75 ± 13 2 83 ± 15

17q
normal 58 9 84 ± 5

0.006
3 95 ± 3

<0.001
gain 38 16 58 ± 8 15 61 ± 8

10-year (10y) event-free survival (EFS) and overall survival (OS) according to the univariate analysis of biologic
markers including MYCN amplification (MNA) and heterogeneous MNA (hetMNA), and presence or absence of
segmental chromosomal alterations (SCAs).

Table 4. Multivariate model of SCAs corrected by stage, age, and MNA.

Model Marker
EFS OS

HR 95% CL p HR 95% CL p

A SCAs 0.67 0.15−2.91 0.59 1.06 0.16−6.93 0.95

B

1 ploss 0.83 0.19−3.63 0.80 0.38 0.07−1.97 0.25

1 qgain/loss 1.68 0.43−6.53 0.46 2.45 0.56−10.7 0.23

3 ploss 0.95 0.26−3.52 0.94 0.62 0.15−2.66 0.52

11 qloss 1.69 0.46−6.23 0.43 2.08 0.50−8.74 0.32

17 qgain 0.30 0.03−3.52 0.34 2.59 0.26−26.2 0.42
Multivariate analysis (MVA) showing the hazard ratio (HR) with 95% confidence level (CL), event-free survival
(EFS), and overall survival (OS) of segmental chromosomal alterations (SCAs). Model A showing MVA of all
SCAs combined (including 1ploss, 1qgain/1qloss, 2pgain, 3ploss, 4ploss, 5ploss, 6qloss, 9ploss, 11qloss, 14qloss, 17ploss,
17qgain, 19qloss, and 22qloss). Model B showing MVA of specific SCAs univariately significant for a lower EFS
and OS.
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2.5. Role of Treatment Elements to Achieve Remission Induction

Low- to intermediate-dose chemotherapy during first-line treatment was given to 18%
(20/109) of patients with localized disease, 20% (2/10) of patients with stage 4S, and 100%
(6/6) of patients ≤ 12 months with stage 4 non-MNA tumors. The overall response rate to
cytotoxic treatment was 93% (26/28) in this cohort with 50% (14/28) entering a complete
clinical remission (CR). One patient with stage 4 non-MNA and one with stage 4S disease
did not respond, and both died of disease progression despite chemotherapy escalation.

Stage 4 patients > 12 months (n = 32) and ≤12 months with MNA tumors (n = 6)
received dose-intensive induction therapy with a metastatic response rate of 74% (28/38)
and a CR rate of 16% (6/38) including the effects of surgery. In this group, three patients
progressed during induction. 2/38 patients (5%) experienced an infection-related septic
shock during induction therapy and died with multi-organ failure.

2.5.1. Surgery

Surgical resection of the primary tumor was performed in 93% (152/163) of patients.
In case of adrenal primary, 5% (6/113) underwent unilateral total nephrectomy while other
patients only had unilateral adrenalectomy. Two patients needed revision surgery due
to rebleeding.

2.5.2. High-Dose Therapy (HDT)

Patients eligible for HDT (Table 1) received one (n = 18), or, in case of mIBG metastatic
incomplete response, two (n = 11) or three (n = 2) courses of HDT. In addition, two patients
with stage 3 MNA but post-surgical macroscopic tumor residues, and one patient 11 months
of age with stage 4 non-MNA but post-induction unresectable disease received a single
course of HDT. Seven patients with single HDT were in metastatic CR (mCR) prior HDT;
93% (13/14) of other patients responded to HDT with a mCR rate of 50% (7/14). Within
the multiple HDT group, response rate was 77% (10/13), CR rate 54% (7/13).

In the first attempt of stem cell apheresis in 27 evaluable patients, median yield was
4.5 × 106 CD34 positive cells per kilogram body weight (range 0.45 to 30.9 × 106). Six
patients needed a second (median yield 3.76 × 106, range 1.26 to 8.5 × 106), and two
patients a third apheresis (median 4.99 × 106, range 4.97 to 5 × 106) in order to reach the
attempted minimum of 3 × 106 cells per kilogram body weight for each of the planned
HDT courses according to their respective response status.

2.6. Acute Toxicities and Long-Term Morbidity

Acute toxicities and intervention related morbidity was related to respective treat-
ments (Table A2) and clearly showed a higher acute toxicity burden with increased treat-
ment intensity.

