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Abstract

An extant genome can be the descendant of an ancient polyploid genome. The genome aliquoting problem is to
reconstruct the latter from the former such that the rearrangement distance (i.e., the number of genome rearrangements
necessary to transform the former into the latter) is minimal. Though several heuristic algorithms have been published, here,
we sought improved algorithms for the problem with respect to the double cut and join (DCJ) distance. The new algorithm
makes use of partial and contracted partial graphs, and locally minimizes the distance. Our test results with simulation data
indicate that it reliably recovers gene order of the ancestral polyploid genome even when the ancestor is ancient. We also
compared the performance of our method with an earlier method using simulation data sets and found that our algorithm
has higher accuracy. It is known that vertebrates had undergone two rounds of whole-genome duplication (2R-WGD)
during early vertebrate evolution. We used the new algorithm to calculate the DCJ distance between three modern
vertebrate genomes and their 2R-WGD ancestor and found that the rearrangement rate might have slowed down
significantly since the 2R-WGD. The software AliquotG implementing the algorithm is available as an open-source package
from our website (http://mosas.sysu.edu.cn/genome/download_softwares.php).
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Introduction

Whole genome sequencing projects permit easy and accurate

detection of genome rearrangement events by direct comparison

of two genome sequences. To measure these events, Sankoff

proposed the use of the edit distance in 1992, which is defined as

the minimum number of rearrangement events necessary to

transform one genome into another. Several types of edit distance

have been proposed, including the reversal distance and the

double cut and join (DCJ) distance [1]. Pevzner et al. introduced

reversal distance and developed a breakpoint graph–based, linear–

time exact algorithm for computation [2–5]. Later, Yancopoulos

et al. proposed the DCJ distance and its corresponding efficient

calculation [6]. DCJ differs from other edit distances in that it

includes chromosomal fusion, fission, inversion, translocation and

block interchange within a single model and allows simpler

algorithms for calculation.

In many species, such as in vertebrates [7,8], paramecia [9],

yeasts [10] and many plants [11], the extant rearranged genome

descended from an ancient form that underwent r–way poly-

ploidization (or whole genome duplication, WGD, where r–way

indicates that polyploidization generated r copies of the original

genome). For example, two almost consecutive rounds of WGD

(2R–WGD), or 4–way polyploidization, occurred upon the origin

of vertebrates and are suggested to be responsible for the dramatic

increase in the morphological complexity of vertebrates [12].

Some researchers have suggested that WGDs might increase

rearrangement rates [13–17], whereas others have proposed the

opposite [18]. Despite the debate regarding whether polyploidiza-

tion complicates the rearrangement process, polyploidization has

posed challenges for the computation of rearrangement distance.

One of the challenges is the genome aliquoting problem [19],

which is to find the minimum number of rearrangement events

required to transform a rearranged r–way polyploidized genome

into a non–rearranged form and reconstruct the genome of the

latter. The problem with r=2 represents a special case called

genome halving, which has been addressed several times, and for

which a linear–time exact algorithm with respect to DCJ distance

is available [20–23]. The more generalized case of the problem

with r .2 has also been studied [19,24,25], including the heuristic

algorithm developed by Warren and Sankoff [19]. Their algorithm

relies on the occurrence number of gene–gene adjacencies in the

extant genome, which is an effective characteristic when the

rearrangement distance is small and many gene–gene adjacencies

retain more than two copies. However, in reality, many gene–gene

adjacencies could appear only once and hence affect the precision

of the algorithm.

In this study, we introduce a new heuristic algorithm for the

genome aliquoting problem with respect to DCJ distance. Our

algorithm considers not only the multiplicities of edges in the CPG

but also the number of black cycles and their local costs (i.e., Np
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and Cp in Methods), thus it can handle weak adjacencies. This

algorithm performs well on extensive simulation data sets and is

better than previous methods. It has been successfully applied to

the 2R-WGD of vertebrates.

Methods

Problem Description
Warren and Sankoff have introduced the genome aliquoting

problem [19]. Here, we revisit the problem and present the

definitions and notations that are commonly used.

