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Abstract

The classification of epilepsy is essential for people with epilepsy and their families, healthcare 

providers, physicians and researchers. The International League Against Epilepsy proposed 

updated seizure and epilepsy classifications in 2017, while another four-dimensional epilepsy 

classification was updated in 2019. An Integrated Epilepsy Classification system was proposed in 

2020. Existing classifications, however, lack consideration of important pragmatic factors relevant 

to the day-to-day life of people with epilepsy and stakeholders. Despite promising developments, 

consideration of comorbidities in brain development, genetic causes, and environmental triggers 

of epilepsy remains largely user-dependent in existing classifications. Demographics of epilepsy 

have changed over time, while existing classification schemes exhibit caveats. A pragmatic 

classification scheme should incorporate these factors to provide a nuanced classification. 

Validation across disparate contexts will ensure widespread applicability and ease of use. A team-

based approach may simplify communication between healthcare personnel, while an individual-

centred perspective may empower people with epilepsy. Together, incorporating these elements 

into a modern but pragmatic classification scheme may ensure optimal care for people with 

epilepsy by emphasising cohesiveness among its myriad users. Technological advancements such 

as 7T MRI, next-generation sequencing, and artificial intelligence may affect future classification 

efforts.
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1. Introduction

Epilepsy classification is essential for people with epilepsy, caregivers, healthcare personnel, 

researchers, policymakers, and insurers [1,2]. Classification allows people with epilepsy 

to identify with a well-defined condition, empower them, and provide a direction to 

engage with others. Classification schemes also clarify communication, enhancing care and 

augmenting education and training [1–3].

The first classification of seizures and epilepsies was conceived in 1964 and popularised in 

the 1970’s [2,4,5]. Classifications have been published under the aegis of the International 

league Against Epilepsy (ILAE) with the most recent updates in 2017 [2,6,7]. In 2001, a 

multidimensional classification scheme with five axes [8] and in 2012, a four-dimensional 

classification scheme was proposed [9,10]. An Integrated Epilepsy Classification (IEC) 

scheme based on commonalities between the ILAE and four-dimensional classification 

schemes was proposed [11]. Classification continues to evolve while enduring lively debates 

and having been criticised for its focus on detail and at the same time, lack of inclusiveness 

and pragmatism [12].

Given the importance of classification, it is crucial to consider the need for further 

refinement and adaptability. We revisit past and present milestones in epilepsy classification, 

review past and existing classifications, propose future considerations, and examine rising 

technologies’ influence. This review provides consideration of previously undervalued 

factors influencing the debate on the ever-evolving epilepsy classification.

2. Past and current classifications

ILAE published in 1981 its first seizure classification after the development of video-

EEG monitoring (Table 1) [13,14]. Seizures were divided into partial and generalised 

according to onset. The 1985 epilepsies classification scheme was based on semiology 

with age dependency and etiology in addition to EEG features [14,15]. ILAE revised its 

proposal in 1989 with categories including localisation-related epilepsies and syndromes, 

generalised epilepsies and syndromes, undetermined syndromes and special syndromes 

[14,16]. Contemporaneously, an ILAE expert group also proposed an epidemiologic 

classification of epilepsies [17]. A diagnostic scheme proposed in 2001 involved five axes 

mirroring those of the DSM IV: ictal phenomenology, seizure type, syndrome, etiology, 

and impairment [8,14]. The 2006 update of this scheme further delineated self-limited 

epilepsy syndromes [1,14,18]. Another proposal (2010) incorporated the concept of brain 

networks between subcortical and cortical structures and between cortical areas [14,19]. 

Non-mutually exclusive etiological classifications such as genetic, structural, metabolic, 

and unknown were created [14,19]. ILAE Commissions generated new classifications for 
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seizures and epilepsies in 2017 (ILAE-EC) involving seizure type, epilepsy types, and 

etiologies [6,7,14,20].