Of surviving patients receiving low- and intermediate-dose chemotherapy (localized,
stage 4S, or stage 4 patients ≤12 months with non-MNA disease) but no HDT (n = 24), only
two patients had treatment-associated long-term disabilities manifesting as reduced renal
glomerular filtration rate (GFR). Treatment-unrelated morbidity was persistent paraplegia
of the lower limbs already present at diagnosis (n = 1) and subsequent craniopharyngioma
(n = 1).

Of long-term survivors receiving intensive chemotherapy including HDT (n = 21),
common long-term morbidity involved permanent hearing loss after cisplatin therapy in
43% (n = 9). Other disabilities in this group included reduced left-ventricular cardiac output
(n = 4), hypothyroidism (n = 3), reduced GFR (n = 2), hypertension (n = 1), testosterone
deficiency (n = 1), growth hormone deficiency (n = 1), dental damage (n = 1), peripheral
polyneuropathy (n = 1), and osteochondroma (n = 1). One patient died from secondary
acute myeloid leukemia.
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3. Discussion

The A-NB94 trial was the first in Austria to apply a risk-adapted treatment strategy
for children with neuroblastoma considering INSS stage, age, and MYCN amplification
status [3]. Risk stratification was implemented in 1994 and results need to be viewed from
this perspective. Only 15 years later, the INRG established staging based on pre-surgical
image-defined factors [18], and included additional biologic makers of histopathology,
ploidy, and 11q status [2]. We retrospectively stratified A-NB94 patients according to
the INRG classification system which resulted in an upstaging of patients with localized
MNA tumors to high-risk while other patients remained within a risk group similar to
the A-NB94 staging system based on the INSS. Additionally, outcome by INRG classifi-
cation matched published results, considering the high survival of stage 3 patients and
small numbers within the intermediate-risk group. Patients being not stageable by INRG
classification related to missing 11qloss data.

In retrospect, the A-NB94 study included a high proportion of patients with localized
neuroblastoma, possibly related to the then ongoing neuroblastoma screening with 13%
of the trial population being part of this program. In addition, the high-risk arm of A-
NB94 closed for accrual earlier to allow for participation in the SIOPEN High-Risk trial
(HR-NBL1/SIOPEN; ClinicalTrials.gov number NCT01704716) which opened already in
2002 while the SIOPEN Low- and Intermediate-Risk trial (LINES; ClinicalTrials.gov number
NCT01728155) only opened in 2007.

Compared with published data, the Austrian screening program detected a compar-
atively high number of localized tumors harboring unfavorable biologic features (MNA,
1ploss, diploidy) [19], suggesting early adverse clonal evolution. However, the A-NB94 trial
was not designed for answering the question if screening helped increasing the detection
of high-risk disease at an early stage [20,21]. Overall, our approach resulted in excellent
survival for these patients as all became long-term survivors apart from one GNB patient
dying from complications after surgery not related to neuroblastoma treatment.

Notably, the very favorable outcome of the localized subgroup also includes 25 stage
3 patients, marking a major improvement compared to the preceding A-NB87 trial which
applied an intensive chemotherapy for children with Evan’s Stage 3 disease (especially
when >2 years of age, increased neuron-specific enolase, and/or ferritin (Table A3), re-
sulting in a 28% (8/29) toxic death rate and a 5y-OS of only 50% [22]. However, detailed
comparison is hampered by differing staging criteria and MYCN not being a stratifying
marker in A-NB87. In A-NB94, 82% (89/109) of patients with localized neuroblastoma
received little or no chemotherapy in first line treatment. These numbers include six pa-
tients with non-MNA stage 3 tumors defined by tumors crossing the midline which could
otherwise be surgically removed upfront. While two relapses were treated successfully
with chemotherapy, potential long-term side effects following intense therapy could be
circumvented in other patients by using a surgery only approach.

While our data support the notion of improved outcome despite therapy reduction
in patients with intermediate-risk neuroblastoma [23,24], contemporary trials would sub-
mit patients with stage 2 or 3 MNA [25] or diploid [26] tumors to receive HDT/ASCR.
Furthermore, the presence of certain SCAs was reported to identify patients of higher
risk for relapse, especially in unresectable tumors [27]. While SCAs, especially 1ploss and
11qloss, may lower EFS but not OS in children ≤18 months, they also diminish OS in older
children [28]. In A-NB94, 15 patients with localized tumors matched these criteria (MNA,
n = 7; diploidy, n = 5; >18 months and 1ploss, n = 1; or 11qloss, n = 2) and all survived
without relapse after receiving low-/intermediate-dose chemotherapy apart from two
already described patients that received HDT/ASCR. The decision for adding HDT in the
latter two patients was based on the presence of post-surgical residual tumors. These small
numbers might suggest that patients with residual tumors benefited from therapy escala-
tion while others were adequately treated by conventional chemotherapy and irradiation.
In this context, it may be assumed that the remarkable good outcome in A-NB94 of patients
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with localized tumors including especially stage 3 patients relates to the surprisingly low
prevalence of SCAs observed in this subgroup.

