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Abstract: Recently, it has been shown that the information flow and causality between two time
series can be inferred in a rigorous and quantitative sense, and, besides, the resulting causality
can be normalized. A corollary that follows is, in the linear limit, causation implies correlation,
while correlation does not imply causation. Now suppose there is an event A taking a harmonic
form (sine/cosine), and it generates through some process another event B so that B always lags
A by a phase of π/2. Here the causality is obviously seen, while by computation the correlation is,
however, zero. This apparent contradiction is rooted in the fact that a harmonic system always leaves
a single point on the Poincaré section; it does not add information. That is to say, though the absolute
information flow from A to B is zero, i.e., TA→B = 0, the total information increase of B is also zero,
so the normalized TA→B, denoted as τA→B, takes the form of 0

0 . By slightly perturbing the system
with some noise, solving a stochastic differential equation, and letting the perturbation go to zero, it
can be shown that τA→B approaches 100%, just as one would have expected.
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1. A Review of the Rigorous Information Flow-Based Causality Analysis

Causal inference is a fundamental problem in scientific research. Recently it has been
shown that the problem can be recast into the framework of information flow, another
fundamental notion in general physics which has wide applications in different disciplines
(see [1]), and hence can be put on a rigorous footing. The causality between two time series
can then be analyzed in a quantitative sense, and, besides, the resulting formula is very
concise in form. In the linear limit, it involves only the usual statistics namely sample
covariances [2], making the important and otherwise difficult problem an easy task.

To briefly review the theory, consider a two-dimensional continuous-time stochastic
system for state variables x = (x1, x2)

dx
dt

= F(x, t) + B(x, t)ẇ, (1)

where F = (F1, F2) may be arbitrary nonlinear functions of x and t, ẇ is a vector of white
noise, and B = (bij) is the matrix of perturbation amplitudes which may also be any
functions of x and t. Here we adopt the convention in physics and do not distinguish
deterministic and random variables; in probability theory, they are ususally distinguished
with capital and lower-case symbols. Assume that F and B are both differentiable with
respect to x and t. Then the information flow from x2 to x1 (in nats per unit time) can be
explicitly found in a closed form [3] (the multiple-dimensional case is referred to [1]):

T2→1 = −E
[

1
ρ1

∂(F1ρ1)

∂x1

]
+

1
2

E

[
1
ρ1

∂2g11ρ1

∂x2
1

]
, (2)
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where E stands for mathematical expectation, and gii = ∑n
k=1 bikbik, ρi = ρi(xi) is the

marginal probability density function (pdf) of xi. The rate of information flowing from
x1 to x2 can be obtained by switching the indices. If Tj→i = 0, then xj is not causal to xi;
otherwise it is causal, and the absolute value measures the magnitude of the causality from
xj to xi. For discrete-time mappings, the information flow is in much more complicated a
form; see [1].

In the case with only two time series (no dynamical system is given) X1 and X2, under
the assumption of a linear model with additive noise, the maximum likelihood estimator
(MLE) of the rate of information flowing from X2 to X1 is [2]

T̂2→1 =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C2

12
, (3)

where Cij is the sample covariance between Xi and Xj, and Ci,dj the sample covariance
between Xi and a series derived from Xj using the Euler forward differencing scheme
(also see the Euler–Maruyama scheme in [4]): Ẋj,n = (Xj,n+k − Xj,n)/(k∆t), with k ≥ 1
some integer. Note that Equation (3) is rather concise in form; it only involves the com-
mon statistics, i.e., sample covariances. In other words, a combination of some sample
convariances will give a quantiative measure of the causality between the time series.
This makes causality analysis, which otherwise would be complicated with the classical
empirical/half-empirical methods, very easy. Nonetheless, note that Equation (3) cannot
replace (1); it is just the mle of the latter. Statistical significance test must be performed
before a causal inference is made based on the computed T2→1. For details, refer to [2].

Considering the long-standing debate ever since Berkeley (1710) [5] over correlation
versus causation, we may rewrite (3) in terms of linear correlation coefficients, which
immediately implies [2]:

Causation implies correlation, but correlation does not imply causation.

