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Inflammation and autoimmunity in pulmonary hypertension:
is there a role for endothelial adhesion molecules?
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Abstract

While pulmonary hypertension (PH) has traditionally not been considered as a disease that is directly linked to or, potentially, even

caused by inflammation, a rapidly growing body of evidence has demonstrated the accumulation of a variety of inflammatory and

immune cells in PH lungs, in and around the wall of remodeled pulmonary resistance vessels and in the vicinity of plexiform lesions,

respectively. Concomitantly, abundant production and release of various inflammatory mediators has been documented in both PH

patients and experimental models of PH. While these findings unequivocally demonstrate an inflammatory component in PH, they

have fueled an intense and presently ongoing debate as to the nature of this inflammatory aspect: is it a mere bystander of or

response to the actual disease process, or is it a pathomechanistic contributor or potentially even a trigger of endothelial injury,

smooth muscle hypertrophy and hyperplasia, and the resulting lung vascular remodeling? In this review, we will discuss the present

evidence for an inflammatory component in PH disease with a specific focus on the potential role of the endothelium in this

scenario and highlight future avenues of experimental investigation which may lead to novel therapeutic interventions.
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Inflammatory cells and mediators in pulmon-
ary hypertension

Specific subclasses of pulmonary arterial hypertension (PAH)
have traditionally been linked to inflammation and immunity
due to the inflammatory or infectious nature of their under-
lying or associated disease. Prototypic examples are PAH
forms related to connective tissue diseases such as systemic
sclerosis or lupus erythematosus,1 but also PAH as a conse-
quence of HIV infection or related to other viral etiologies.2

The implication of inflammation and immunity in pulmonary
hypertension (PH), however, is much older, and seems to
reach far beyond these most striking associations.

Already in 1878, when Paul Ehrlich identified the mast
cell, he reported that these cells were most abundant in
‘‘brown induration of the lung,’’ i.e. in hemosiderosis,
which we nowadays would classify as type II PH, i.e. PH
following left heart disease.3 Subsequent clinical studies

confirmed the accumulation of mast cells in lungs of patients
with idiopathic PAH (iPAH)4–7 or ‘‘secondary’’ PAH
(which nowadays would be considered associated PAH)6

or in patients with PH owing to mitral stenosis and left
heart disease.8 Measurements of mast cell densities in
lungs of native highlanders revealed that mast cell numbers
were only increased in subjects with considerable muscular-
ization of their pulmonary circulation, indicating a func-
tional role for mast cells in lung vascular remodeling.9

These clinical findings were paralleled by reports of similar
mast cell accumulations in experimental models of PH, not-
ably in chronic hypoxic rats10,11 as well as calves, pigs, and
sheep,12 in the rat monocrotaline model of PH,4,13,14 in rat
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models of left heart disease,13 or in a combined model of
monocrotaline and left-to-right shunt.15

More recently, the recognition of immune cell abun-
dance and infiltration in lung vascular lesions and remo-
deled vessels has expanded profusely (Fig. 1): innate
immune cells such as macrophages and monocytes are
characteristically detected in patients with iPAH,7,16

in PH secondary to congenital cardiac shunts17 and in
murine and rat lungs in response to chronic hypoxia or
monocrotaline.18,19 Vascular lesions and the adventitial
space of remodeled blood vessels in iPAH patients and
monocrotaline-induced experimental PH are also infiltrated
by immature dendritic cells.7,20 In addition to infiltrating
innate immune cells, the adaptive immune response has
recently become implicated in PH based on the fact that
perivascular accumulations of B cells have not only been
documented in PAH associated with connective tissue dis-
orders or HIV infection,21,22 but also in plexiform lesions
of patients with iPAH,16 as well as in experimental PH.23

Work by the groups of Perros et al.24 and Colvin et al.25 as
well as from our own laboratory26 has identified the for-
mation of characteristic tertiary lymphoid tissue compris-
ing B- and T-cell areas with high endothelial venules and
dendritic cells in the vicinity of remodeled pulmonary
arteri(ol)es and bronchi(oles) in iPAH patients as well as
animal models of PH.