Outcome of infantile stage 4 metastatic disease is related to MNA, diploidy/tetraploidy,
1ploss, 11qloss, or 17qgain [29]. While most stage 4S tumors are treated adequately by
observation only [30,31], certain markers including 11qloss and diploidy might predict less
favorable outcomes even in stage 4S disease [32]. However, disease progression of two
A-NB94 stage 4S patients clearly could not be explained by these biologic factors, as neither
MNA, diploidy or 11qloss were detected. Stage 4S poses threats independent of tumor
biology as extensive hepatomegaly causes a variety of clinical complications.

Of 44 stage 4 patients, six infants without MNA received moderate chemotherapy
without HDT or radiation according to RAST. While survival was good, one of three
patients with tumors showing SCAs involving 11qloss and 17qgain progressed and died
during induction, in line with reports that these features are often associated with higher
risk for relapse [33].

Stage 4 patients > 12 months and stage 4 infants with MNA [34,35] underwent an
induction protocol similar to the “N6” protocol previously published to achieve fast cytore-
duction [36], following the notion that increased response rates precede higher survival
rates [37]. Furthermore, A-NB94 successfully introduced tandem or triple HDT/ASCR
to children with incomplete metastatic response to induction therapy. While benefits of
multiple cycle HDT have been reported consistently by European groups [16,38], recent
reports demonstrated clearly improved survival in contemporary trials [39,40].

In 1996, anti-GD2 monoclonal antibody ch14.18/SP0/2 became available for com-
passionate use in stage 4 patients. The identified landmark time identified between HDT
and start of immunotherapy was 87 days; thus, only stage 4 patients without progressive
disease were included in the pre-immunotherapy control population. Comparing these two
cohorts did not result in an advantage for the small immunotherapy population. However,
overall outcome data are quite in line with later publications on the use of ch14.18 mono-
clonal antibody in first-line maintenance treatment [41,42]. Considering the rather small
population in both cohorts, we only may hypothesize that RAST, using repetitive HDT
adapted to response in this high-risk population, was probably a major contributor to the
observed favorable outcomes and that immunotherapy applied with a less dose intensive
monotherapy schedule did not result in a measurable added benefit.

In addition, while the prognostic impact of hetMNA remains unclear [43,44], recent
data suggests it has to be viewed in light of the overall genetic background in order to
determine the importance of the MNA cell clone [45]. Localized tumors usually show a
favorable background with reported improved outcomes compared to homogeneous MNA.
In A-NB94, hetMNA tumors showed only additional 1ploss in two cases but no other SCA
or other unfavorable biologic markers. One of these cases was only discovered in a later
tumor sample as the original sample suggested homogeneous MNA; this patient with stage
4 disease received high-dose therapy, which may, together with the age of ≤12 months and
lack of additional high-risk features, have resulted in over-treatment.

SCAs were present in higher frequency in stage 4 disease, especially in patients
> 12 months, when compared to children with localized tumors of any age (Figure 2),
supporting the notion of SCAs being accumulated during tumor development [44] and an
unfavorable biology being associated with overall poor prognosis [45]. This study confirms
SCAs are commonly involving chromosome arms 1p, 11q, and 17q [46], however, high-risk
metastasized tumors often show a combination of various chromosomal defects [47].

The acute toxicity burden as well as long-term morbidity is clearly related to RAST,
showing the therapy burden of the curative efforts mainly in the high-intensity treat-
ment groups. Particularly after additional HDT/ASCR, which is in line with previous
reports [48,49], although and in contrast to previous approaches [50], no total body irra-
diation (TBI) was used. Observed surgery-related morbidities were in line with previous
reports [51]. Irreversible inner ear hearing loss, a known side-effect following cisplatin
therapy [52], affected 29% (10/34) of long-term survivors receiving cisplatin. The un-
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derstanding of the mechanism of uptake and accumulation in the stria vascularis of the
cochlea provides now an important target for preventing ototoxicity in future trials [53].
Overall, organ-related long-term side-affects were low as well as incidence of secondary
malignancies.