A group of experts proposed a classification entirely based on seizure semiology in 

1998 [21–23]. They offered a five-dimensional individual-oriented classification scheme 

consisting epileptogenic zone location, seizure semiology, etiology, seizure frequency, 

and related conditions in 2005 [24]. A four-dimensional classification (4D-EC) system 

consisting of semiology of the seizures, epileptogenic zone location, etiology, and associated 

comorbidities was proposed in 2012 [9,10]. The updated four-dimensional classification 

scheme (4D-CS) comprises a sequential approach to categorising non-specific paroxysmal 

events [10]. The current ILAE classification and 4D-CS were merged into the IEC after 

considering similarities between the two [11]. The IEC contains five subcategories: header, 

seizure type, epilepsy type, etiology, and comorbidities and relevant individual preferences 

[11]. Fig. 1 demonstrates a timeline of past and current classifications.

3. The past and present classifications

The intense debate on epilepsy classification is reassuring. Numerous proposals and 

refutations notwithstanding, the discussions bear out experts’ engagement in the evolution of 

classification. Limitations, however, have arisen at each step. Some stem from the semantics, 

syntax and semiotics of seizures. For instance, the term dialeptic seizures has been used in 

the past to emphasise the phenomenon of behavioural arrest observed in absence seizures 

and mesial temporal seizures [25]. The term dyscognitive seizures has also been used with 

diverse connotations by experts, only to be removed in a later version of the classification 

[6,7,14,20]. Descriptive terminology for mesial temporal seizures has evolved from complex 

partial seizures to dialeptic seizures, dyscognitive seizures, and focal seizures with or 

without impaired awareness [6]. The variety of expressions can confuse beginners and 

prove challenging for the experienced to relearn [25,26]. To the credit of the creators, it is 

now accepted that any classification should be flexible to meet the needs of different users. 

There is also a perceived need to explore beyond the boundaries of current classifications to 

encompass horizons yet not covered.

3.1. Caveats in classifications

Mutually exclusive etiological categories lead to confusion. For example, GLUT1 

transporter deficiency may be denoted as genetic or metabolic [11], while neurocysticercosis 

may be classified as infective or structural. These ambiguities could be addressed by 

specifying etiological conditions precisely [11]. The classification of a specific condition 

may, however, have implications for the estimation of the burden of disease. Additionally, 

classifications have removed anatomical origins due to the imperfect relationship between 

location and semiology and the electro-clinical similarity between seizures arising from 

different lobes [1]. The character of seizures, however, bear a relationship to a lobe 

[27,28]. The ILAE, 4D-EC, and IEC classifications also include syndromes with differing 

importance [6,7,10,11]. Several population and facility-based studies have examined 

the yield of the syndromic classification. In these studies (Table 2), syndromes were 
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unambiguously assigned in 4–97% of cases [29–35]. The variation represents the differences 

between samples assessed, methodologies used and experts’ experience [36–38].

3.2. Comorbidities

People with epilepsy are up to eight times more likely to have conditions such as depression, 

anxiety, migraine, heart disease, peptic ulcers, and arthritis relative to the general population 

[39], and more likely to have other neuropsychiatric disorders, pain disorders, autoimmune 

diseases and asthma [40,41]. The presence of comorbidities, however, must be assessed 

across different populations to gain acceptance [41,42]. There seems to be a biological 

basis for the association of epilepsy with psychosomatic comorbidities [43–47]. Similarly, 

existing methods of quantifying comorbidities such as the Charlson Comorbidity Index 

and Elixhauser Comorbidity Index are generally unsuitable for epilepsy [42]. An epilepsy-

specific risk adjustment index may be necessary to account for comorbidities properly [42].

Inclusion of comorbidities into classification should be expanded. The 2017 ILAE 

classification includes comorbidities for the first time [48]. The 4D-CS and IEC included 

comorbidities, and the IEC asks users to list comorbidities relevant to the individual [9–

11]. The incorporation of comorbidities merits further consideration given the occurrence 

and treatment of comorbidities influences the expression, treatment, and outcome, and 

vice-versa. Systematic classification of comorbidities should involve creating a master list of 

known comorbidities while suiting the differing needs of the treatment providers of epilepsy 

and the comorbidities. Uniform documentation of associated comorbidities diagnoses will 

permit the identification of appropriate treatments, increase consideration of the impact 

of comorbidities in epilepsy presentation and its treatment, and improve communication 

between different specialists.

3.3. Changes in the demography of epilepsy

While current classifications presume a static nature to populations, epilepsy demography 

has changed. An appropriate representation of these trends may provide a clearer 

categorisation of individuals with epilepsy.