This infiltration of innate and adaptive immune cells is
associated with—and likely orchestrated by—the activation

of several key transcription factors such as the nuclear
factor of activated T cells (NFAT)27 and STAT328 contri-
buting to the release of numerous cytokines. Patients with
iPAH or associated PAH exhibit higher circulating levels
and/or pulmonary expression of tumor necrosis factor
(TNF),29,30 interleukins (IL) including IL-1b,31,32 IL-4,32,33

IL-6,31,32 IL-8,32 IL-10,32 IL-12p70,32 and IL-13,33,34 and a
series of chemokines including fractalkine (CX3CL1),35

RANTES (CCL5),36 monocyte chemotactic protein-1
(MCP-1; CCL2),37,38 and interferon g-induced protein 10
(IP-10; CXCL10).39 Of the characteristic cytokines, IL-6
seems of particular relevance in the context of PH as sug-
gested by experimental studies and biomarker screenings: in
PAH patients, plasma IL-6 levels predict five-year survival
with a higher prognostic accuracy as functional or hemo-
dynamic parameters.32 Similarly, circulating IL-6 in PAH
patients contribute to the development of co-morbidities
in PAH such as coronary artery diseases through the acti-
vation of the Bromodomain-containing protein 4
(BRD4),40,41 while increased TNF contributes to right ven-
tricular failure through a miR-208/myocyte enhancer factor
2 (MEF2)-dependent mechanism.42 The importance of cir-
culating cytokines especially IL-6 is reinforced by the fact
that lung-specific overexpression of IL-6 in mice suffices to
cause elevated right ventricular systolic pressures and right
ventricular hypertrophy with corresponding pulmonary vas-
cular changes.43 Conversely, IL-6-deficient mice develop less
PH, right ventricular hypertrophy, and lung vascular
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Fig. 1. Infiltration of inflammatory and immune cells into the wall and perivascular space of pulmonary arteries in PH. A schematic cross-section

shows a pulmonary artery with its different layers (intima, media, and adventitia) and the characteristic accumulation of inflammatory and immune

cells, namely macrophages, dendritic cells, T cells, B cells, mast cells, and plasma cells, as well as the infiltration of fibroblasts and myofibroblasts

and the production of (auto-)antibodies in PH disease.
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remodeling in chronic hypoxia compared to their corres-
ponding IL-6þ/þ wild type (WT).44

In addition to classic inflammatory cytokines, immune
responses in PH may also be triggered or aggravated by
other pro-inflammatory mediators such as leukotrienes
(LTs) or complement factors. Recent studies suggest an
important role for LTB4 in the context of immune dysregu-
lation in PAH.45 LTs are lipid mediators derived from
arachidonic acid. Following activation of 5-lipoxygenase
(5-LO) by 5-LO-activating protein (FLAP), arachidonic
acid is converted to LTA4, an unstable epoxide which is
subsequently further metabolized by either LTA4 hydrolase
or LTC4 synthase to LTB4 or LTC4, respectively. In rats
exposed to chronic hypoxia, expression levels of 5-LO and
FLAP are increased in alveolar macrophages and endothe-
lial cells,46 and in athymic rats treated with the VEGF recep-
tor antagonist SU5416, which develop lethal PH even under
normoxic conditions, LTB4 levels were found to be elevated
in bronchoalveolar lavage fluid and serum.47 Analogously in
PAH patients, alveolar macrophages expressing 5-LO and
FLAP are more frequently clustered in the vicinity of remo-
deled blood vessels, while endothelial cells in plexiform and
concentric lesion similarly express both enzymes.48

Pharmacological antagonization of 5-LO and FLAP by
MK-866 was shown to prevent hypoxic pulmonary vasocon-
striction and development of chronic hypoxia-induced PH,
thus establishing a functional role of LTs in PH.46