4. Patients and Methods
4.1. Patients

Children with histologically confirmed, previously untreated neuroblastoma or GNB
up to 20 years of age were eligible for enrolment on A-NB94. Staging followed INSS
guidelines and treatment response was assessed by the 1993 International Neuroblastoma
Response Criteria (INRC) [3]. Written informed consent for treatment and data procession
was obtained in compliance with institutional review board rules and in accordance with
the Declaration of Helsinki [54].

4.2. Treatment Concepts

RAST was adjusted for age (≤/>12 months), stage, and MYCN status (Table 1). Stage
1 or 2 non-MNA tumors were planned for surgery only; incompletely resected MNA
tumors received chemotherapy adapted to stage and radiotherapy. Stage 4S infants were
observed up to 3 months and then underwent surgery but received chemotherapy in case
of life-threatening symptoms or progression. Stage 3 and 4 were treated with neoadjuvant
intensity-adjusted chemotherapy with surgery planned after four cycles. MNA tumors
were irradiated age-adapted with 24 Gray (≤12 months) or 30 Gray (>12 months).

Stem cell harvest, aiming at >3 × 106 CD34 positive cells per kilogram body weight
per high-dose treatment (HDT), was first attempted after 4 chemotherapy cycles if cy-
tomorphological and histological bone marrow (BM) remission was achieved, or was
otherwise postponed following cycle 6 or after an in vivo purge following the first or
second HDT, eventually.

Depending on metastatic response, patients were eligible for a single (complete re-
sponse, CR) or repetitive HDT (partial/minor response, PR/MR). In case of CR after
second HDT, the third HDT was omitted. In 1996, the anti-GD2 monoclonal antibody
ch14.18/SP0/2 became accessible as compassionate use (provided by the University of
Tübingen, Prof. Dr. Rupert Handgretinger) to optimize treatment of HR disease after HDT
and radiotherapy. Treatment consisted of three anti-GD2 ch14.18/SP0/2 cycles (20 mg/m2

over 5 days as 8-h infusions). Supportive care and treatment of infections followed institu-
tional guidelines.

4.3. Disease and Response Assessment

Disease evaluation was planned at diagnosis, after 2, 4, and 6 courses of chemother-
apy, before and after each HDT, and before and after immunotherapy. Bone marrow
examination included aspirates/trephines obtained from two sites and used, apart from
cytomorphology, an automated image analysis system (MetaSystems GmbH, Altlußheim,
Germany) to quantify GD2/CD56-positive cells [55,56]. Skeletal disease was defined by
pathologic iodine-123 meta-iodobenzylguanidine (mIBG) or, in mIBG non-avid tumors, by
tecnetium-99m-hydroxymethylenediphosphanate (Tc99m) scans [57]. Primary tumors were
investigated by MRI/CT scan. Tumor marker evaluation included urinary catecholamine
metabolites, lactate dehydrogenase (LDH), and neuron specific enolase (NSE). Response
was assessed based on local institution reporting following INRC guidelines [3].

4.4. Toxicity Evaluation

Acute and long-term toxicities were evaluated using case report forms (CRF) doc-
umenting organ-specific toxicities according to the Common Terminology Criteria for
Adverse Events (CTCAE) Version 5.0 above grade 2, secondary malignancies, and other
adverse events (AE). Acute toxicity evaluation focused on patients with intense induction
chemotherapy and HDT.
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4.5. Biologic Studies

Frozen tumor specimens were evaluated using high-density SNP arrays (CytoScan HD
Array) [47], MLPA, or iFISH for the detection of MNA or SCAs. Recording/interpretation
of data were done according to international standards [58].

4.6. Statistical Analysis

Event-free survival (EFS) was calculated from the time of diagnosis until first occur-
rence of relapse, progressive disease, secondary malignancy, or death from any cause, or
until last contact with patients. Overall survival (OS) was calculated from time of diagnosis
to death from any cause. The median time between HDT and initiation of immunotherapy
was 87 days, therefore only patients without progressive disease at this landmark time
point were included in the pre-immunotherapy cohort. Categorical data were analyzed
by chi-square test or, in case of an estimated case-count of ≤5 per field, Fisher’s exact test.
Data were analyzed with SAS 9.4 program. All statistical tests were two-sided.