The fundamental element in a genome is the gene, and several

duplicated (or similar) genes form a gene family. The number of

genes in a gene family represents the size of the family. In this

paper, a gene family is represented by an unsigned integer that is

called a (gene) family ID, while a gene is represented by its signed

family ID with an integer subscript, where the sign (positive or

negative) indicates direction of the gene in the genome, while the

subscript, named copy ID, denotes different genes in the same

family. We represent a genome as a set of linear chromosomes, in

which each chromosome is represented by a sequence of genes

(Figure 1A) beginning and ending with two special genes called cap

genes. All cap genes form the cap family with family ID ‘0’. We can

also represent a genome by replacing each non-cap gene +gi with
an ordered pair, gti g

h
i , and by replacing2gi with ghi g

t
i (Figure 1B),

where ghi and gti are called the head (ID) and tail (ID) of the gene gi,
respectively, and both heads and tails (and the cap genes) are

called extremity (ID). The heads or tails of genes within the same

gene family also consist of a head family or tail family, both of which

(along with the cap family) are called the extremity family (with the

ID gt and gh, for example). The connection between two adjacent

genes is defined as an adjacency. Moreover, we define three special

genomes: (1) single copy genome, in which the size of each non-cap

gene family is exactly one; (2) perfectly duplicated genome, which

represents multiple copies of the single copy genome, and may

descend from a single copy genome through WGD events; (3)

rearranged duplicated genome, in which all non-cap gene families have

exactly the same size, named duplicated size.

To describe the genome aliquoting problem, a rearrangement

operation (or model) is needed. Here we use the DCJ operation

[6]. Each DCJ operation cuts two adjacencies and rejoins the four

free extremities differently to form two new adjacencies. If both of

the original adjacencies connect a non-cap gene and a cap gene,

and the two cap genes are from different chromosomes, the

operation fuses the two chromosomes; and if one adjacency

connects two cap genes and the other connects two non-cap genes,

the operation breaks a chromosome into two. The DCJ distance

Figure 1. Representation of a genome, a PG and a CPG. (A) A rearranged duplicated genome with duplicated size of 3 is represented as a
sequence of signed integers, where a positive (negative) sign is represented by the direction of the colored arrow. (B) The same genome is
represented as a sequence of extremities (i.e., heads, tails or cap genes). (C) PG of the above genome. Each non-cap gene is cut into head and tail,
which becomes two vertices in the partial graph. (D) The vertex reposition of the PG in (C). (E) The contracted PG that is converted from the PG
showed in (C) and (D). Each vertex corresponds to an extremity family. Numbers on each edge indicate the copy IDs (i.e., subscripts) of the two
extremities connected by the corresponding adjacency. Note that the edge (1h, 2t) in (E) corresponds to 2 adjacencies (or edges) in (C), so its
multiplicity is 2.
doi:10.1371/journal.pone.0064279.g001

Figure 2. Transforming paths to black cycles. Vertices u, v are
matched. The upper path is (u, a, b, c, d, e, f, v), and the bottom path is
(u, g, h, e, d, i, j, k, v). Four colored subpaths on the left are contracted
into four edges in the right cycles, respectively. An odd path is
transformed into an even cycle, while an even path is transformed into
an odd cycle. Solid and dashed edges correspond to black and gray
edges, respectively.
doi:10.1371/journal.pone.0064279.g002
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between two genomes is defined as the minimum number of DCJ

operations necessary to transform one genome into the other [6].

Now, the genome aliquoting problem is defined as follows. Given a

rearranged duplicated genome (Gobs, ’obs’ stands for observed)

with duplicated size r ($2), reconstruct a perfectly duplicated

genome (Gdup) such that the DCJ distance between them is

minimal [19]. Additionally, we can also obtain the corresponding

single copy genome (Ganc) of Gdup. It remains an open question

whether an efficient exact solution exists for the genome aliquoting

problem with respect to DCJ distance [19]. Here, we present a

new heuristic algorithm to solve the problem.

Solutions
Our solution makes use of the partial graph (PG). A PG of a

genome is a graph in which each vertex corresponds to an

extremity of the genome, and each edge corresponds to an

adjacency (Figure 1C). All of the above concepts regarding

extremities are also suitable for vertices, e.g., the subscript of

vertex is also called the ‘copyID’ of the vertex. PGs of two

genomes with same gene contents can form a bicolor-edge graph

(i.e., breakpoint graph [21]), one color for each genome, which is

used to calculate the DCJ distance between the two genomes.

