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ABSTRACT

Streptomyces species are highly abundant soil
bacteria that possess linear chromosomes (and
linear plasmids). The 5’ ends of these molecules
are covalently bound by terminal proteins (TPs), that
are important for integrity and replication of the
telomeres. There are at least two types of TPs,
both of which contain a DNA-binding domain and
a classical eukaryotic nuclear localization signal
(NLS). Here we show that the NLS motifs on these
TPs are highly efficient in targeting the proteins
along with covalently bound plasmid DNA into the
nuclei of human cells. The TP-mediated nuclear
targeting resembles the inter-kingdom gene trans-
fer mediated by Ti plasmids of Agrobacterium
tumefaciens, in which a piece of the Ti plasmid
DNA is targeted to the plant nuclei by a covalently
bound NLS-containing protein. The discovery of the
nuclear localization functions of the Streptomyces
TPs not only suggests possible inter-kingdom gene
exchanges between Streptomyces and eukaryotes
in soil but also provides a novel strategy for gene
delivery in humans and other eukaryotes.

INTRODUCTION

The linear chromosomes and plasmids of Streptomyces
species are capped by terminal proteins (TPs) at the
50 ends of the DNA (1). The TP provides protection
against exonuclease attack on the DNA, and functions as
a primer for DNA synthesis to patch the single-stranded
gaps at the 30 ends during replication (2).

Several Streptomyces TPs have been isolated or
identified from genome sequences. Most of them (desig-
nated Tpg) are highly conserved in sequences and size
(184–185 aa) (3,4). On Streptomyces chromosomes, the tpg
gene forms an operon with a tap gene, which encodes
another protein essential for end-patching DNA synthesis
(5). Bao and Cohen (5) showed that the Tap protein of
S. coelicolor (TapSco) interacts with Tpg of S. coelicolor

(TpgSco) and the single-stranded telomere DNA, and
proposed that TapSco recruits and positions TpgSco at the
telomere during its replication. In an in vitro system, Yang
et al. (6) demonstrated that TpgSco was specifically
deoxynucleotidylated by dCMP (the first nucleotide of
the S. coelicolor chromosome) at a Thr residue.
A monopartite nuclear localization signal (NLS) motif

was predicted downstream of and adjacent to a helix-
turn-helix DNA-binding domain at the N-terminus of
TpgSco and the identical Tpg of S. lividans, TpgSli (4). As
more Tpg homologs were identified, NLS motifs were also
found in all of them except perhaps that of pSCL2 plasmid
and the predicted pseudogene products (Fig. 1A). All
these NLS motifs contain the consensus K(K/R)X(K/R)
sequence for the basic core of monopartite NLS (7).
Initially, this discovery was regarded as fortuitous,
because: (i ) NLSs often overlap with a DNA-binding
domain, and sometimes are used for DNA binding (8,9);
and (ii) a nuclear localization function of a TP would
appear incongruous in streptomycetes that lack a nucleus.
Recently, a novel TP (designated Tpc) encoded by linear

plasmid SCP1 of S. coelicolor was isolated and character-
ized (10). Tpc is distinct from Tpgs in both aa sequence
and size (259 versus 184–185 aa), and represents the
product of convergent evolution. Tpc also contains a
predicted NLS (Fig. 1B), which, however, differs from that
on TpgSco and TpgSli in being separate from the DNA-
binding domain, and in being bipartite. The finding of
two distinct types of NLSs in two different types of TP
suggested that their occurrences were not coincidental,
and that they serve a real biological function.
In this study, we showed that the NLSs on both types

of TP (Tpgs and Tpc) are functional in nuclear targeting.
When fused to a triple green fluorescence protein con-
catemer (EGFP3), they could target the fusion protein
into human nuclei. These TPs could also carry covalently
attached DNA into the nuclei. TPs with a mutation in
NLS are defective in nuclear localization, but remain
competent in supporting end-patching and capping of
linear replicons. This suggests that the nuclear targeting
function of TPs has evolved independently of the end-
patching function. All these findings indicate that the
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nuclear targeting of the TP-capped linear replicons of
Streptomyces is biologically significant, and may mediate
inter-kingdom gene transfer in soil.