First, temporal trends are important to examine. Epilepsy incidence is high in the first year 

of life, perhaps due to to the high proportion of symptomatic cases presenting early in life 

[49]. Many of these children have epileptic encephalopathies, often with psychomotor arrest 

that predisposes developmental slowing and seizures later in life [49]. Other children have 

generalised or focal seizures of the neonatal or infantile period [49]. Medical technology 

has also contributed to the high first-year incidence as premature children and children with 

congenital anomalies or severe early life insults survive longer with a higher likelihood of 

developing epilepsy. Incidence declines by the end of the first decade [50,51]. Decreased 

exposure to teratogens including some antiseizure medications (ASMs) and environmental 

risk factors may have enhanced the decrease [52,53]. The incidence increases in the elderly 

due to cerebrovascular diseases, neurodegenerative disorders, intracerebral tumors, and 

traumatic brain injury [54–56], although standardisation account for this [55–57]. Second, 

consideration of changes in the etiology of epilepsy is required. The concept of etiology of 

epilepsy has changed over time as conceptual models of causality in epilepsy continue to 
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be developed and risk factors continue to be elucidated [58]. Third, the state of epilepsy 

is relevant, Whether a patient has active epilepsy or epilepsy in remission, controlled or 

uncontrolled epilepsy, and drug-resistant epilepsy influences the prognosis [59–61]. An 

adequate epilepsy classification must capture these distinctions to add relevance to clinical 

practice.

Incorporating the changing demographics of epilepsy will improve communication between 

specialists, allowing for the greater utility of classification schemes by emphasising the most 

affected groups.

3.4. Brain age

Brain development stages denoted as “brain age”, measured often as brain-predicted age 

difference (PAD) [62,63], is probably more relevant than chronological age to epilepsy 

diagnosis and classification, influencing susceptibility to, presentation, and consequences 

of seizures. The onset or offset of seizures marks a turning point in brain development, 

demonstrated by regression of speech with seizure onset in Kleffner-Landau syndrome or 

resumption of brain maturation with successful seizure control in West syndrome [64,65]. 

In epileptic encephalopathies, brain maturation arrests at a given time point and might 

also regress. Therefore, consideration of how brain age or development is reflected in 

classification is important.

Developing, aging, or degenerating brains are highly susceptible to seizures [66,67]. 

Brain maturation likely influences seizure semiology. Seizures are featureless, denoted 

as “hypomotor”, during infancy, plausibly reflecting limited neuronal connectivity, while 

automatisms and hypermotor seizures occur in older children with presumably mature brains 

[68]. Lateralizing signs increase with age in people with temporal epilepsy [69]. Epileptic 

spasms typically occur during infancy, while absence seizures, myoclonic-astatic, and 

generalised tonic-clonic seizures occur in later childhood [70,71]. Lastly, there is evidence 

for an interaction between age and pharmacoresistance to ASMs, adversely impacting 

cognitive development and function in children with epilepsy. Cognitive impairments 

associated with uncontrolled seizures are particularly severe during infancy and decrease 

thereafter [72,73]. Individuals with onset of temporal epilepsy in childhood exhibit greater 

reduction of brain tissue volumes, namely white matter in extratemporal regions, and more 

marked memory deficits [74].

While the quest for robust markers for brain age continues, it is conceivable that applications 

of artificial intelligence and machine learning will yield important insights to admit brain 

age to epilepsy classifications in the future.

3.5. Genetic etiologies

Current classification paradigms incorporate genetic etiologies, but there exists little 

description of the specific genetic characteristics associated with the diagnosis. Polygenic 

theory suggests that an accumulation of single nucleotide polymorphisms associated with 

epilepsy may explain the propensity of certain individuals to develop epilepsy [75]. 

Conversely, pathogenic variants lead to epilepsy development through several mechanisms. 

Discovery of genes contributing to epilepsy is rapidly growing. Myriad single gene 

Shlobin et al. Page 5

J Neurol Sci. Author manuscript; available in PMC 2022 September 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



disorders have been implicated in epilepsy (Table 3) [47,76,77]. Common mechanisms 

include voltage-gated channelopathies [78–81], ligand-gated channe-lopathies [79,80,82–

86], neurotransmitter release machinery [79,87,88], and structural alterations (Table 4) 

[79,89]. Fig. 2 demonstrates commonly affected channels. Delineation of genetic attributes 

promotes research to elucidate the natural history of the condition, leads to the development 

of precision medications, guides treatment paradigms, facilitates preventative measures, and 

helps individuals with a genetic disorder connect with each other.