Minimizing DCJ distance is the same as maximizing the number

of alternating (color) cycles in the bicolor graph [6]. A PG can be

transformed into a new graph through the following two steps: (1)

contract all vertices of the same extremity family into a single new

vertex, identified by the corresponding family ID, and (2) each

original edge, taking (1h3,2
t
2) for example, is transformed into a

new edge (1h, 2t) with multiplicity 1. In this latter step, if the edge

already exists then the multiplicity of that edge is increased by 1

every time. Any edge with multiplicity 0 is removed. The new

graph is called contracted partial graph (CPG). Figure panels 1C to 1E

show an example of the process transforming a PG into a CPG.

We define an edge in CPG(Gobs) (i.e., the CPG of Gobs) strong if

its multiplicity is greater than one, otherwise the edge is called

weak. The corresponding adjacency of a strong (weak) edge is also

called strong (weak) adjacency. Because every edge in CPG(Gdup)

must have multiplicity r (i.e., the duplicated size of Gobs), a strong

edge in CPG(Gobs) with higher multiplicity (.1) represents the

true original edge in CPG(Gdup) more likely than weak edges. We

initialize graph A as CPG(Gobs) and graph B as PG(Gobs) (i.e., the

PG of Gobs), with all edges colored black. The solution iterates the

following first two steps and then goes to Step 3.

Step 1: Infer Strong Adjacencies
Taking multiplicity as edge weight by applying the maximum

weight-matching algorithm to all strong edges of graph A, we first

obtain a matching, which contains a set of pairwise non-adjacent

strong edges. For each edge (u, v) in the matching, we add a gray

edge (u, v) with the multiplicity r (i.e., the duplicated size of Gobs)

into graph A.

Figure 3. Adjacency inference in H (i.e., gray dashed edges in graph B) frommatched vertices u, v in graph A. Vertices a, b are matched
vertices that have not been contracted. Vertices c, d are unmatched. Black solid edges are derived from PG(Gobs), CPG(Gobs) or contracted edges. The
four different paths found by find_path(u, v) are as follows: (1) (u, v) (green), (2) (u, a, b, v) (blue), (3) (u, b, a, c, v) (orange), and (4) (u, d, v) (pink). In
graph A, the first two paths are odd and form two even cycles – (u, v, u) and (u, a, b, v, u) – by adding the gray edge (u, v) in the top right panel. The
former disappears after contraction, while the latter generates a new black edge (a, b) in the bottom left panel. The last two paths are merged by two
same gray edges (u, v) to form an even cycle – (u, b, a, c, v, u, d, v, u) – that is contracted and generates two new black edges, (b, d) and (c, d). Two
numbers on each edge of graph A indicate the copy IDs of the two corresponding vertices in graph B.
doi:10.1371/journal.pone.0064279.g003

AliquotG

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e64279



Secondly, for each (strong) edge (u, v) in the matching, we add r

pairwise non-adjacent gray edges (ui, vj) into graph B. To know

which ui (i = 1, NNN, r) and vj (j = 1, NNN, r) should be paired, we use the

following local greedy method. We search for a set of paths from u

to v in graph A with minimum total length (in terms of number of

edges) in all path sets that satisfy the following four conditions: (1)

Figure 4. Reconstructing Gdup from the genome (Gobs) of Figure 1A. This figure shows how graph A changes during the solution. In this
simple example, step 2 is not necessary, but here we still calculate the weights Np, Cp and use step 2 to infer the last two adjacencies (3h1,4

t
3), (3

h
3,4

t
2),

(3h2,4
t
1), (1

t
1,4

h
1), (1

t
2,4

h
2) and (1t3,4

h
3) of Gdup (or H) ahead of linearizing circular chromosomes, to show how step 2 works. Different vertex colors indicate

different gene families. Edges with multiplicity k are represented as k edges for a clear display. The numbers on each edge are the copy IDs of the two
vertices incident to the corresponding edge in graph B. Blue numbers are the weights Np, Cp for the pair of vertices linked by gray dotted edge.
doi:10.1371/journal.pone.0064279.g004
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each path in the set must start and end with black edges; (2) each

path must visit and leave a matched vertex (i.e., vertex in the

matching) through two edges with different colors; (3) an edge

cannot be passed more times than its multiplicity; (4) each

unmatched vertex (i.e., vertex not in the matching) can be visited

at most once by at most one path in the set. This routine is

declared as find_path(u, v) and is implemented using a modified

Suurballe’s algorithm [26].

