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(SNPs) that displayed the most significant associations with 
EC in Stage 1 for replication among 17,948 women (4,382 
cases and 13,566 controls) in a multiethnic population 
(African America, Asian, Latina, Hawaiian and European 
ancestry), from nine studies. Although no novel variants 
reached genome-wide significance, we replicated previ-
ously identified associations with genetic markers near the 
HNF1B locus. Our findings suggest that larger studies with 
specific tumor classification are necessary to identify novel 
genetic polymorphisms associated with EC susceptibility.

Abstract Endometrial cancer (EC), a neoplasm of the 
uterine epithelial lining, is the most common gynecologi-
cal malignancy in developed countries and the fourth most 
common cancer among US women. Women with a family 
history of EC have an increased risk for the disease, sug-
gesting that inherited genetic factors play a role. We con-
ducted a two-stage genome-wide association study of Type 
I EC. Stage 1 included 5,472 women (2,695 cases and 
2,777 controls) of European ancestry from seven studies. 
We selected independent single-nucleotide polymorphisms 
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Introduction

Endometrial cancer (EC), a neoplasm of the uterine epithe-
lial lining, is the most common gynecological malignancy 
in developed countries and the fourth most common cancer 
among US women (www.cancer.org 2013). This disease 
primarily affects postmenopausal women and is more com-
mon in women of European ancestry. In the USA in 2013, 
an estimated 49,560 women may develop EC and 8,190 
may die from the disease, a case fatality similar to that of 
breast cancer. The estimated lifetime risk of women devel-
oping the disease in the USA is 1 in 38 (www.cancer.org 
2013). EC is categorized into two distinct subtypes based 
on histologic and clinical characteristics. Type I ECs, the 
most common in women of European ancestry (80–90 %), 
are mostly endometrioid adenocarcinomas (EA). The 
remaining 10–20 % of ECs are Type II, which predomi-
nantly consist of serous and clear cell carcinomas.

EC risk is strongly increased by a Western lifestyle, with 
up to tenfold higher incidence rates in Western, industri-
alized countries than in Asia or rural Africa (Pisani et al. 
1993). Major risk factors include obesity and use of post-
menopausal estrogen-only hormone therapy (ET). Excess 
body weight has been associated with a two to fivefold 
increase in EC risk in both pre- and postmenopausal 
women, and has been estimated to account for about 40–
50 % of EC incidence in affluent societies (Bergstrom et al. 
2001). Epidemiological evidence also suggests increased 
risks in association with early age of menarche, late age of 

menopause, nulliparity and infertility. Furthermore, women 
with a family history of EC have their risk increased by 
nearly twofold (Gruber and Thompson 1996; Lucenteforte 
et al. 2009) and an even greater risk in rare family cancer 
syndromes such as Lynch syndrome (also termed heredi-
tary nonpolyposis colorectal cancer, HNPCC) (Papadopou-
los et al. 1994; Nicolaides et al. 1994; Risinger et al. 1993), 
suggesting that inherited genetic factors increase suscep-
tibility to EC. Though these studies support an inherited 
genetic component to risk (Vasen et al. 1994; Schildkraut 
et al. 1989; Gruber and Thompson 1996; Seger et al. 2011), 
twin studies suggest that the familial aggregation in risk 
may be mostly due to shared environmental factors and not 
shared genetics (Lichtenstein et al. 2000).