As genetic links for epilepsy are increasingly uncovered, conceptualising classification in 

terms of genetic causation becomes indispensable. The 4D-EC and IEC permit the use 

of genetic information, given their emphasis on providing as much detail as available [9–

11], but existing classification schemes do not intentionally incorporate genetic etiologies. 

Investigations such as chromosomal microarrays, whole genome and whole exome 

sequencing, and gene panels are now increasingly available. These investigations secure a 

genetic diagnosis and aid in the syndromic and etiological classification despite the cost and 

access issues. Specific syndromes benefit from contemporary genetic testing. These include 

epilepsies developing before the age of 2, especially epileptic encephalopathies, suspected 

and imaging-confirmed brain malformations, and certain inborn errors of metabolism and 

selected syndromes such as West Syndrome and Dravet Syndrome [90–93]. Undoubtedly, 

the elucidation of a genetic diagnosis is likely to influence classification elements and 

systems in the future.

3.6. Environmental triggers

Environmental factors might contribute to susceptibility to and development of epilepsy. 

Febrile infections herald fever-related syndromes [94,95]. Malnutrition lowers seizure 

threshold perhaps through hyponatremia, or hypocalcemia [96,97]. Traumatic brain injury 

may trigger seizures through GABA signaling disinhibition [98,99]. Photosensitivity and 

altered circadian rhythms may lead to seizures through altered sensory integration [100,101]. 

Other environmental triggers include various prenatal and postnatal factors [102], though 

these must be elucidated in further human studies.

Environmental and genetic factors possibly interact to trigger epilepsy [102]. Environmental 

stimuli may be required to express genes involved in epilepsy or enhance the effect 

of the susceptibility genotype [102]. This effect appears to differ between acquired and 

the so-called “genetic epilepsies”. Genetic events influence acquired epilepsies, and the 

genetic epilepsies are modified by acquired factors [103]. Given their epilepsies role, 

ion channels may be a mechanism involved in the gene-environment interaction [103]. 

Environmental and genetic factors may synergistically alter the density, stoichiometry, and 

post-translational modification of the same ion channels [103]. Acknowledging ecological 

factors and gene-environment interactions in future classification schemes will allow for 

greater representation of the etiology and targeted management of people with epilepsy.

4. Future epilepsy classifications

Current classifications fulfill clinical needs through their applicability and adaptability 

in allowing certain epilepsies to be labelled as unknown. Dimensions that may improve 
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the precision of discussions between and address various users of classification are 

lacking. Cross-contextual validation of the classification and emphasis on a teambased and 

individual-centred care are required to develop a comprehensive conceptualisation of care.

4.1. Validation of the classification cross-contextually

Any classification scheme must be applicable to contexts differing in socioeconomic factors, 

cultures, and practice settings. This is the case in epilepsy as approximately 80% of people 

with epilepsy live in low-and-middle-income countries (LMICs) [104]. Three-fourths of 

them do not receive appropriate treatment [105,106]. There is a dearth of epilepsy specialists 

in LMICs [105–107], so people receive care mainly through primary care, if any. They 

experience markedly higher premature mortality [108]. Hierarchies of importance placing 

epilepsy below other chronic conditions also contribute to a greater burden of epilepsy in 

LMICs.

Epilepsy classification is central in tackling the treatment gap and mortality burden 

in LMICs. Infectious diseases such as neurocysticercosis, malaria, and encephalitis are 

common in LMICs, and hence, valid case definitions linking these to epilepsies must be 

applied [109,110]. Local variations in culturally-specific conceptualisations, manifestations, 

and epilepsy effects must be incorporated into classification schemes [111]. A study in rural 