The above formalism has been validated with many benchmark systems (e.g., [1])
such as baker transformation, Hénon map, Kaplan-Yorke map, Rössler system, etc. It
also has been successfully applied to the studies of many real world problems such those
in financial economics (e.g., the “Seven Dwarfs vs. a Giant” problem [6]), earth system
science (e.g., the Antarctica mass balance problem [7] and the global warming problem [8]),
neuroscience (e.g., the concussion problem [9]), to name but a few.

2. The Question

Now suppose we have a dynamic event A which drives another event B. The former
has a harmonic form, leading the latter by a phase of π/2. That is to say, the time series,
say, {xA(t)} and {xB(t)} resulting from the two, are in quadrature. Then the correlation
between the two is zero. Here by zero-correlation we mean a zero integral∫

Ω
(xA(t)− x̄A)(xB(t)− x̄B)dt,

with the integration domain Ω being one period or more periods, and the overbar being the
mean over the domain. However, since A causes B, the result is apparently in contradiction
to the above corollary that “causation implies correlation”.

3. The Solution

The problem can be more formally stated with the harmonic system:

dx
dt

= F(x, t) = Ax =

[
a11 a12
a21 a22

][
x1
x2

]
=

[
0 −1
1 0

][
x1
x2

]
. (4)
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If the system is initialized with x1(0) = 1, ẋ1(0) = 1, the solution is, x1 = cos t,
x2 = sin t. Thus, the population covariance σ12 =

∫
Ω cos t sin tdt = 0 (Ω is one period or

many periods). This yields an information flow from x2 to x1:

T2→1 = a12
σ12

σ11
= 0. (5)

Fundamentally the above problem arises from the fact that it is a deterministic system.
In Granger causality test [10] (also see a recent reference [11]), this case has been explicitly
excluded, as in such case the trajectories do not form appropriate ensembles in the sample
space. For a harmonic series, it shows on a Poincaré section only one single point; so the
total information does not accrue. If the total information does not change, the information
flow to x1 must also vanish. However, the vanishing information flow does not mean that
there is no influence of x2 on x1. As we argued in Liang (2015), the so-obtained information
must be normalized, just as covariance needs to be normalized into correlation, for one to
assess the causal influence. Here if the normalizer is zero, T2→1 involves the indeterminate
form 0

0 . We may then approach it by taking the limit. Specifically, we may approach it by
enlarging the sample space slightly, i.e., by adding some stochasticity to the system, then
take the limit by letting the stochastic perturbation amplitude go zero.

By Liang (2015), the normalizer for T2→1 is

Z2→1 = |T2→1|+
∣∣∣∣dH∗1

dt

∣∣∣∣+
∣∣∣∣∣dHnoise

1
dt

∣∣∣∣∣, (6)

where on the right hand side, the second term is the contribution from x1 itself, and
the third term the contribution from noise. In Liang (2015), it has shown that dH∗1

dt is a

Lyapunov exponent-like, phase-space stretching rate, and dHnoise
1
dt a noise-to-signal ratio.

In this problem, we do not have noise taken into account. However, in reality, noise
is ubiquitous. We may hence view a deterministic system as a limit or extreme case
as the amplitude of stochastic perturbation goes to zero. For this case, we add to (4) a
stochastic term:

dx
dt

= Ax + Bẇ, (7)

where w is a vector of standard Wiener processes. For simplicity, let the perturbation
amplitude B a constant matrix. Further let G = BBT , with elements

(gij) =
2

∑
k=1

bikbjk.

Liang (2008) established that

dH∗1
dt

= a11 = 0, (8)

dHnoise
1
dt

=
1
2

g11

σ11
. (9)

So in this case, the normalized flow from x2 to x1 is

τ2→1 =
a12

σ12
σ11∣∣∣a12

σ12
σ11

∣∣∣+ 0 +
∣∣∣ 1

2
g11
σ11

∣∣∣ = −σ12

|σ12|+ g11
2

. (10)
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Likewise,

τ1→2 =
a21

σ12
σ22∣∣∣a21

σ12
σ22

∣∣∣+ |a22|+
∣∣∣ 1

2
g22
σ22

∣∣∣ = +σ12

|σ12|+ g22
2

. (11)

Note that τ2→1 (or τ1→2) may be positive or negative. In causal inference, this does not
matter; we need only consider the absolute value, although the sign does carry a meaning
according to the original formulation. (A positive τ2→1 means x2 causes the marginal
entropy of x1 to grow and vice versa; see [1,2] .)