The predominant mechanistic hypothesis describing 
Type I endometrial carcinogenesis is known as the “unop-
posed estrogen” hypothesis (Key and Pike 1988). This 
theory states that EC risk is increased among women who 
have high circulating levels of bioavailable estrogens and 
low levels of progesterone, so that the mitogenic effect of 
estrogens is insufficiently counterbalanced by the oppos-
ing effect of progesterone. The unopposed estrogen 
hypothesis is supported by observations that the use of ET 
(Herrinton and Weiss 1993; Persson et al. 1989) and of 
Oracon (a sequential oral contraceptive (OC) characterized 
by an unusually high ratio of estrogenic to progestogenic 
activity) (Weiss and Sayvetz 1980) greatly increase EC 
risk, while use of combined OCs (i.e., containing proges-
tins as well as estrogen throughout the treatment period) 
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is associated with a reduced risk (Henderson et al. 1983). 
A further observation that led to the unopposed estrogen 
hypothesis is that mitotic rates of endometrial tissue are 
higher during the follicular phase of the menstrual cycle, 
when progesterone levels are low and the uterine lining 
undergoes proliferation, than during the luteal phase (Fer-
enczy et al. 1979). Progesterone counteracts the growth-
stimulatory effects of estrogen by inducing glandular and 
stromal differentiation (Clarke and Sutherland 1990; Ace 
and Okulicz 1995) and endometrial hyperplasia can be 
reversed by progestin therapy (Ehrlich et al. 1981). Many 
of the genes in the sex steroid hormone metabolism path-
way have served as “candidates” in search of polymorphic 
variants that predispose to EC. Although some studies sug-
gest that SNPs in these genes, for example, the CYP19A1 
(aromatase) gene, are associated with EC risk (Setiawan 
et al. 2009), very little of the genetic risk can be explained 
by these SNPs.

To this end, efforts have been undertaken to identify 
genes involved in EC causation. Recently, two genome-
wide association studies (GWAS) of EC have been con-
ducted (Spurdle et al. 2011; Long et al. 2012). However, 
only one study identified a novel genome-wide significant 
association (P = 7.1 × 10−10) with a susceptibility marker 
located at 17q12 (rs4430796), near the HNF1 homeobox 
B (HNF1B) gene, in relation to EC. Though originally 
identified in women of European ancestry, this locus has 
been replicated in other ethnicities (Setiawan et al. 2012). 
This marker has also been associated with prostate can-
cer (Thomas et al. 2008), diabetes (Winckler et al. 2007; 
Gudmundsson et al. 2007) and certain subtypes of ovarian 

cancer (Shen et al. 2013). In search of additional common 
genetic variants, we conducted a two-stage GWAS of EC 
among women participating in studies that are part of the 
Epidemiology of Endometrial Cancer Consortium (E2C2, 
details in Supplementary Table 1).

Results

We conducted a GWAS within the E2C2 to identify genetic 
loci that predispose to EC. Details on the 15 participating 
studies are provided in Supplementary Table 1. The discov-
ery phase of the GWAS (Stage 1) was conducted among 
women of European ancestry and was restricted to Type 
1 EC, the most common subtype accounting for 80–90 % 
of all cases in women of European descent. Seven partici-
pating studies, including four cohort [California Teacher’s 
Study (CTS), Nurses’ Health Study (NHS), Multiethnic 
Cohort (MEC), Prostate, Lung, Colorectal, and Ovarian 
Cancer Screening Trial (PLCO)] and three case–control 
studies [Connecticut Endometrial Cancer (CONN), Fred 
Hutchinson Cancer Research Center (FHCRC), Polish 
Endometrial Cancer Study (PECS)], were genotyped in 
Stage 1 (2,695 cases, 2,777 controls). Study-specific popu-
lation characteristics are summarized in Table 1. The mean 
age at diagnosis for cases in Stage 1 ranged from 59.6 in 
FHCRC to 67.7 in PLCO.

After quality control metrics were applied (see meth-
ods), over 524K-genotyped SNPs remained in each study 
for a combined total of unique 873K SNPs for analysis. 
The genomic control lambda for the study was 1.008, indi-
cating little evidence of population substructure, related-
ness or differential genotyping between cases and controls 
(Fig. 1). No SNP association reached genome-wide signifi-
cance (P < 5 × 10−8) (Fig. 2). In particular, we did not rep-
licate rs1202524 (P = 0.39), a reported EC susceptibility 
locus in Asian women (Long et al. 2012), in our Stage 1 
population of women of European ancestry.