China determined a substantial portion of generalised epilepsy previously characterised were 

labelled unknown upon the release of the 2017 ILAE-EC [35]. Forms of epilepsy common 

in LMICs differ from those in high income countries due to unique but often multiple 

risk factors [112]. Classification systems must be adaptable to different settings by all care 

providers to communicate effectively [105–107]. Clinicians must prioritise the needs of their 

population in classifying epilepsy to guide resource allocation [110]. ILAE has provided 

basic and advanced versions of classifications, but a singular classification scheme with 

flexibility to address local needs will enable public health efforts and policy [110]. It is also 

essential to allow classification with minimal or no use of technology [110]. Characteristics 

such as age of onset, semiology, family history, risk factors, treatment response, and relevant 

comorbidities can be assessed in clinics [110]. Even in LMICs, classifications should enable 

flexibility to identify locally relevant factors and resource constraints. These efforts can 

be coupled with capacity-building with field workers, increased availability of low-cost 

technology such as telemedicine, and public education campaigns to promote and provide 

appropriate treatment [113–116]. Ensuring broad applicability of the classification will 

include more people with epilepsy globally, thereby providing them with proper treatment 

and help close the treatment gap [105,106].

4.2. Comprehensive team-based approach to epilepsy

A classification system must be coupled with a comprehensive team-based approach to care, 

research, and policymaking. Specialists create current classifications. Involving primary 

health care workers such as physicians, nurses, and ancillary staff, as well as researchers, 

policymakers, and other parties, into discussions will prove productive [117–119]. This will 

allow for appropriate refinement of specific terms used to describe seizures, create a glossary 

of key terms with associated definitions, and resolve discrepancies and ambiguities [11]. The 
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classification system must then be clarified to all personnel to increase their understanding 

[120,121].

Given the need for team-based approach, an elucidation of users’ needs of classification 

is warranted. Table 5 shows a list of potential users of an epilepsy classification and 

different levels of informational needs to accommodate all parties involved. Incorporating 

levels of descriptiveness into the classification will ensure that the communication-related 

needs of all individuals involved are met. The headline portion should be emphasised as 

the “lingua franca” among health-care personnel with varying experience, care centers, 

and across socio-cultural contexts [11]. A linkage to the previous classification systems to 

preserve continuity and allow for monitoring of trends is also necessary [120]. Professional 

organisations and educational bodies within existing health-care structures can have primary 

responsibility in encouraging adoption of the classification [122,123].

4.3. Person-centered care

It is important to recognise the centrality of people with epilepsy in efforts to refine 

classifications. Any classification system must be explained to people and family members 

or caregivers and incorporate mechanisms to obtain feedback during development. This 

will increase understanding of the condition, connect with the care team through greater 

trust and self-involvement in care through acquiring additional information and engaging in 

self-advocacy [117–119,121]. A classification system must involve consideration of person-

centred outcomes and the needs of individuals in addition to traditional measures of disease 

status [124,125]. Measures of health-related quality of life and personal impact should be 

acquired to assess how epilepsy or ASMs are impacting individuals [125]. This will guide 

clinicians regarding possible changes to the frequency of clinic visits, event monitoring or 

medication regimen or alert them of the need for referral to other physicians. Lastly, the 

classification scheme should emphasise a holistic approach to care [126]. Epilepsy poses 

a large logistical and psychological burden to individuals [126–128]. Younger people may 

experience feelings of apprehension regarding revealing their diagnosis, while age-related 

metabolic changes often burden adults, cognitive decline, increased risk for seizure-related 

injuries, extensive comorbidities, and polypharmacy [126,129]. Depression, anxiety, and a 

lack of social connection with other individuals are common [126,129]. Provision of care 

appropriate to the specific concerns of people with epilepsy, psychosocial interventions to 

increase self-efficacy and locus of control, and measures to enhance social support may 

empower people with epilepsy [127,128].

5. Technologies likely to impact future classifications

Consideration of the effect of seven Tesla (7 T) magnetic resonance (MRI), next-generation 

sequencing (NGS), and artificial intelligence and machine learning on classification is 

required to reduce the fraction of unknown epilepsies and enhance the versatility of 

classification as future technological developments change clinical practice.
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5.1. 7T MRI

The 2017 ILAE classification scheme reclassified 27% of generalised and 7% of focal 

cryptogenic epilepsies into epilepsies of unknown type in one study [130]. There is a need to 

reduce the proportion of unknown epilepsies further. Seven Tesla MRI with increased spatial 

resolution allowing visualisation of internal structures and differentiation of pathological 

tissue from normal tissue might conceivably help in reducing this proportion [131–134]. 7 

T provides for detection of lesions previously undiscovered [135–137]. Unaided review of 7 

T images reveals previously unseen lesions in 22% of cases, while utilising a morphometric 

analysis program raises this proportion to 43% [135]. 7 T-morphometric analysis uncovers a 

quarter more lesions than 3 T morphometrics [135].