MATERIALS AND METHODS

Growth and genetic manipulations of bacterial cultures
and plasmids

Bacterial cultures and plasmids are listed in Table 1.
Basic microbiological and molecular biological procedures
were according to Kieser et al. (11) and Sambrook et al.
(12). S. lividans TK64 (13) and MR04 (14) was used for
propagation of Streptomyces plasmids. Mutations in
cloned genes were generated by site-directed mutagenesis
by PCR.

Construction of EGFP3 fusion proteins

Tpg and Tpc genes and their NLS-deleted sequences were
obtained by PCR, and oligonucleotides containing the
NLS sequences were commercially synthesized. These
sequences were inserted between the SacI and EcoRI
sites upstream of EGFP3 (encoding a triple green
fluorescence protein concatemer under the control of the
CMV immediate-early promoter) on pEGFP3 (15) to
generate TP-EGFP3 and NLS-EGFP3 fusion proteins,
respectively.

Construction of mini linear plasmids

The 3.4 kb SacI-HindIII fragment spanning the tapSco-
tpgSco operon was generated by PCR, and inserted
between the SacI and HindIII sites of pLUS966 to
generate pLUS986. The tapSco-tpgSco operon containing
the K3A or R4A mutations was created by PCR using
appropriate primer sets (listed in Supplementary Data),
and used to replace the tapSco-tpgSco operon on pLUS986
to generate pLUS986(K3A) and pLUS986(R4A),
respectively.

Mini linear plasmid pLUS892L containing the tas and
tpc genes, the pSLA2 ARS, and a pair of SCP1 telomeres
and its circular progenitor pLUS892 were described
previously (10). The tac-tpc sequence containing the
�ARVRRR) mutation in tpc was created by PCR using
appropriate primer sets (listed in Supplementary Data),
and used to replace the corresponding HindIII fragment
of pLUS892 to generate pLUS892 �(ARVRRR).
HindIII-linearized pLUS966 and AseI-linearized
pEGFP3 were filled in by DNA polymerase I to create
blunt ends, and ligated by T4 DNA ligase to create
pLUS966-EGFP3.

Generation of linear plasmids from the circular pro-
genitor plasmids followed the general procedure of Qin
and Cohen (16). The circular plasmid DNA was linearized
by AseI in the ColE1 vector sequence and used to
transform S. lividans TK64 or MR04. Linear plasmids
were isolated from thiostrepton-resistant transformants,
and confirmed by restriction analysis.

Transfection of human cell cultures

HeLa and HEK 293T human cell lines were grown in
DMEM medium supplemented with 10% (vol/vol) fetal
bovine serum. They were transfected using lipofectamine
according to the procedure specified by the manufacturer
(Invitrogen). Fluorescent transfected cells were scored
under a fluorescence microscope. To prepare TP-capped
linear plasmid DNA for transfection, Streptomyces
cultures containing the plasmid were grown in YEME
medium to exponential phase, harvested by centrifuga-
tion, treated with lysozyme (1mg/ml) at 378 for 30m, and
osmotically lyzed by dilution in 10 vol of TE buffer.
The lysate was electrophoresed in 0.8% agarose gel
containing 0.05% SDS. Linear plasmid DNA was
visualized by ethidium bromide staining and eluted
electrophoretically.

Figure 1. Potential NLS sequences in TPs of Streptomyces. (A) The
archetypal Tpg family. The plasmid-encoded Tpgs are designated by
the plasmid names, and the chromosome-encoded Tpgs are designated
by three-letter abbreviations of the species (Sav, S. avermitilis; Sco,
S. coelicolor; Sli, S. lividans; Sro, S. rochei; Ssc, S. scabies). For those
Tpgs that are encoded by the same replicon, they are distinguished by
their gene numbers. Sources of the sequences are: S. coelicolor
chromosome (4), S. lividans chromosome (3), S. avermitilis chromosome
and SAP1 plasmid (38), pSV2 plasmid (pSV2.82) in S. violaceoruber
(GenBank accession number NC_004934), pSLV45 plasmid S. lavendulae
(39), pFRL1 plasmid in Streptomyces sp. FR1(40), S. rochei
chromosome and pSLA2-L and pSLA2-M plasmids (41), SLP2 plasmid
in S. lividans (4), S. scabies chromosome (http://www.sanger.ac.uk/
Projects/S_scabies/), pSCL2 plasmid in S. clavuligerus (GenBank
accession number AAQ93595), pNO33 plasmid in S. albulus
(GenBank accession number YP_170689). The locations of the
DNA-binding HTH domain and potential NLS sequences are depicted
by the open and filled box, respectively, on the prototype TpgSco.
The potential NLS in various Tpgs (except the putative pseudogene
products) are shaded in yellow. Within this region, the basic aa’s are in
red and Pro in blue. The length (in aa) of the Tpg proteins is indicated
at the right. Conceptually translated products of proven pseudogenes
(TpgSLP2.39; Yang, C.-C., unpublished results) or putative pseudogenes
(widely divergent sequence and/or anomalous length) are placed below
the dashed line. (B) Tpc of SCP1 plasmid. The labels are as in (A).
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NLS prediction