Among SNPs associated with the smallest ranked P val-
ues, rs9344 and rs1352075 at the 11q13.3 locus caught our 
attention because of significant associations between this 
locus and breast cancer (Turnbull et al. 2010) and renal can-
cer (Purdue et al. 2011) in prior GWAS. Thus, we initially 
pursued a fast-track replication for seven SNPs independently 
associated with EC (r2 < 0.2) at P < 1 × 10−5 from Stage 
1, as well as two HNF1B SNPs (rs4430796 and rs11651755) 
identified by Spurdle et al. (Spurdle et al. 2011) (Supplemen-
tary Table 2). The fast-track replication was conducted in a 
multiethnic sample of 2,294 cases and 3,395 controls from 
two cohorts [MEC and the Prevention Study II (CPSII) Nutri-
tion cohort] and five case–control studies [the Alberta Health 
Services (AHS) study, FHCRC, Estrogen, Diet, Genetics, 
and Endometrial Cancer (EDGE) study, Turin, and Women’s 
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Insights and Shared Experiences (WISE)] (Table 1). Among 
women of European ancestry, we replicated EC associations 
with SNPs at the HNF1B locus (P < 0.005), but did not rep-
licate any of the other seven SNPs (Supplementary Table 2a): 
the lowest P value for the seven SNPs in fast-track replica-
tion was 0.18. No statistically significant associations were 
observed when we examined among other ethnicities (Sup-
plementary Table 2b).

We selected 2,129 SNPs with P < 0.0037 in Stage 1 for 
follow-up in a subset of the fast-track replication studies 
and two previously conducted GWAS (ANECS/SEARCH 
and SECGS) for Stage 2 (Supplementary Tables 3 and 4). 
DNA samples from a multiethnic sample of women in 
AHS, FHCRC, MEC and EDGE (Supplementary Table 5) 
were genotyped for 1,818 of these SNPs as custom con-
tent on Illumina’s Human Exome 12v1 chip; the remain-
ing SNPs failed design or quality control. After pooled 
analysis, no SNP association reached genome-wide sig-
nificance in women of European ancestry or in women of 
multiple ethnicities combined, either among Type I EC 
cases (Table 2) or among those with endometrioid subtype 
(Table 3). In addition, we further adjusted for BMI; results 
did not change qualitatively (data not shown).

Fig. 1  Log quantile–quantile (Q–Q) plot. The observed –log10 P 
values (Y-axis) of 873,935 SNPs from a meta-analysis of seven stud-
ies included in the discovery phase of the endometrial cancer GWAS 
adjusted for the principal components of genetic variation plotted 
against the expected –log10 quantile (X-axis). The genomic control 
lambda is 1.008. Imputed P values are represented by the dashed line

Fig. 2  Manhattan plot of the association results. The –log10 P val-
ues from the meta-analysis of seven studies in the discovery phase 
of the endometrial cancer GWAS adjusted for principal components 

of genetic variation plotted against chromosomal base pair position. 
Chromosomes are color coded
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Discussion

Our present study reports results from a new independent 
GWAS of EC based on a total of 7,077 cases and 16,343 
controls from the E2C2 (Table 1). We did not identify any 
novel loci associated with EC that reached genome-wide 
significance (p < 5 × 10−8).

In a joint analysis of the GWAS and replication popu-
lations, the variant most significantly associated with 
EC was rs9459805 on chromosome 6 at the RNASET2 
locus (OR = 1.19, 95 % CI 1.10–1.29; P = 1.11 × 10−5, 
Table 2). Of potential interest, two variants suggestively 
associated with EC (rs12514742, joint P = 5.78 × 10−5; 
rs12521272, joint P = 7.37 × 10−5) are located at the prol-
actin receptor (PRLR) gene locus on chromosome 5. Circu-
lating levels of prolactin, a polypeptide hormone involved 
in numerous physiological processes including reproduc-
tion, are higher among EC patients compared to healthy 
controls (Levina et al. 2009; Yurkovetsky et al. 2007; 
Kanat-Pektas et al. 2010), and increased PRLR expression 
has been noted for endometrial tumors compared to non-
cancerous endometrial tissue. Prolactin signaling via PRLR 
has also been shown to potentiate proliferation and inhibit 
chemotherapy-induced apoptosis of EC cell lines (Levina 
et al. 2009). Additional studies in independent populations 
are required to confirm whether variants at the PRLR locus 
influence EC risk.