Additionally, 7 T allows characterisation of focal cortical dysplasia and hippocampal 

sclerosis and volumetric analysis of epilepsy-related brain regions [131,132,138–141]. The 

efficacy of 7T MRI in epilepsy classification relative to 3T MRI is yet to be fully assessed. 

The 4D-EC and IEC allow for incorporating imaging findings [9–11], but there is no 

concerted effort. However, the increased utilisation of 7 T may enable precise classification 

by distinguishing epilepsy types and etiologies, thereby reducing the proportion of unknown 

epilepsies.

5.2. Genome sequencing

NGS has markedly increased the speed of genome sequencing [142–144]. The ability 

of NGS to find causal mutations, including de novo mutations, associated with epilepsy 

syndromes enhances molecular diagnosis [145]. NGS is beneficial to identify genetic causes 

in people with earlier seizure onset, and a family history [146,147]. Currently, available 

gene panels exhibit substantial variability, ascertaining up to 265 genes with reported 

diagnostic yields up to 48.5% [148]. NGS may be unable to determine the precise genetic 

etiology for epilepsies with polygenic inheritance [149] but its utility extends beyond 

genetic factors. NGS uncovers inherited metabolic disorders in 13% of people with normal 

metabolic investigations [150]. NGS has the potential to refine metabolic, infective, and 

autoimmune causes by identifying genetic alterations associated with these etiological 

categories. Similarly, NGS enhances understanding of pathogenesis through genotype-

phenotype correlations, allowing for refined diagnosis [151]. Through the inclusion of 

genes associated with epilepsy and the possibility of discovering novel mutations, greater 

adoption of NGS may improve classification by comprehensively characterising genetic 

factors, catalysing reclassification of unknown epilepsies into well-delineated categories.

5.3. Artificial intelligence and machine learning

The use of artificial intelligence and machine learning in epilepsy has grown substantially 

[152,153]. Artificial neural networks have been utilised in tandem with multiwavelet 

transform techniques to diagnose epilepsy with high accuracy, sensitivity, and specificity 

based on EEG data [154–159]. Artificial intelligence and machine learning have also 

been used to localize seizure onset zones from EEG data [160–164]. For example, an 

unsupervised algorithm can collate the localisation of epileptiform discharges over a day 

into a single map [164]. Recording periods of less than two hours may enable clinically 

meaningful characterisation of seizure onset zone [162]. Recently, artificial intelligence 
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and machine learning approaches have examined seizure classification [165–169]. A text 

mining approach based on ICD-9 yielded good performance in detecting complex focal 

seizure, simple focal seizure, and convulsive epilepsy based on data from the electronic 

medical record [166]. It is possible to distinguish temporal from extratemporal seizure by 

extracting spatiotemporal features from facial and pose semiology from EEG-records [167]. 

Studies analysing EEG data with multiple extraction methods have found high accuracy, 

sensitivity, and specificity [168,169]. Development of capabilities to differentiate a more 

significant number of seizure types, identify associated pathology and probable etiology, 

and characterise epilepsies based on multimodal inputs may enable delineation of previously 

unrecognised factors to clarify ambiguities in classification, create additional classes, and 

reduce the proportion of unknowns.

6. Conclusions

Epilepsy classification is evolving with promising recent developments. Incorporating stages 

of brain development, genetic and environmental triggers, and changes in the demography 

into a modernised classification is necessary. Validation of this classification in different 

socioeconomic status contexts and coupling with a team-based approach and person-centred 

perspective is also required. These factors may ensure optimal care by addressing increasing 

the ease and precision of communication between the myriad of individuals who utilise the 

epilepsy classification. Technological advances, including 7T MRI, genome sequencing, and 

artificial intelligence, may prove helpful in improving future epilepsy classification.
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Fig. 1. Timeline of past and current classifications.
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Fig. 2. Channels commonly affected in epilepsy.
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Table 1
Existing epilepsy classification schemes.