Each path in the set and the gray edge (u, v) will form a cycle

with a length that is the length of the path plus one, so an odd path

will form an even cycle and vice versa. Because of the path

conditions (1) and (2), any gray edge in the path is contained in

some alternating black-gray subpath whose first and last edges are

black, therefore each subpath (e.g., (c, d, e, f) in Figure 2) can be

contracted into a single black edge (e.g., (c, f) in Figure 2).

Therefore, all gray edges are removed, and all edges in the cycle

will be black after being contracted (Figure 2). Condition (4)

guarantees that all the black cycles are separated. According to

Theorems 4 and 8 in Alekseyev’s and Pevzner’s paper [20], to

maximize the number of alternating cycles in graph A and B, all

odd black cycles (i.e., even paths in the path set, ’odd’ or ’even’ in

terms of the number of edges) should be paired.

Therefore, for each odd path, let (u, a,NNN, b, v) be the path in

graph A in which (u, a) and (b, v) are black (by condition (1)), and

let (ui, ax), (by, vj) be the corresponding edges in graph B. We add a

gray edge (ui, vj) into graph B (Figure 3, paths 1 and 2) and

decrease the multiplicity of the edge (u, v) by one in graph A. For

each pair of even paths (u, a,NNN,b, v) and (u, c,NNN,d, v), let (ui, ax),
(vj, by), (up, cw), (vq, dz) be the corresponding edges in graph B of

(u, a), (v, b), (u, c), (v, d), then we add two gray edges (ui, vq), (up, vj)

into graph B (Figure 3. paths 3 and 4) and decrease the multiplicity

of edge (u, v) in graph A by two. For any other copy of edge (u, v)

in graph A, do as in the former case. Next, we remove u, v and all

the edges incident to them from graph A. Now, for each gray edge

(ui, vj), both ui and vi are incident to exactly one black edge in

graph B (Figure 3, bottom middle panel). As an example, consider

the gray edge (u2, v1) in Figure 3. There is one black edge (a3, u2)

incident to u2 and another black edge (v1, b2) incident to v1. These

three edges (two black edges and one gray edge) are contracted

into a new black edge (a3, b2), and the multiplicity of the edge (a, b)

is increased by a factor of one in graph A (Figure 3, bottom left

panel, thick edge). The new graph B is contracted into a new

(contracted partial) graph A. At last, we add all adjacencies (ui, vj)

into genome H (which is empty initially), corresponding to the

above gray edges (ui, vj) in graph B.

Step 2: Infer Weak Adjacencies
At this stage, all vertices in thematchingandall gray edges ingraph

A have been contracted into black edges, so only unmatched vertices

andblackedges remainpresent in thenewgraphsAandB. IfgraphsA

andBare empty, the iteration finishes, otherwise,weattach eachpair

of vertices u, v in graph A two new weights (e.g., Figure 4): (1) the

numberofpaths,denotedasNp, that find_path(u,v) returns,which
indicates how many black cycles can be generated – according to

Theorems 4 and 8 in Alekseyev and Pevzner’s paper [20] and the

statement in Step 1, the more black cycles, the larger the number of

alternating cycles in the breakpoint graph of Gobs and Gdup; (2) the

average number of alternating cycles that can be yielded from the

black cycles per edge cost, denoted as Cp, which is calculated as

follows: Cp =
PNp

i~1 t(Liz1)=2s
.PNp

i~1 Li, where Li is the length of

the ith path in the path set.We choose the pair of vertices u, vwith the

highest combinedweightWp= aNp+(12a)Cp (a=0.5), match uwith

v, and then formnew adjacencies ofH as in Step 1. Allmatched non-

cap vertices are removed from graphs A and B after contracting, so

each non-cap vertex ismatched only once. Therefore, the genomeH

will be a perfectly duplicated genome at last.