To date, only one locus associated with EC at the 
genome-wide significance level has been identified by 
GWAS (Spurdle et al. 2011). Located within the HNF1B 
gene on chromosome 17, the common variant most sig-
nificantly associated with EC (rs4430796; OR per G 
allele = 0.84, 95 % CI 0.79–0.89; P = 7.1 × 10−10) in 
the GWAS by Spurdle et al. (2011) was nominally asso-
ciated with EC in our discovery (Stage 1) population in 
the expected direction (OR per G allele = 0.92, P = 0.03; 
Supplementary Table 2a). This effect estimate is con-
sistent with a winner’s-curse adjustment of the original 
GWAS effect estimate, which also yields a per G allele 
OR of 0.92 (Zhong and Prentice 2008). Further geno-
typing within fast-track replication studies confirmed 
the association of the rs4430796 G allele with reduced 
EC risk among women of European ancestry (joint 
OR = 0.90, 95 % CI 0.85–0.96; P = 5.2 × 10−4) with no 
evidence of heterogeneity between studies (P = 0.50). In 
the earlier GWAS by Spurdle et al., the discovery phase 
was restricted to patients with the endometrioid histo-
logic subtype of EC. Additionally restricting the replica-
tion stage to cases with endometrioid histology (~77 % 
of cases) slightly strengthened the association between 
rs4430796 and EC risk (joint OR = 0.82, 95 % CI 0.77–
0.87; P = 4.3 × 10−11) in the study by Spurdle et al. 
(2011).

Our GWAS study included all EC cases diagnosed with 
Type 1 tumors, a group consisting of the following histo-
logic subtypes: endometrioid adenocarcinoma (ICD-O-3 
codes 8380, 8381, 8382, 8383), adenocarcinoma tubu-
lar (8210, 8211), papillary adenocarcinoma (8260, 8262, 
8263), adenocarcinoma with squamous metaplasia (8570), 
mucinous adenocarcinoma (8480, 8481) and adenocar-
cinoma NOS (8140) (Kim et al. 2008). Even though the 
endometrioid adenocarcinoma subtypes represent the 
majority of Type 1 tumors (60 %) (Robboy et al. 2009), 
the inclusion of the less common Type 1 histologic sub-
types may have introduced sufficient heterogeneity to 
reduce power to detect genome-wide significant associa-
tions. However, when we restricted our analysis to Stage 
1 and Stage 2 cases with known endometrioid histology, 
the overall association of rs4430796 with EC risk remained 
the same, while the significance weakened most likely due 
to a loss of power from the reduced sample size. This is 
consistent with results from the PAGE study, which found 
that HNF1B may be a general susceptibility locus for EC, 
as risk associated with rs4430796 [G] was similar for Type 
1 and Type 2 tumors (Setiawan et al. 2012). Most of the 
suggestive SNP associations in our study (Table 2) were 
slightly weakened when the analysis was restricted to cases 
with known endometrioid histology (Table 3).

Endometrial cancer is part of Lynch syndrome, which 
is attributable to the inheritance of rare, highly penetrant 
mutations in DNA mismatch repair genes (Nicolaides et al. 
1994; Peltomaki et al. 1993; Aaltonen et al. 1993). The life-
time risk of EC among women with HNPCC is 50–60 %, 
whereas that of the general population is 2–3 %(Seger et al. 
2011). Women with this inherited predisposition to endo-
metrial neoplasm tend to develop the disease 15 years ear-
lier than the general population (Vasen et al. 1994). Stud-
ies on estimates of heritability for EC suggested a high 
genetic component for younger women (Schildkraut et al. 
1989; Gruber and Thompson 1996; Parslov et al. 2000). In 
addition, a record linkage study in Utah (Seger et al. 2011) 
indicated that there was considerable clustering of EC in 
families, even accounting for obesity. On the other hand, 
a twin study of sporadic cancers (i.e., not attributable to 
family cancer syndromes), which account for 98 % of EC 
cases, suggests a low genetic contribution (Lichtenstein 
et al. 2000).