5. Conclusions

The risk-adapted approach resulted in an excellent long-term survival for the majority
of patients with acceptable long-term morbidity. An age- and stage-dependent frequency
of SCAs was confirmed and should be considered in future treatment decision-making
processes.
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Appendix A

Table A1. Retrospective correlation of A-NB94 risk groups with INRG stratification.

A-NB94 Staging Criteria Retrospective INRG Risk Classification

MYCN Stage Age Low Intermediate High n.e. Total

amplified

1 ≤12 1 1

>12 1 1

2 ≤12

>12

3 ≤12 1 1

>12 4 4

4 ≤12 5 5

>12 14 14

non-amplified

1 ≤12 15 15

>12 46 46

2 ≤12 9 9

>12 10 10

3 ≤12 8 4 12

>12 3 3 1 7

4 ≤12 4 1 1 6

>12 17 1 18

4S ≤12 4 6 10

heterogeneously amplified

1 ≤12 1 1

>12

2 ≤12 1 1

>12

3 ≤12 1 1

>12

4 ≤12 1 1

>12

Total 102 4 43 14 163
Retrospective correlation of A-NB94 risk stratification with the International Neuroblastoma Risk Group (INRG)
classification [2].

Table A2. Summary of acute treatment-related toxicities.

Type of Toxicity
Induction Phase

Surgery HDT Phase
LD/ID HD

infection 4 10 4 13

gastrointestinal 3 8

hepatic injury 3

venous occlusive disease 1

cardiac 2 3 4

renal failure 2

hemorrhagic cystitis 1

respiratory insufficiency 1

oral-intestinal mucositis 5 12

tumor lysis syndrome 1
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Table A2. Cont.

Type of Toxicity
Induction Phase

Surgery HDT Phase
LD/ID HD

capillary leak syndrome 1 1

hemolytic uremic syndrome 1

autoimmune hemolytic anemia 1

non-febrile seizures 1

intraoperative tumor rupture 2

severe bleeding 4

lymphatic fistula 4

Horner’s syndrome 3

pleural effusion 2

pneumothorax 1

cava vein thrombosis 1

Total 6 26 21 46
Summary of acute treatment-related toxicities according to induction treatment split by chemotherapy intensity
with low- and intermediate-dose (LD/ID) and high-dose (HD) induction schedules, the latter including stage 4 >
12 months and stage 4 ≤ 12 months but MYCN amplified tumors, the former all other treatment groups; surgical
complications; and high-dose therapy (HDT).

Table A3. Chemotherapy elements and treatment regimens used in the A-NB87 trial.

Stage Therapy

I Surgery

IIA Surgery If macroscopic residual tumor: second surgery, or radiotherapy

IIB Surgery CV Re-surgery Radiotherapy

IIIA Surgery 3–4 × alternating DAMO/MVDOC Re-surgery Radiotherapy (Re-surgery)

IIIB Surgery 3–5 × alternating DAMO/MVDOC/IPE Re-surgery Radiotherapy Re-surgery

IV Surgery 4 × alternating MVDOC/IPE Re-surgery HDT/TBI/ASCR Radiotherapy

Details on Chemotherapy

Chemotherapy Abbreviation Substance Dosage Days Given

DAMO

D dacarbazine 850 mg/m2 1

A doxorubicin 30 mg/m2 1, 2

M mustargen 6 mg/m2 1

O vincristine 1.5 mg/m2 1 + 5

MVDOC

M mustargen 6 mg/m2 1

V teniposide 150 mg/m2 1

D dacarbacine 850 mg/m2 1

O vincristine 1.5 mg/m2 1

C cyclophosphamide 850 mg/m2 1

IPE

I ifosfamide 3 g/m2 1, 2

P cisplatin 40 mg/m2 1–5

E etoposide 150 mg/m2 3–5

Chemotherapy elements and treatment regimens according to the Austrian Neuroblastoma Trial A-NB87. Staging was done according to
Evans criteria: stage I (localized without macroscopic lymphatic node involvement), stage IIA (macroscopic lymphatic node involvement),
IIB (macroscopic residual tumor with ipsilateral lymphatic node involvement), IIIA (<2 years of age, ferritin < 300 µg/mL, neuron-specific
enolase < 100 ng/mL), IIIB (any positivity of the markers described for stage IIIA), stage 4 (distant metastasized disease).
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