NLSs were predicted using the PredictNLS server
(http://cubic.bioc.columbia.edu/predictNLS) based on
Cokol et al. (9).

RESULTS

Tpgs and their NLSs are functional in nuclear targeting

To test the nuclear localization function, we fused the
TpgSco and TpgSav sequences to the reporter gene EGFP3
(encoding a triple green fluorescence protein concatemer)
under the control of the CMV immediate-early promoter
(PCMVIE) on pEGFP3 (15) (Fig. 1A), and introduced the
constructed plasmids, pEGFP3-TpgSco and pEGFP3-
TpgSav, into HeLa and/or HEK 293T human cells by
transfection using the lipofectamine procedure. Green
fluorescence was produced in �80% of the transfected
cells in 16 h after transfection, and the fluorescence

accumulated in the nuclei of these cells (Fig. 2A).
In contrast, in cells transfected by the pEGFP3 vector,
fluorescence was present mainly in the cytosol. These
results indicated that the TpgSco and TpgSav sequences
were functional in nuclear targeting.
To test the role of the putative NLS of TpgSco in nuclear

localization, the predicted NLS motif (KRPRP) was
fused to the N-terminus of EGFP3 (Fig. 2A). HeLa cells
transfected by the resulting plasmid, pEGFP3-NLS5C,
displayed green fluorescence mainly in the cytosol. On
the other hand, TpgSco with a deletion of the pentapeptide
lost its nuclear localization function when fused to EGFP3
(pEGFP3-TpgSco�NLS5C; Fig. 2A). When an expanded
NLS motif-containing decapeptide, EIKRPRPDLA, was
fused to EGFP3 (pEGFP3-NLS10C), the fused protein
was concentrated in the nuclei of transfected HeLa
cells (Fig. 2A). EGFP3 fused to TpgSco lacking this
decapeptide was localized mainly in the cytosol (pEGFP3-
TpgSco�NLS10C). These results indicated that the

Table 1. Bacterial cultures and plasmids used in this study

Strain/plasmid Relevant genotype/description Source/reference

S. lividans TK64 pro-2 str-6 SLP2� SLP3� (13)
S. lividans MR04 pro-2 str-6 rec-46 �dndA �(tapSli-tpgSli) SLP2� SLP3� (14)
pEGFP3 Plasmid containing a reporter gene EGFP3 (encoding triple EGFP protein

concatemer) under the control of the CMV immediate-early promoter PCMVIE

(15)

pEGFP3-TpgSco pEGFP3 containing tpgSco fused to the N-terminus of EGFP3 Fig. 2A; this study
pEGFP3-TpgSco�NLS5C pEGFP3 containing tpgSco with a deletion of KRPRP fused to the N-terminus of

EGFP3
Fig. 2A; this study

pEGFP3- TpgSco�NLS10C pEGFP3 containing tpgSco with a deletion of EIKRPRPDLA fused to the N-terminus
of EGFP3

Fig. 2A; this study

pEGFP3-NLS5C pEGFP3 containing KRPRP fused to the N-terminus of EGFP3 Fig. 2A; this study
pEGFP3-NLS10C pEGFP3 containing EIKRPRPDLA (from TpgSco) fused to the N-terminus of EGFP3 Fig. 2A; this study
pEGFP3-NLS10C(E1A) pEGFP3 containing AIKRPRPDLA fused to the N-terminus of EGFP3 Fig. 2B; this study
pEGFP3-NLS10C(I2A) pEGFP3 containing EAKRPRPDLA fused to the N-terminus of EGFP3 Fig. 2B; this study
pEGFP3-NLS10C(K3A) pEGFP3 containing EIARPRPDLA fused to the N-terminus of EGFP3 Fig. 2B; this study
pEGFP3-NLS10C(R4A) pEGFP3 containing EIKAPRPDLA fused to the N-terminus of EGFP3 Fig. 2B; this study
pEGFP3-NLS10C(R6A) pEGFP3 containing EIKRPAPDLA fused to the N-terminus of EGFP3 Fig. 2B; this study
pEGFP3-TpgSav pEGFP3 containing tpgSav fused to the N-terminus of EGFP3 Fig. 2A; this study
pEGFP3-NLS10A pEGFP3 containing QIKKPRPDLA (from TpgSav) fused to the N-terminus of