LTB4 exerts its chemoattractant and pro-inflammatory
effects predominantly via its high affinity receptor BLT1
which is widely expressed on immune cells including gran-
ulocytes, T cells, and dendritic cells.49 In vitro, LTB4 induces
apoptosis of pulmonary artery endothelial cells via a signal-
ing pathway that involves spingosine kinase 1 and endothe-
lial nitric oxide synthase, and stimulates proliferation of
human pulmonary artery smooth muscle cells, which is
effectively blocked by the BLT-1 inhibitor U75302.47 In add-
ition, LTB4 may further promote PH by stimulating prolif-
eration, migration, and differentiation of pulmonary arterial
adventitial fibroblasts.50 In vivo, inhibition of LTB4 forma-
tion by the LTA4 hydrolase inhibitor Ubenimex rescued PH
rats from death. In PAH patients, LTA4 hydrolase expres-
sion was shown to be increased in CD68þ macrophages
clustered around occluded vascular lumens of plexiform
lesions, and circulating levels of LTB4 were found to be
elevated in PAH patients with connective tissue disease
though not in iPAH.47 From these studies, LTB4 has
emerged as an important inflammatory signal and, hence,
also potential drug target in PH. In respect to the latter, the
recent completion of the LIBERTY trial, a phase 2 study on
the effectiveness of the LTA4 hydrolase inhibitor Ubenimex
in patients with PAH (LIBERTY:NCT02664558), is
expected to provide key insight into the therapeutic poten-
tial of this pathway.

Considering that complement factors C3 and C4a have
been identified as biomarkers of iPAH,51,52 it is surprising
that the functional role of the complement system as a

critical regulator of innate and adaptive immune responses
in PH has thus far scarcely been addressed. In what is to our
knowledge the only mechanistic study so far, Bauer et al.
were able to demonstrate increased deposition of the C3
degradation product C3d in the pulmonary vessel wall in a
murine PH model of chronic hypoxia and in human iPAH
patients.53 More importantly, C3-deficient mice developed
less PH with no increase in pulmonary IL-6 or tissue factor,
less P-selectin on platelets, and less pulmonary intercellular
adhesion molecule 1 (ICAM-1) expression during chronic
hypoxia compared to WT mice, suggesting that C3 plays
an important role in the pathophysiology of PH, potentially
by promoting inflammatory cell interaction and recruitment
via adhesion molecules such as P-selectin and ICAM-1.
Since various novel therapies targeting the complement
system are presently tested in clinical trials,54,55 the
functional role of the complement system in PH and its
therapeutic exploitation pose intriguing topics for future
research.

The functional relevance of immune responses in the
initiation and/or progression of PH has recently become
evident, in that pharmacological inhibition, depletion, or
genetic deficiency in specific cell subsets such as mast
cells4,13,15 or B cells26,56 has been shown to confer protection
from the development of PH in a variety of animal models.
Furthermore, IL-6 has been identified as a critical link
between mast cells and B cells and, hence, between the
innate and adaptive immune system in that mast cell-derived
IL-6 promotes the formation of tertiary lymphoid tissue in
PH lungs26 in line with previous data demonstrating that
mast cells synthesize and release IL-6.57,58 Originally identi-
fied as a B cell stimulatory factor that induces differentiation
into antibody-producing plasma cells,59 IL-6 production has
also been linked to increased Ig secretion and production of
autoantibodies.60 A similar and potentially parallel pathway
linking mast cells to B cells may act via another member of
the IL-6 family, the pleiotropic cytokine oncostatin M.61

Like IL-6, OSM is also secreted by mast cells62 and upregu-
lated in the bronchoalveolar lavage fluid of patients with
idiopathic pulmonary fibrosis and scleroderma or in
plasma of PAH patients.63,64 Endotracheal administration
of an adenoviral vector expressing mouse oncostatin M pro-
motes B cell activation and formation of tertiary lymphoid
tissue independent of IL-6,65 suggesting that mast cells may
regulate adaptive (auto-)immunity and formation of tertiary
lymphoid tissue via different pathways in PH.