In the case of the genome halving problem, graph A in Step 2

can be decomposed into black cycles easily. For each pair of

vertices u, v in a black cycle of graph A, Np=2. Let L be the length

of the black cycle, then the total length of the two paths found by

find_path is
PNp

i~1 Li~L always. However, there are three cases

with a different Cp: (1) when L is even and the u, v vertices are

separated by an odd number of edges, the two paths are both odd,

Figure 5. Application of the heuristic algorithm to four simulation datasets. Each light blue point in each panel corresponds to a data
point. Green line: x = y. Inner axis labels represent DCJ distance, whereas outer labels show relative DCJ distance. The Y value of the dark blue dot is
0.1 (relative DCJ distance) in each plot, where n is the number of gene families and r is the duplicated size of Gobs, and the blue numbers (DCJ
distance and relative DCJ distance) below each blue cycle represent the corresponding X values. Note that the inferred and simulated distances are
almost the same when the relative simulated distance is smaller than 0.4. The distance is less than 0.1, until the relative simulated distance increases
to approximately 0.6. The relative DCJ distance between simulated and inferred Gdup is small when the simulated distance is smaller than 0.25 (r= 3)
or 0.33 (r=4).
doi:10.1371/journal.pone.0064279.g005
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so
PNp

i~1 t(Liz1)=2s~L=2z1, and Cp= (L+2)/2L; (2) when L is

even and u, v are separated by even number of edges. The two

paths are both even, so
PNp

i~1 t(Liz1)=2s~L=2 and Cp=L/

Figure 6. Comparison of inferred distance computed using Sankoff-Warren’s algorithm and our own algorithm. Each red point is a
simulation data point. The proportions of data points calculated using our method with inferred distances larger than those calculated using the
Sankoff-Warren method are 0.7%, 5.9%, 0.5% and 3.2% (from the upper to bottom panels, respectively). Green line: y = 0. The variable n is the number
of gene families, and r is the duplicated size of Gobs.
doi:10.1371/journal.pone.0064279.g006

Figure 7. DCJ distance-based NJ tree of human, chicken, mouse
and their WGD ancestor.
doi:10.1371/journal.pone.0064279.g007

Table 1. The number of genes used in the analysis.

amphioxus chicken mouse

chicken 168 – –

mouse 284 9,983 –

human 328 9,729 14,058

doi:10.1371/journal.pone.0064279.t001
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(2L) = 0.5; (3) when L is odd, one path – L1, for example – is even,

while the other – L2 for example – is odd, soPNp
i~1 t(Liz1)=2s~(Lz1)=2 and Cp= (L+1)/2L. Because

(L+2)/2L.(L+1)/2L .0.5, vertices u, v in case (1) are chosen

for even black cycles and u, v in case (3) are chosen for odd black

cycles. Therefore, if we follow the above process, PG(H) (PG of H)

will be non-crossing (defined in [20]), and the maximum number

of alternating cycles in PG(G, H) (PG of G and H, i.e., breakpoint

graph of G, H) will be the same as in Theorem 7 of [20]. Though

the above solution is exact for the genome halving problem, it can

only be a heuristic principle for the genome aliquoting problem

with duplicated size larger than two, where the black edges in

graph A cannot be decomposed into black cycles easily.

To speed up the process, we do not calculate Wp in an all–to–all

way, but only calculate it for those pair of vertices for which the

distance in graph A is not larger than a given value Depth (which

is set to one in the simulation).

Step 3: Linearize Circular Chromosomes
After the above iteration, genome H becomes the reconstructed

and perfectly duplicated genome Gdup. However, we do not

restrict the genome to be linear throughout, so we have to address

all circular chromosomes. First, we try to break any circular

chromosome and merge it into another chromosome if the DCJ

distance between Gobs and the new genome Gdup is not larger than

that between Gobs and the old Gdup. This approach is just a DCJ

operation between an adjacency in the circular chromosome and

an adjacency in another chromosome. Alternatively, we try to

search for an adjacency in the circular chromosome on the same

principle and break it to form a new linear chromosome. If both

searches fail, we search for a DCJ operation to merge or break the

circular chromosome with the least increase of DCJ distance. At

last, we calculate the DCJ distance between the reconstructed Gdup

and Gobs using the method of Yancopoulos et al. ([6]). A simple

example of this method is shown in Figure 4.