EGFP3
Fig. 2A; this study

pEGFP3-NLS10R pEGFP3 containing KLKRPRQDLR (from TpgpSLA2-M/TpgpSLA2-L) fused to the
N-terminus of EGFP3

Fig. 2A; this study

pEGFP3-Tpc pEGFP3 containing Tpc fused to the N-terminus of EGFP3 Fig. 3; this study
pEGFP3-NLS27S pEGFP3 containing the 27-aa NLS (from Tpc) fused to the N-terminus of EGFP3 Fig. 3; this study
pEGFP3-Tpc�(ARVRRR) pEGFP3 containing Tpc�(ARVRRR) fused to the N-terminus of EGFP3 Fig. 3; this study
pEGFP3-Tpc�(RRRKKWT) pEGFP3 containing Tpc�(RRRKKWT) fused to the N-terminus of EGFP3 Fig. 3; this study
PLUS986L linear plasmid containing the tapSco-tpgSco operon, pSLA2 ARS and a pair of

S. lividans chromosomal telomeres
Fig. 4A; this study

pLUS986(K3A) pLUS986 with the K3A mutation in the NLS of TpgSco Fig. 4; this study
pLUS986(K3A)L linear version of pLUS986(K3A) Fig. 4; this study
pLUS986(K3A)-EGFP3 pLUS986(K3A) containing EGFP3 under the control of the CMV immediate-early

promoter PCMVIE

This study

pLUS986(K3A)-EGFP3L linear version of pLUS986(K3A)-EGFP3 This study
pLUS986(R4A) pLUS986 with the R4A mutation in the NLS of TpgSco Fig. 4; this study
pLUS986(R4A)L linear version of pLUS986(R4A) Fig. 4; this study
pLUS892 plasmid containing the tac-tpc region of SCP1, pSLA2 ARS of and a pair of

SCP1 telomeres
(10)

pLUS892L linear version of pLUS892 Fig. 4A; (10)
pLUS892(�ARVRRR) pLUS892 containing the (�ARVRRR) mutation in tpc Fig. 4; this study
pLUS892(�ARVRRR)L linear version of pLUS892(�ARVRRR) Fig. 4; this study
pLUS966 recombinant circular plasmid containing the terminal 372 bp of the S. lividans

chromosome, the tsr (thiostrepton resistance) gene and a 6.4 kb autonomously
replicating sequence of pSLA2

(4)

pLUS966-EGFP3 pLUS966 with pEGFP3 sequence inserted at the HindIII site Fig. 5A; This study
pLUS966-EGFP3L linear version of pLUS966-EGFP3 Fig. 5B; This study
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EIKRPRPDLA decapeptide was necessary and sufficient
for the nuclear targeting function of TpgSco.
The putative NLS motif-containing decapeptide

QIKKPRPDLA in TpgSav, which differs from that in
TpgSco by two aa residues (Fig. 1A), could also target
EGFP3 into the nuclei (pEGFP3-NLS10A; Fig. 2A).
Moreover, a putative NLS motif-containing decapeptide,
KLKRPRQDLR, in TpgpSLA2-M and TpgpSLA2-L of
S. rochei (3,17), which differs from that in TpgSco by
four aa residues (Fig. 1A), was also competent for nuclear
localization (pEGFP3-NLS10R, Fig. 2A). These results
suggested that the predicted NLS sequences in all of the
Tpgs (except perhaps that of pSCL2) might be functional.
The ‘alanine scanning’ mutation procedure (18) was

employed to test the functionality of the decapeptide
EIKRPRPDLA of TpgSco. Changes of the first two aa of
the decapeptide to A (E1A and I2A mutations) did not
affect the nuclear localization function (Fig. 2B).
Alteration of the third (K3A), fourth (R4A) or sixth
(R6A) aa to A blocked nuclear localization. This result
confirmed the essential role of key basic aa in the NLS.