Importantly, the emerging role of mast cells, B cells, and
other inflammatory cells in PH is not a purely theoretical
concept but of tremendous translational potential and, as
such, has already reached the clinical setting.66 Mast cell
stabilizers have been shown to reduce inflammation and
increase exhaled NO in PAH patients in a small pilot
study,67 while a clinical phase II trial on the effect of the B
cell depleting anti-CD20 antibody rituximab for the treat-
ment of systemic sclerosis-associated PAH is currently
underway (NCT01086540). Care should, however,

Pulmonary Circulation Volume 8 Number 2 | 3



be taken with respect to existing immunosuppressive drugs,
as poor safety profiles and potentials for drug–drug inter-
actions with current PH therapies may present dangerous
pitfalls for their implementations in clinics.68

While mast cells and B cells promote the development
of PH, CD4þCD25þFoxP3þ regulatory T cells (T regs),
a subpopulation of T cells which maintains tolerance to
self-antigens and downregulates autoimmune disease, seem
to attenuate experimental PH. Athymic mice or rats lacking
T cells characteristically develop more severe PH in response
to monocrotaline or SU5416 compared to euthymic
rodents.69,70 The beneficial effect of T regs in PH was par-
ticularly evident in a study in athymic rats in that the devel-
opment of lung vascular remodeling and PH in response to
SU5416 was attenuated in animals that had been reconsti-
tuted with CD4þCD25þ T regs.71 This may at first seem
contradictory, as B cells are considered to maintain72 and
expand73–76 T regs. Conversely however, a series of animal
studies on autoimmune diseases show that depletion of B
cells causes activation and proliferation of T regs which are
associated with marked improvement of histological or
functional parameters of disease severity.77–79 The clinical
relevance of this scenario is highlighted by the fact that B
cell depletion with rituximab restores T reg numbers in per-
ipheral blood of patients with immune thrombocytopenia
(ITP), an effect that is particularly evident in therapy
responders.80 Conversely, B cells may thus potentially pro-
mote inflammatory (auto-)immune responses by inhibiting
T regs.

The differential involvement of innate and adaptive
immune cells, the temporal sequence of their infiltration,
their mutual crosstalk, and interdependency are exciting
topics of ongoing and future research in PH of which the
interaction between mast cells and B cells via cytokines of
the IL-6 family as outlined above may only serve as proto-
typical example. At present, our insight into the individual
mechanisms that trigger adaptive versus innate immune
responses in PH is rudimentary, as is our understanding
regarding their differential potential as therapeutic targets
in PH. While an exhaustive discussion of this topic is beyond
the scope of this manuscript, the dissection of innate and
adaptive immune responses in PH clearly deserves deeper
exploration in terms of experimental studies and state-of-
the-art reviews.

Autoimmunity in pulmonary hypertension

The recognition of B cell activation and tertiary lymphoid
tissue formation has recently fueled the intriguing hypoth-
esis of a relevant autoimmune component in the pathogen-
esis and/or pathophysiology of PH. This view is supported
by genomic analyses which identified a distinct RNA expres-
sion profile in peripheral blood B cells, indicative of
their activation in patients with iPAH compared to healthy
controls.81 Notably, while differentiation of B cells to anti-
body-producing plasma cells was originally considered

to be restricted to lymph nodes,82 the recent recognition of
functional ectopic lymphoid tissues adjacent to remodeled
vessels in lungs of patients with iPAH clearly demonstrates
that B cell differentiation and subsequent antibody produc-
tion can occur and may be regulated at the local level in PH
lungs.83 Many of these ectopic lymphoid tissues form
germinal centers where somatic hypermutation and class-
switching occur, thereby providing an optimal environment
for the generation of pathogenic autoantibodies.83