Results

Simulation Results
To evaluate the performance of our heuristic algorithm, we

created four simulation datasets, each with 1,000 data points. Each

data point is generated as follows: an integer sequence 1,???,n is

generated and randomly broken into m segments to simulate an

ancestral single copy genome just before WGD (Ganc) with m

chromosomes and n gene families. Variable m is uniformly

randomly chosen between 1 and m0 (m0 = 2 if n=100 and

m0 = 10 if n=1,000). To simulate an r–way WGD, Ganc is further

duplicated into r copies, and genes from the same gene family are

assigned different copy IDs, from 1 to r, to obtain the perfectly

duplicated genome (Gdup) with the duplicated size r. Once Gdup is

generated, DN DCJ operations are performed to rearrange Gdup

into the extant rearranged duplicated genome (Gobs), where DN is

uniformly distributed in the interval [1, r6n]. Given any DCJ

distance DDCJ between Gobs and Gdup, the corresponding relative

DCJ distance (dDCJ) is defined as DDCJ/(r6n) (where r6n is just the

number of genes in Gobs). At last, a complete data point contains

three simulated genomes (Ganc, Gdup and Gobs), and both Gdup

and Gobs consist of n gene families with a size of r.

For each data point, we applied our heuristic algorithm to infer

Gdup from Gobs and computed DCJ distance between them. The

reconstructed Gdup is called inferred Gdup, and the DCJ distance is

called inferred DCJ distance (or inferred distance), accordingly. The

DCJ distance between the simulated Gdup and Gobs is called

simulated DCJ distance (or simulated distance). Comparing the two

distances shows that the inferred distance is almost the same as the

simulated distance when the relative simulated distance is lower

than 0.4 (Figure 5, top). Only a few data points (,1%) have an

inferred distance larger than the simulated distance by 1–2 DCJ

operations. When the relative simulated distance is larger than 0.4,

the algorithm displays significant underestimation of the simulated

distance (Figure 5, top). It is the parsimony in the definition of the

genome aliquoting problem that leads to this underestimation;

furthermore, in practice, the smaller the inferred distance, the

more accurate the algorithm.

Another important application of this algorithm is to infer the

ancestral duplicated genome Gdup. Therefore, we also compared

the simulated Gdup with the inferred Gdup using the distance

between them (Figure 5, bottom). We found that the distance

between simulated Gdup and inferred Gdup was almost 0 when the

relative simulated distance was smaller than 0.1 for r=3, and 0.2

for r=4, which means that the inferred Gdup is almost the same as

the simulated Gdup. The distance remains far smaller than the

simulated distance as the relative simulated distance increases to

0.25 for r=3 or to 0.33 for r=4, suggesting that at medium

divergence our algorithm displays good accuracy in the ancestral

genome reconstruction. However, when the relative simulated

distance rises over 0.4 for r=3 or over 0.6 for r=4, the inferred

Gdup is nowhere near the simulated Gdup.

Moreover, we compared our algorithm with that of Sankoff and

Warren [19]. We used Sankoff-Warren’s algorithm to reconstruct

Gdup from the simulated Gobs of the same simulation datasets and

compared the inferred DCJ distance between the two algorithms.

The definition of the genome aliquoting problem suggests that the

smaller the inferred distance the better the method. We found that

the distance inferred by our algorithm was smaller than that

inferred by Sankoff-Warren’s algorithm in more than 95% of

cases, especially when the relative simulated distance exceeded

0.25 (i.e., there were more weak adjacencies in Gobs), which

suggests that our method is more accurate, especially as the

simulated distance increases (Figure 6). Further checking the result

suggests that our inferred distance is always smaller than that

obtained by Sankoff-Warren’s algorithm when we do not break

circular chromosomes.