The bipartite NLS in Tpc is also functional

Tpc, the TP of the SCP1 plasmid of S. coelicolor, is
distinct from Tpgs in both sequence and size (10). Its
central region contains a predicted bipartite NLS motif of

a common [RK]{3,}?x{8,16}[RK]{4,}? pattern found in
nearly 200 nuclear proteins (9). Tpc-EGFP3 fusion
protein (pEGFP3-Tpc) was concentrated in the nuclei of
transfected HeLa cells, indicating that Tpc was also
capable of nuclear targeting (Fig. 3). A 27-aa polypeptide
spanning the predicted NLS motif of Tpc (pEGFP3-
NLS27S) was sufficient for targeting the fused EGFP3 to
the nuclei of HeLa cells. This 27-aa polypeptide contains
two separate putative basic aa clusters—ARVRRR and
RRRKKWT. Deletion of this polypeptide from Tpc on
pEGFP3-Tpc�(NLS27S) blocked nuclear localization.
Deletion of either of the basic clusters on pEGFP3-
Tpc�(ARVRRR) and pEGFP3-Tpc�(RRRKKWT)
also blocked nuclear localization (Fig. 3), confirming the
bipartite nature of this NLS.

NLS-defective TP is functional in replicating linear plasmids

While the NLS motifs in the TPs function in nuclear
localization, are they also important for replication of the
linear replicons? To answer this question, linear plasmids
were constructed following the procedure of Qin and
Cohen (16). First, an E. coli plasmid pLUS986 was
constructed that contained the tapSco-tpgSco operon and
an autonomously replicating sequence (ARS) from linear
plasmid pSLA2 (19) flanked by a pair of S. lividans
chromosomal telomeres. Such replication-proficient
sequences containing telomeres, when linearized at the
bracketing adventitious DNA and introduced by trans-
formation into Streptomyces, can generate functional
linear plasmids (16,20). The �(tapSli-tpgSli) mutant
MR04 of S. lividans (14) transformed with pLUS986
DNA that had been linearized by AseI digestion (at the E.
coli vector sequence) harbored an11.7 kb linear plasmid
(designated pLUS986L) with the expected size and the
expected SacI restriction fragments (Fig. 4A). In this
assay, linear plasmids that do not encode a functional TP
and necessary accessory protein(s) cannot replicate in
MR04, and only circular form may be found in
transformants. Circular pLUS986 DNA possessing a
single SacI site would produce only a single (linear) SacI
fragment on digestion. Next, the K3A and R4A mutations
in NLS (above) were each introduced into the tpgSco gene
on pLUS986 to give rise to plasmids pLUS986(K3A) and

Figure 2. Nuclear localization function of Tpgs. (A) NLS in Tpgs.
The vector used for transfection was pEGFP3. The Tpg sequences
fused in-frame to the N-terminus of EGFP3 are listed to the left. The
residues in TpgSav and TpgpSLA2-L/TpgpSLA2-M that differ from those in
TpgSco are underlined, and the mutant residue is in red. The nuclear
localization test results (‘�’, negative; ‘+’, positive) are shown in the
fluorescent microscopic images of a representative transfected cell in the
middle. The original source of the sequence and the plasmid construct
are listed to the right. (B) ‘Alanine Scan’ mutant variants of TpgSco.
The mutant decapeptides are listed to the left, and the introduced
alanine is in red.

Figure 3. Bipartite NLS in Tpc. The sequences fused in-frame to
EGFP3 are listed at the left. The two NLS clusters are underlined. The
plasmid constructs are listed to the right. The nuclear localization
results (‘�’, negative; ‘+’, positive) are shown in the fluorescent
microscopic images of a representative transfected cell.
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pLUS986(R4A), respectively. Transformation of MR04
with these plasmids linearized by AseI also produced
linear plasmids [designated pLUS986(K3A)L and
pLUS986(R4A)L, respectively] with the expected size
and SacI fragments (Fig. 4B). These results indicate that
a functional NLS in TpgSco is not necessary for perform-
ing the end patching role.