Formation of autoantibodies has long been recognized as
a key factor that is assumed to account for the high preva-
lence of PAH in patients with connective tissue diseases
(CTDs) such as systemic sclerosis84,85 or Sjögren’s syn-
drome86 where antibody deposits have been found localized
in the pulmonary artery walls.87,88 However, the presence of
tertiary lymphoid tissue in patients with iPAH as well as in
various animal models of hypoxia- or monocrotaline-
induced PH suggests a much broader relevance of auto-
immunity in the pathogenesis of PAH. Along these lines,
increased levels of various circulating autoantibodies have
been detected in patients with non-CTD PAH: It is
estimated that 10–15% of iPAH patients are positive for
antiphospholipid antibodies,89 30–40% express antinuclear
antibodies,90,91 40% anti-fibroblast antibodies,92 62%
anti-endothelial cell antibodies,93,94 and up to 93% anti-
fibrillin-1 antibodies.95 In recent collaborative work, we fur-
thermore identified the prevalence of circulating agonistic
autoantibodies against endothelin receptor type A (ETAR)
and the angiotensin receptor type-1 (AT1R), which not only
predicted the development of PAH and PAH-associated
mortality in patients with systemic sclerosis, but were also
present in 11% and 21% of patients with iPAH, respect-
ively.96 The functional relevance of these autoantibodies
was recently elegantly demonstrated, in that passive transfer
of either autoantibody-rich plasma or purified immuno-
globulin (Ig) G from rats with monocrotaline-induced PH
was sufficient to induce the de novo formation of lung ecto-
pic lymphoid tissue and the development of PH in naı̈ve
rats.97 Notably, increased production of autoantibodies
does not seem to be restricted to PAH patients or the mono-
crotaline model of PH, as increased levels of circulating
immunoglobulin G were similarly detected in a rat model
of PH with left heart disease,26 in which moreover immuno-
globulin-encoding genes were found to be the most mast
cell-dependent regulated genes in lung tissue.26 While these
findings point to an overarching relevance of pathogenic
autoantibodies in the development of PH that is not
restricted to CTDs, the mechanisms that drive this acquired
autoimmunity remain unclear.

Autoimmunity emerges when the fragile balance between
self-recognition and protection from non-self-pathogens is
lost.98 It has been estimated that 50–75% of newly produced
human B cells are autoreactive and must be eliminated by
tolerance mechanisms.99 This B cell tolerance is established
at multiple checkpoints throughout B cell development,
both in the bone marrow and in the periphery by

4 | Adhesion molecules in PH Kuebler et al.



mechanisms such as receptor editing, clonal deletion, and
anergy, which serve to eliminate autoreactive B cells.100–102

The actual development of autoimmunity is driven via the
activation of distinct pro-inflammatory signaling pathways,
which have accordingly emerged as potential novel thera-
peutic targets for individual autoimmune diseases, including
transcription factors such as STAT4,103 cytokines such as
interleukin-17,104 or alarmins such as high mobility group
box 1 (HMGB1).105–107 HMGB1 gains particular relevance
as a potential link between inflammation/autoimmunity and
pulmonary vascular disease through its recent implication in
both clinical and preclinical PAH. HMGB1 is abundant
both in serum and in vascular lesions of patients with
iPAH,108,109 and the increase in circulating HMGB1 correl-
ates with mean pulmonary artery pressure.108 Evidence for a
functional role of HMGB1 in PAH comes from rodent
models of chronic hypoxia and monocrotaline, respectively,
where treatment with anti-HMGB1 antibodies attenuated
the development of PH108,110 as did a non-specific inhibitor
of HMGB1, glycyrrhizin.111 Notably, the fact that actively
secreted HMGB1 is primarily derived from macrophages112

provides an intriguing link to a series of recent publications
which attribute a key role for macrophages in the initiation
of PAH.113–117 Indeed, remodeled vessels in lung samples of
patients with iPAH are often surrounded by HMGB1-
positive cells in the adventitia109 where perivascular macro-
phages accumulate in PAH.118 Of particular relevance in the
context of autoimmunity, extracellular HMGB1 in isolation
or in complex with DNA promotes the proliferation and
activation of autoreactive B cells.119–121 Consistent with
this view, autoantibody production was recently found to
correlate with HMGB1 serum levels in patients with sys-
temic lupus erythematosus.122 Conversely, blockade of
extracellular HMGB1 suppresses xenoreactive B cell
responses, autoantibody production, and delays acute
vascular rejection following heterotopic heart xenotranplan-
tation.123 Additionally, HMGB1, as a part of DNA-anti-
DNA immune complexes, can interact with the receptor
for advanced glycation endproducts (RAGE) on the surface
of plasmacytoid dendritic cells and B cells leading to
TLR9-dependent interferon-a release and activation of
autoreactive B cells.124 The latter aspect may be of particu-
lar relevance in the context of PH as RAGE activation is
increased in PAH patients and systemic vascular dis-
eases.125,126 Thus, HMGB1 emerges as a potent trigger
and promoter of autoimmunity via both direct and indirect
effects on B cells and as a trigger or promoter of vascular
remodeling in PH; yet although it is tempting to postulate a
functional link between these two effects a direct causal
interrelationship remains to be shown.