Now for the stochastic equation, the covariance matrix Σ evolves as

dΣ

dt
= AΣ + ΣAT + BBT = AΣ + ΣAT + G (12)

Expanding, this is

d
dt

[
σ11 σ12
σ12 σ22

]
=

[
−σ12 −σ22
σ11 σ12

]
+

[
−σ12 σ11
−σ22 σ12

]
+

[
g11 g12
g12 g22

]
.

We hence obtain the following equation set:

dσ11

dt
= −2σ12 + g11,

dσ12

dt
= −σ22 + σ11 + g12,

dσ22

dt
= 2σ12 + g22.

Solving, we get

d2σ12

dt2 = −4σ12 + (g11 − g22 + g12).

So the solution is

σ12 = C1 cos 2t + C2 sin 2t +
1
2
(g11 − g22 + g12)t2.

If σ12(0) = 0, σ̇12(0) = 0, then the integration constants C1 = C2 = 0. So

τ2→1 =
−σ12

|σ12|+ 1
2 g11

=
−1

1 + g11
(g11−g22+g12)t2

Two cases are distinguished:

Case I g12 − g22 = const 6= 0.
lim

g11→0
τ2→1 = −1.

Case II g12 − g22 = 0.

lim
g11→0

τ2→1 =
−1

1 + 1/t2 .

As t goes to infinity, τ2→1 also approaches −1.

If initially there exists some covariance, say, σ12(0) = c, then C1 = c, and hence

τ2→1 =
−1

1 + g11
2c cos 2t+(g11−g22+g12)t2

.
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In this case, as g11 → 0, we always have τ2→1 → −1. Either way, the relative
information flow τ2→1 approaches −1 in the limit of deterministic system.

In the other direction, we now need to consider the uncertainty growth of x2 and hence
perturb g22. Repeating the above procedure, when σ12(0) = σ̇12(0) = 0, the normalized
information flow is

τ1→2 =
+σ12

|σ12|+ 1
2 g22

=
+1

1 + g22
(g11−g22+g12)t2

.

If g11 + g12 = const 6= 0, then

lim
g22→0

τ1→2 = +1;

else (g11 + g12 = 0)

lim
g22→0

τ1→2 =
1

1− 1/t2

which approaches to 1 for enough long time (t→ ∞). On the other hand, if initially there
exists some covariance such that σ12(0) = c then

τ12 =
1

1 + g22
2c cos 2t+(g11−g22+g12)t2

which implies

lim
g22→0

τ1→2 = 1.

This is indeed what we expect. So even for this extreme case, there is no contradiction at
all for causal inference using information flow.

4. Discussion

To summarize, a recent rigorously formulated causality analysis asserts that, in the
linear limit, causation implies correlation, while correlation does not necessarily mean
causation. In this short note, an extreme case which apparently contradicts to the assertion
is examined. In this case an event x1 takes a harmonic form (sine/cosine), and generates
through some process another event x2 so that x2 is always out of phase with x1, i.e., lag
x1 by π/2. Obviously x1 causes x2, but by computation the correlation between x1 and
x2 is zero. In this study we show that this is an extreme case, with only one point in the
phase space and hence the problem becomes singular. We re-examine the problem by
enlarging the ensemble space slightly through adding some noise. A stochastic differential
equation is then solved for the corresponding covariances, which allows us to obtaint the
information flows for the perturbed system. Then as the noisy perturbation goes to zero,
the normalized information flow rate from x1 to x2 is established to be 100%, just as one
would have expected. So actually no contradiction exists. (see [12] for how a stochastic
differential equation is solved by perturbing it with noise [12].)

One thing that merits mentioning is that, here although it seems that x1 causes x2,
actually here the normalized information flow rate from x2 to x1 is also 100%. That is to
say, for such a harmonic system with circular cause-effect relation, it is actually impossible
to differentiate causality by simply assessing which takes place first; anyhow, taking lead
by π/2 is equivalent to lagging by 3π/2. The moral is, for a process that is nonsequential
(e.g., that in the nonsequential stochastic control systems), circular cause and consequence
coexist, it is essentially impossible to distinguish a delay from an advance.
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