Taken together, although our heuristic algorithm cannot guaran-

teeminimumDCJdistancebetweenGobsandthereconstructedGdup,

the simulation results shows that it usually performs well, even when

the relative simulated distance exceeds 0.4.

Application to the 2R-WGD Event of Vertebrates
It has been recognized that two rounds of WGD (2R–WGD)

happened at the origin of vertebrates 450 Mya [7]. Because the

interval between the two rounds of WGD is supposed to be short,

the 2R–WGD can be assumed to be a 4–way polyploidization.

Consistent with this, most phylogenetic relationships between

ohnologs cannot be reliably resolved. Moreover, it was suggested

that few rearrangement events had occurred during the 2R–WGD

Table 2. Relative DCJ distance among the WGD ancestor,
chicken, mouse and human.

WGD ancestor chicken mouse

chicken 0.484 – –

mouse 0.542 0.169 –

human 0.554 0.152 0.054

doi:10.1371/journal.pone.0064279.t002
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[27]. To analyze the 2R–WGD, we applied our algorithm to

human, mouse and chicken genomes.

The gene repertoire and corresponding genomic coordinates of

human, mouse and chicken were download from ENSEMBL FTP

(ftp://ftp.ensembl.org/pub/release-50/fasta/) [28]. The complete

gene repertoire of amphioxus Branchiostoma foridae was downloaded

from JGI (http://genome.jgi-psf.org/Bra1/Bra1.down-

load.ftp.html, the file ’proteins.Bra1.fasta.gz’ and ’Boridae_v1.0_-

FilteredModelsMappedToAssemblyv2.0.gff.gz’). Because amphi-

oxus is a close relative to vertebrates and did not undergo the 2R–

WGD, amphioxus genes can be used as anchors to identify

vertebrate gene families that were created by the 2R–WGD. For

vertebrate–vertebrate pairs, only 1:1 orthologous gene families

from OMA [29] were retained for further study. We implemented

Dehal’s method [7] to infer amphioxus–vertebrate 1:4 2R-WGD-

paralogs, using amphioxus as an outgroup. The numbers of genes

used for study are presented in Table 1.

We found that the inferred relative DCJ distances from the

three genomes were in agreement, (0.484 for chicken, 0.554 for

human and 0.542 for mouse) (Table 2). This result is consistent

with the common opinion that chicken retains more ancestral

adjacent gene pairs, whereas the human and mouse lineage have

undergone accelerated rearrangement rates. Further, this finding

also indicates that despite having occurred 450 Mya, the

rearrangement distance is far from reaching saturation, which

explains why the reconstruction of an ancestral vertebrate genome

is reasonably effective [27,30].

We also inferred relative DCJ distances for human-mouse,

human-chicken and mouse-chicken (Table 2) and constructed an

NJ tree with inferred distances (Figure 7). Considering that the

divergence time of chicken-mammal is approximately 300 My,

and the 2R–WGD occurred approximately 450 Mya, the

rearrangement rates before and after chicken–mammal common

ancestor are 0.4358/150=0.00296 DCJ per million year per gene,

and (0.0853+0.0483+ (0.0257+0.0283)/2)/(30062) = 0.000268

DCJ per million year per gene, respectively. This indicates that

the rearrangement rate tends to decelerate later in evolution

following the 2R-WGD.

Discussion

In this study, we present a new heuristic algorithm for genome

aliquoting. Overall, the algorithm has greater accuracy than earlier

algorithms developed for this purpose, especially when the simulated

distance is high. When we applied the algorithm to vertebrate

genomes, the results suggested that the rearrangement rates of

vertebrate genomes may decelerate later in evolution after the 2R–

WGD.Amore conclusive result requires the inclusion ofmore genes

in the analysis, which is not possible with the current version of

algorithm due to its inability to handle gene losses. Nevertheless, the

accuracy of this algorithm can be further improved in several aspects

at the cost of increasing running time (such as increasing the

parameterDepth), which can be highly useful for situationswherein
running time is not a priority. Additionally, the ideas of this heuristic

algorithm may also be extended to other rearrangement problems,

such as the genomemedian problem, with respect toDCJ operation,

which is NP–hard.
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