The endothelium in inflammation
and immunity

What remains obscure and has not been addressed in either
preclinical or clinical studies so far is the origin of these

inflammatory and immune cells in PH, and the mechanisms
that trigger and regulate their recruitment to the lung par-
enchyma and into the vicinity of the remodeling pulmonary
blood vessels. At later stages of the disease, some of these
cells may expand locally within the tissue and the newly
formed lymphoid tissues, yet it seems fair to assume that
at least initially the inflammatory cells infiltrate the lung
largely from the circulating blood. This notion is supported,
for example, by flow cytometric analyses in chronic hypoxic
mice demonstrating the mobilization of cells positive for the
mast cell (and stem cell) marker c-kit from the bone marrow
into the circulation and their subsequent accumulation in
remodeled pulmonary artery vessel walls.127,128 In neonatal
rats and calves, development of chronic pulmonary hyper-
tension required the recruitment of a monocyte/macrophage
precursor from the circulating blood into the pulmonary
perivascular space.129 Similarly, flow cytometric analyses
in various organs of rats with monocrotaline-or SU5416/
hypoxia-induced PH revealed an increase in B cells abun-
dance in virtually all organs including lung, lymph nodes,
spleen, and circulating blood with the notable exception of
bone marrow.26

It remains unclear whether the inflammatory and
immune cells that migrate into the lungs in PH are recruited
directly from the pulmonary arteries or arterioles, from the
vasa vasorum and the perivascular capillary network,130 or
from the lymphatic vasculature. That notwithstanding, the
recruitment will have to occur along the lines of the classic
leukocyte adhesion and migration cascade that has been
extensively studied and described in the past (Fig. 2).
In brief, in order for circulating leukocytes to leave the
blood stream and enter the perivascular space and the
lung parenchyma, they first need to interact, adhere, and
ultimately migrate through the vascular (or, alternatively,
lymphatic) endothelium in a tightly controlled sequence of
events.131,132 This cascade comprises initial steps of tethering
and rolling, followed by firm arrest and occasional crawling
along the vessel wall until the inflammatory cell exits the
vessel by ways of paracellular or, occasionally, transcellular
migration. The sequential steps of this adhesion cascade are
mediated by the interaction of adhesion molecules expressed
on the vascular endothelium with their respective counter-
ligands on circulating leukocytes or platelets that may in
turn form aggregates with leukocytes.133 In what has
become known as the classic paradigm of the leukocyte
adhesion cascade, leukocytes first start to role via the inter-
action of leukocytic L-selectin and P-selectin glycoprotein
ligand-1 (PSGL-1) with P- and E-selectin expressed on the
vascular endothelium, and may subsequently adhere via
CD11a/CD18 (lymphocyte function-associated antigen 1,
LFA-1) or CD11b/CD18 (macrophage-1 antigen, Mac-1)
interacting with ICAM-1, or integrin a4b1 (very late anti-
gen-4, VLA-4) interacting with vascular cell adhesion pro-
tein 1 (VCAM-1) (Fig. 3). This general concept applies not
only for neutrophils, but equally for migrating mast
cells,134,135 B cells,136 and mononuclear cells.137 While the

Pulmonary Circulation Volume 8 Number 2 | 5



exact molecular players that orchestrate this sequence will
vary between different vascular beds and leukocyte subsets,
it is a fundamental paradigm that each of these steps is
mediated by the intimate interaction of adhesion molecules

expressed on the infiltrating leukocyte on the one, and the
vessel outlining endothelium on the other hand.137