Organization Name Year Salient features

ILAE ILAE 1981 • Partial: simple, complex, secondary

• Generalised: absence, myoclonic, clonic, tonic-clonic, tonic

    1985 • Semiology: focal vs. generalised

• Idiopathic: idiopathic vs. symptomatic

• Epilepsies are syndromes

    1989 • Localization-related epilepsies and syndromes, generalised epilepsies and 
syndromes, epilepsies and syndromes undetermined to be generalised or 
focal, and special syndromes

    1993 
(proposed)

• Location: Generalised, partial, multiple seizure types, and unclassified 
seizures

• Risk factors: provoked, unprovoked seizure of unknown etiology, 
cryptogenic

    2001 
(proposed)

• Five axes: ictal phenomenology, seizure type, syndrome, etiology, 
impairment

    2006 
(proposed)

• Five axes: ictal phenomenology, seizure type, syndrome, etiology, 
impairment

• Delineation of self-limited epilepsy syndromes

    2010 
(proposed)

• Focal replaced partial

• Etiology; genetic, structural, metabolic, unknown

• Constellations: electroclinical syndromes with specific combinations of 
semiological, radiological, or pathological findings

    2017 • Focal: networks limited to one hemisphere

• Generalised: engage both hemispheres but begin anywhere within 
generalised networks

• Seizures of unknown onset: if more information required

• Epilepsies sequentially classified by seizure type, epilepsy type, and 
epileptic syndromes

Other Semiology 1998 • Semiology-based: auras, autonomic seizures, dialeptic seizures, motor 
seizures, special seizures

  Five 
dimensional

2005 • Five dimensions: location of epileptogenic zone, seizure semiology, 
etiology, seizure frequency, related medical conditions

  4D-CS 2012 • Four dimensions: semiology, location of epileptogenic zone, etiology, 
associated comorbidities

    2019 • Epileptic paroxysmal events: semiology, location of epileptogenic zone, 
etiology of epilepsy, associated comorbidities

• Non-epileptic paroxysmal events: organic or psychogenic
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Organization Name Year Salient features

  IEC 2020 • Headline, seizure type, epilepsy type, etiology, comorbidities / relevant 
individual preferences

Integrated Epilepsy Classification (IEC), International League Against Epilepsy (ILAE), four-dimensional classification scheme (4D-CS).
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Table 2
Studies describing the yield of ILAE syndromic classifications.

Type of Study Study Country Classifier(s) Findings

Population-based Oka et al., 2006 Japan Neurologist • 15.2% of people with epilepsy were classified into 
syndromic categories

  Olafsson et al., 2005 Iceland Neurologist • 58% of cases fell into non-informative categories

  Wang et al., 2019 China Neurologist • Unknown epilepsy increased from 1.2% with 1985 ILAE 
classification to 2.8% with 2017 ILAE classification

Primary care-
based

Murthy et al., 1998 India Neurologists • 48% of people with epilepsy fell into ILAE categories

Tertiary care 
centrebased

Manford et al., 1992 United 
Kingdom

Epileptologist • 33.6% of people with epilepsy were in diagnostic ILAE 
categories

  Kellinghaus et al., 2004 United States Epileptologist • 4% of adults and 21% of children were diagnosed with 
specific epilepsy syndrome

  Gao et al., 2018 China Neurologist • 44.5% of cases were not classified with 1981 ILAE 
classification, while 7% of cases were not classified with 
the 2017 ILAE classification
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Table 3
Single gene disorders implicated in epilepsy.

Condition Genes

Angelman syndrome UBE3A

Aristaless-relaxed homeobox gene (ARX) disorders ARX

Autosomal dominant epilepsy with auditory features LG11

Autosomal dominant juvenile myoclonic epilepsy GABRA1, CACNB4, CLCN2

Autosomal dominant nocturnal frontal lobe epilepsy CHNRA4, CHNRNB2

Benign familial neonatal convulsion KCNQ2, KCNQ3

Benign familial neonatal-infantile seizures SCN2A

Dravet syndrome SCN1A

Early onset absence epilepsy SLC2A1

Generalised epilepsy with febrile seizures plus SCN1A, SCN2A, SCN2B, GABRG2

Hot water reflex epilepsy SLC1A1

Juvenile myoclonic epilepsy type 1 EFHC1

Lafora body disease EMP2A, NHLRC1

Myoclonic epilepsy with ragged-red fibers (MERRF) TK, TL1, TH, TS1

Neurofibromatosis NF1, NF2

Neuronal ceroid-lipofuscinoses / Batten disease CLN3, CLN5, TPP1

Protocadherin-19 (PCDH 19) related epilepsy PCDH-19

Rett syndrome MECP2

Severe myoclonic epilepsy of infancy SCN1A

Sialidosis NEU1, PCDH19

Tuberous sclerosis TSC1, TSC2

Unverricht-Lundborg myoclonus epilepsy CTSB
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Table 4
Common genetic mechanisms for the development of epilepsy.