Based on the results of this study and the previous 
GWAS in European ancestry women (Spurdle et al. 2011), 
it is unlikely that there exist any common variants with 
large effects on the risk of EC, although there may be many 
markers with smaller effects. For example, the probability 
that at least one of these GWAS would identify a genome-
wide significant association with a marker that had a per-
allele odds ratio of 1.2 and a risk allele frequency of 0.30 is 
over 80 %. Conversely, the power of this study to identify 
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a marker like rs4430796 with a per-allele odds ratio of 1.08 
and risk allele frequency of 0.52 is 5 %; the power of the 
Spurdle et al. GWAS was under 1 %. This suggests that 
circa 18 additional markers with HNF1B-like effects on 
EC exist, but have not yet been identified due to low power 
(Park et al. 2010). Consequently, a GWAS with 12,000 
cases and 24,000 controls—triple the sample size of the 
two European ancestry GWAS conducted to date—should 
identify three or more markers with HNF1B-like effect 
sizes with 85 % probability, as well as other markers with 
smaller effects. We caution that these projections are based 
on only one known GWAS-identified risk marker; we can-
not rule out a larger number of HNF1B-like risk markers 
and can say little about markers with subtler effects.

In conclusion, we did not identify any novel loci asso-
ciated with EC susceptibility. Taken together, a low inher-
ited genetic component, tumor heterogeneity and the small 
expected effects of genetic variants could explain the 
apparent lack of association. Therefore, larger studies with 
specific tumor classification (Kandoth et al. 2013) are nec-
essary to identify novel genetic polymorphisms associated 
with EC susceptibility.

Materials and methods

Study participants

Participating studies are described in Table 1 and comprise 
a total of 7,077 EC cases and 16,343 controls from 15 stud-
ies (ten case–control and five cohort, which were analyzed 
as nested case–control). Cases in Stage 1 were diagnosed 
with Type I EC. In cohort studies, controls were cancer free 
at the time of case diagnosis. In case–control studies, con-
trols had not had hysterectomies. The cohort studies were 
analyzed as nested case–control studies. Cases of European 
descent from CTS, CONN, FHRC, MEC, NHS and PLCO 
were scanned using Illumina Omniexpress. PLCO controls 
were scanned using Illumina Omni 2.5 and the PECS cases 
and controls were scanned using Illumina Human 660 W. 
With the exception of PLCO, all controls were matched 
to cases on age within each study site. Each participating 
study obtained informed consent from study participants 
and approval from its institutional review board (IRB) for 
this study and obtained IRB certification permitting data 
sharing in accordance with the NIH Policy for Sharing of 
Data Obtained in NIH Supported or Conducted Genome-
Wide Association studies (GWAS).

Participating studies in Stage 2 are described in Table 1. 
We did not restrict to European ancestry in this stage; 
a multiethnic population was included (Supplementary 
Table 5), although we also conducted sensitivity analyses 
restricted to women of European ancestry. We conducted 

two replications, a fast track, in which nine SNPs were gen-
otyped in all studies except ANECS, SEARCH and SECGS 
using the Taqman assay. Stage 2 was conducted using the 
Illumina’s Human Exome 12v1 chip with custom content 
in the following studies: AHS, FHCRC, MEC and EDGE.