With that in mind it must come as a surprise that so far
no clinical or preclinical studies have to our knowledge
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Fig. 2. Schematic representation of the classic leukocyte adhesion cascade. Following initial tethering at the endothelial cell surface, leukocytes

start to roll and ultimately may firmly arrest on the vessel surface to finally migrate into the subendothelial space, typically via a paracellular but
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addressed the role of specific adhesion molecules in PH,
either by pharmacological or antibody blockade or by gen-
etic deletion strategies. There is, however, an abundance of
studies that have reported elevated levels of circulating sol-
uble adhesion molecules in PH patients. As such, marked
increases in the plasma concentration of soluble P-selectin
have been detected in PAH patients with either idio-
pathic138,139 or non-idiopathic disease.138 Similarly, patients
with PH due to left heart disease have been found to exhibit
higher circulating levels of soluble P-selectin, although this
finding did not reach significance,138 and P-selectin expres-
sion on platelets as an indicator of their activation is
increased in patients with chronic thromboembolic pulmon-
ary hypertension (CTEPH).140 In patients with congenital
heart disease (CHD), P-selectin genotype polymorphism of
-825T/C differs significantly between patients with and with-
out PH, suggesting a potential contributory role of the
P-selectin genotype in the development of PH in this patient
population.141 Circulating levels of soluble P-selectin did,
however, not correlate with World Health Organization
functional class (FC) or transplant-free survival in a recent
biomarker study in 65 PAH patients,142 and were not asso-
ciated with changes in 6-min walk distance or FC in
response to PAH therapy by trepostinil.143

For soluble E-selectin, elevated levels have been reported
in iPAH patients compared to healthy controls.144 Likewise,
soluble intercellular adhesion molecule-1 (ICAM-1) levels in
serum are significantly higher in children with PAH second-
ary to CHD compared to children with CHD without asso-
ciated PAH, or in a healthy control group.145,146 ICAM-1
levels are also increased in iPAH patients and patients with
PAH associated with connective tissue disease (PAH-CTD),
whereas circulating levels of soluble vascular cell adhesion
protein 1 (VCAM-1) were elevated in PAH-CTD only.147

Conversely, soluble ICAM-1 levels decreased when young
patients with CHD and PH were treated with the phospho-
diesterase 5 inhibitor sildenafil.148 Interestingly, ICAM-1
expression on pulmonary arterial but not microvascular
endothelial cells can be increased when endothelial cells
are exposed to microparticles isolated from PH rats.149

In line with their proposed role as disseminators of inflam-
matory signaling in the lung,150 circulating microparticles
may thus specifically promote inflammatory responses in
the pulmonary arterial compartment in PAH.

In sickle cell patients, circulating levels of soluble vascu-
lar cell adhesion protein 1 (VCAM-1) show the most
consistent correlation with PAH, while ICAM-1, E- and
P-selectin show correlations and/or linearity in some but
not all studies.151,152 In systemic sclerosis, circulating levels
of soluble P-selectin, ICAM-1, VCAM-1 and platelet endo-
thelial cell adhesion molecule-1 (PECAM-1) were found
markedly elevated. While this effect was seemingly inde-
pendent from the presence or absence of PAH, treatment
of PAH with the endothelin-1 receptor antagonist bosentan
significantly reduced the levels of all four adhesion mol-
ecules by up to 80%.153 Notably, since PECAM-1 acts

as important endothelial shear sensor, increased cleavage
of PECAM-1 from the endothelial surface may not only
result in elevated levels of circulating soluble PECAM-1,
but also impair microvascular adaptation to shear and
thus, promote the development of occlusive vascular lesions
in PAH.154