Category Component Mechanism

Voltage-gated 
channelopathies

Na+ channel Inappropriate activation of current Prolonging activation
Incomplete activation of channels Acceleration of recovery from inactivation

  K+ channel Prolong neuronal depolarization through slow deactivation, loss of high-
frequency bursting, or prolongation of membrane repolarization

  Ca2+ channel Promote neuron synchrony by lowering thresholds for electrogenesis

Ligand-gated 
channelopathies

GABA channel Reduction of GABA-activated Cl-current
Increase in rate of desensitization

  Nicotinic ACh receptor Slowed desensitization

  NMDA glutamate receptor Increased duration of excitation

  AMPA glutamate receptor Initiating excitation

  Metabotrobic glutamate receptor Blockade of accommodation to a steady current
Potentiation of effects of NMDA, AMPA, and depolarization

  Serotonin receptor Loss of inhibitory current

Neurotransmitter release 
machinery

Synapsins 1 and 2 Decreased size of presynaptic vesicle pool particularly in inhibitory synapses

  Sv2A Sustained release of neurotransmitters

  Vesicular zinc sequestration Neuron hypersynchrony

  Reduced recycling Prolonging activation

Structural Cortical dysplasias Inhibited postnatal granule cell proliferation in dentate gyrus Hypertrophy of 
neocortex Cell migration, segmentation, and patterning reduced
Inhibitory neurons reduced or inhibited
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Table 5
Potential Users of Epilepsy Classification.

Informational Need User Role

Sufficient knowledge conveyed in a 
comprehensible manner

People with epilepsy Understand condition, treatments, and prognosis; care for oneself; 
connect with other people with a similar condition

  Family members / caregivers Understand condition, treatments, and prognosis; care for their 
family member; join support groups for family members / 
caregivers of people with epilepsy

Technical information to provide 
monitoring and basic care

Electroneurodiagnostic 
technicians Nurses

Acquiring context for EEG outputs
Acquire relevant information and convey accurate information to 
physicians

Specialized descriptions to determine 
management and provide referrals 
when appropriate

Primary care physician Manage the everyday care of people with epilepsy and know when 
to refer to an epilepsy specialist

Further technical information for 
complex epilepsy care

Neurologist Diagnose and manage the epilepsy-specific care of people with 
epilepsy; know when to refer to epilepsy specialist

Precise classification language to 
localize and manage epilepsy

Epilepsy specialist Diagnose and manage the epilepsy-specific care of people with 
epilepsy

medically or surgically Neurosurgeon Decide whether surgical management is warranted, select the 
surgical technique, and perform surgery

Sufficient knowledge to conduct 
studies

Genetics researcher Understand the genetics, phenotypic expressions, and variations in 
both with regard to epilepsy

Clear descriptions to guide research Public health researcher Understanding the epidemiology and outcomes of types of epilepsy

  Pharmaceutical manufacturer Understanding which types of epilepsy require development or 
refinement of antiseizure medications

Precise delineation of conditions to 
guide financing and policy

Insurer Understand how to determine reimbursement for epilepsy care

  Funding authority Determine funding priorities for epilepsy research

  Policymaker Understanding the burden and economic consequences of epilepsy

J Neurol Sci. Author manuscript; available in PMC 2022 September 06.


	Abstract
	Introduction
	Past and current classifications
	The past and present classifications
	Caveats in classifications
	Comorbidities
	Changes in the demography of epilepsy
	Brain age
	Genetic etiologies
	Environmental triggers

	Future epilepsy classifications
	Validation of the classification cross-contextually
	Comprehensive team-based approach to epilepsy
	Person-centered care

	Technologies likely to impact future classifications
	7T MRI
	Genome sequencing
	Artificial intelligence and machine learning

	Conclusions
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