GWAS Genotyping

DNA was isolated from peripheral blood following the 
manufacturer’s recommended protocol. Genotyping was 
performed at two centers. At least 625 ng of each DNA 
sample from NHS, CONN, MEC, CTS and FHCRC was 
sent to USC for genotyping using the HumanOmniExpress 
BeadChips (Illumina Inc, San Diego, CA). The BeadChips 
were run on an Illumina iScan system using the Infinium 
HD Assay Super Automated Protocol. The GenomeStudio 
Genotyping (GT) Module (Illumina Inc, San Diego, CA) 
was used for data normalization and genotype calling. The 
following studies were genotyped at the Core Genotyping 
Facility (CGF), at the National Cancer Institute; PLCO 
cases were genotyped using the Illumina Omni Express 
chip, PECS controls were previously genotyped on the Illu-
mina Human 660 W chip and PLCO controls were geno-
typed on the Omni 2.5 M chip.

Replication genotyping

Fast-track replication was performed at the Dana Farber/
Harvard Cancer Center High-Throughput Genotyping Core 
on the ABI PRISM 7900HT Sequence Detection System 
(Applied Biosystems, Foster City, CA) according to the 
manufacturer’s instructions. TaqMan® assays were ordered 
using either Assays-on-Demand or using the ABI Assays-
By-Design service. All Stage 2 replication samples were 
genotyped using Illumina Exome 12v with custom content 
(N = 1818 SNPs) (Table 1).

Genome-wide association analysis

In total, 5,806 women with genotypes were available 
for Stage 1 analysis. To minimize bias due to population 
stratification, we used ~7,600 ancestry informative mark-
ers to identify and exclude women with <80 % European 
ancestry (N = 146). An additional four participants were 
excluded based on a self-report as being of non-European 
descent. We also identified four unexpected inter-study 
duplicates (all EC cases) and removed one subject from 
each unexpected duplicate pair. Because the scan was 
based on women of European descent with Type I EC, 180 
cases of Type II EC were excluded for a final sample size 
of 5,472 (2,695 cases, 2,777 controls) women eligible for 
Stage 1. After filtering SNPs with completion rates <90 %, 
minor allele frequencies <1 %, and out of Hardy–Weinberg 
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equilibrium (P < 0.0001) we had >524K genotyped SNPs 
in each Stage 1 study for a combined total of >873K unique 
SNPs across all studies. Concordance between known 
duplicates was >99.9 %.

We applied similar filters to the newly genotyped Stage 
2 samples. Four pairs of unexpected duplicates (eight 
total samples) and 30 samples with <90 % SNP comple-
tion rate were removed. One genetically male sample and 
seven samples that did not cluster with other samples from 
their self-reported ancestry group were also excluded, leav-
ing 2,975 samples for analysis. SNPs with <90 % comple-
tion rate were removed from analysis, as were SNPs that 
showed deviation from HWE at P < 10−5 in any ethnic 
group.

Genotyping procedures, quality control and analysis 
procedures for the ANECS/SEARCH and SECGS GWAS 
have been reported previously (Spurdle et al. 2011; Long 
et al. 2012).

In all analyses, genotypes were coded log additively (0, 
1, 2 copies of the minor allele) and logistic regression was 
used to model associations. Stage 1 analyses were adjusted 
for study and the first two principal components. Analyses 
of the newly genotyped Stage 2 data (i.e., all Stage 2 stud-
ies except ANECS/SEARCH or SECGS) were adjusted 
for study and the first four principal components. Principal 
components for Stage 1 were calculated using ~7,600 inde-
pendent markers (Yu et al. 2008); principal components for 
Stage 2 were calculated using 47,097 common SNPs on the 
exome chip. Of the 1,818 SNPs selected for replication in 
Stage 2, 1,371 loci included additional in silico data from 
two previously reported GWAS (Spurdle et al. 2011; Long 
et al. 2012) in a total of 2,121 cases and 10,209 controls 
from SEARCH/ANECS and SECGS studies. Study popu-
lations were analyzed separately and results combined 
using fixed effects meta-analysis. Association analyses of 
SNPs selected for fast-track replication were conducted in 
SAS Version 9.2 (SAS Institute, Cary, NC, USA). All other 
analyses were performed using PLINK software package 
(v 1.07, October 2009).
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