In addition to analyses of circulating soluble adhesion
molecules, a few studies have addressed the expression of
endothelial adhesion molecules in human tissue samples or
primary endothelial cells, respectively. As such,
Vengethasamy et al. showed that pulmonary microvascular
endothelial cells isolated from lungs of transplanted PAH
patients show an elevated ICAM-1 expression in BMPR2
mutation carriers compared to patients without muta-
tions.155 Consistent with this finding, pulmonary micro-
vascular endothelial cells from BMPR2 mutation carriers
showed an enhanced adhesiveness for monocytes in
response to inflammatory mediators, suggesting that
BMPR2 mutations could increase the susceptibility to
inflammatory cell recruitment in PAH.155 In line with
these data, Le Hiress et al. detected an increased expres-
sion of the adhesion molecules ICAM-1, VCAM-1, and
E-selectin on the endothelium of pulmonary arteries in
human iPAH compared to controls that was associated
with a higher number of peripheral blood mononuclear
cells adhering to the endothelium.156

Taken together, these studies at large demonstrate an
association of increased levels of circulating or endothelial
adhesion molecules with PH, whereby the individual adhe-
sion molecules may vary based on severity, time course, or
underlying cause/class of the disease. Expectedly, adhesion
molecule expression correlates with leukocyte interaction
with the pulmonary endothelium in PH; importantly,
however, experiments on the functional role of adhesion
molecules in PH in vivo are to our knowledge lacking as
of now.

The potential triggers of endothelial inflammation and
adhesion molecule expression in PH are likely manifold,
and would exceed the purpose of this review. It must suffice
to point out that, for example, endothelial expression of
P-selectin is stimulated by most of the classic triggers of
PH in animal models, including monocrotaline,157 hydro-
static stress,158 or hypoxia159,160 (modelling clinical PH of
groups 2, 3, and—arguably in case of MCT—group 1,
respectively). Similarly, environmental stresses, endothelial
dysfunction, or injury will inevitably upregulate endothelial
adhesion molecules and, thus, facilitate inflammatory cell
infiltration into the vessel wall and perivascular space as
well as trigger formation and release of pro-inflammatory
cytokines. Finally, it is tempting to speculate that DNA
damage, mosaic chromosomal abnormalities, and microsat-
ellite instabilities as previously detected in pulmonary arter-
ial endothelial cell cultures from PAH lungs161–164 may
facilitate expression of adhesion molecules and inflamma-
tory cell recruitment, yet this concept remains to be experi-
mentally tested.
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Summary

Intriguingly, the recognition of an inflammatory and auto-
immune component in PH sheds new light on the pivotal
role of the endothelium in this disease that extends beyond
classic concepts of endothelial damage or dysfunction,
endothelial apoptosis and proliferation, or anti-endothelial
antibodies,26,165 but points to a key role of the endothelium
and its adhesion molecules as first line in the regulation
of inflammatory and immune cell recruitment and infiltra-
tion (Fig. 4). While respective mechanistic studies seem
long overdue, premature enthusiasm for potential transla-
tional benefits should be cautioned. Some 25 years ago,
therapeutic targeting of adhesion molecules for the treat-
ment or prevention of inflammatory disorders such as
sepsis or the adult respiratory distress syndrome (ARDS)
had already received a huge surge of attention both from
the scientific community and industry; yet, to this date no
approved therapy based on these concepts has materialized.
That notwithstanding, a better understanding of the how,
where, and when of immune cell adhesion and recruitment
in PH may provide important novel insights into the mech-
anisms of disease, and—potentially—identify new thera-
peutic targets.
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Fig. 4. Schematic summary of the proposed role of the endothelium and its adhesion molecules in PH. Endothelial adhesion and subsequent

emigration of monocytes, mast cells, T cells, and B cells is an essential step for inflammatory and immune cell recruitment and infiltration.

Following migration into the vascular wall and adventitial space, emigrated cells will further promote perivascular abundance of immune cells by

perivascular differentiation and proliferation as well as by additional recruitment of immune cells via the release of pro-inflammatory and

chemotactic mediators such as cytokines, alarmins, or leukotrienes. Perivascular accumulations of T cells, B cells, plasma cells, and dendritic cells

organize into ectopic lymphoid tissue, which acts as source of autoantibodies and immune-cell derived mediators such as cytokines driving intimal

and medial proliferation and, thus, vascular remodeling in PH.
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