Using the same procedure, the �(ARVRRR) mutation
was introduced into the tpc gene on a mini linear plasmid,
pLUS892L (10), which contained the essential tac and tpc
gene pair, the pSLA2 ARS, and a pair of SCP1 telomeres.
The resulting plasmid, pLUS892(�ARVRRR)L, capped
by the NLS-defective Tpc also replicated as a linear
DNA in TK64 (Fig. 4B). These results indicated that a
functional NLS in Tpc was also not essential for end
patching.

The finding that two different classes of Streptomyces
TPs contains different types of NLS motifs, which are
functional in nuclear targeting but not required for
replication, indicates that the nuclear localization func-
tions have not emerged coincidentally, but have evolved
convergently in two different systems for an identical
biological role.

TPs carried covalently bound DNA into the nuclei

To determine whether TP may lead covalently linked
DNA into the nuclei a linear plasmid, pLUS966-EGFP3L,
was constructed that contained a pair of S. lividans
telomeres and the EGFP3 gene under the control of the
CMV promoter (Fig. 5A and B). In cells transfected with
the TpgSco-capped pLUS966-EGFP3L DNA, transient
expression of EGFP3 was observed after 6 h in HeLa
(Fig. 5C) and HEK 293T cells and reached a maximum
of �70% (Fig. 5D). In comparison, in transfection by
the progenitor circular plasmid pLUS966-EGFP3 and
proteinase K-treated pLUS966-EGFP3L DNA, fluores-
cent cells were seen after 12 h and reached a lower
maximum (�60%).
The high efficiency of gene delivery by the TpgSco-

capped linear DNA might be due to either active nuclear
targeting conferred by the TP or protection against
cellular exonuclease attack. To resolve this issue, EGFP3
was placed on pLUS986(K3A)L, which was capped by
an NLS-defective (K3A) TpgSco. Transfection using the
resultant plasmid produced similar results as the circular
DNA and uncapped linear DNA in both HeLa and HEK
293T cells, i.e. later appearance and lower numbers of
fluorescent transformants than the linear DNA capped by
normal TpgSco (Fig. 5D). This result indicated the higher
efficiency of delivery by TpgSco was mainly conferred by
the active nuclear targeting function of its NLS.

DISCUSSION

NewNLSmotifs in Tpgs

We have demonstrated that the predicted monopartite
NLS in TpgSco, TpgSli, TpgSav and TpgpSLA2-L/TpgpSLA2-M

were functional in nuclear targeting either as separate
domains or as part of the Tpg proteins. The predicted
bipartite NLS motif on Tpc, which is found in nearly 200
nuclear proteins, is also functional in nuclear targeting,
and the basic residues in both of its two clusters are
essential for function.
The laboratory-observed nuclear targeting function of

the NLSs in Tpgs and Tpc, which is not essential for the
end-patching function, strongly suggests a role in nature.
However, there is no nucleus in bacteria, hence what
would be the biological function of these NLSs?
Nuclear transport of proteins bearing an NLS is

mediated by the importin a/b heterodimer in eukaryotes.
It is possible that Tpgs and Tpc interact with a similar
system and perform an unknown biological process in
Streptomyces. To investigate this possibility, we used the
importins a and b sequences from human, mouse,
Drosophila melanogaster and Arabidopsis thaliana as
query in blastp and psi-blast searches against the

Figure 4. NLS-defective TPs are functional in replication. (A) Mini
linear plasmids constructed. pLUS986L contains a pair of S. lividans
telomeres (filled arrows) capped by the TpgSco proteins (filled circles)
encoded by the tpgSco it carries. pLUS986(K3A)L and
pLUS986(R4A)L are pLUS986L containing the K3A and R4A
mutation in the NLS of TpgSco (Fig. 2B), respectively. pLUS892
contains a pair of SCP1 telomeres (terminal open arrows) capped by
Tpc proteins (open circles) encoded by the tpc it carries (10).
pLUS892(�ARVRRR)L is a derivative of pLUS892L containing the
�(ARVRRR) mutation in the NLS of Tpc (Fig. 3). The SacI (Sc)
restriction site and the size of the expected restriction fragments
are indicated. ARS, autonomously-replicating sequence of pSLA2.
(B) NLS-defective TPs cap mini linear plasmids. S. lividans strains (see
text) were transformed by the circular progenitor of the five mini linear
plasmids, pLUS986, pLUS986(K3A), pLUS986(R4A), pLUS892, and
pLUS892(�ARVRRR) that had been digested by AseI. Thiostrepton-
resistant transformants were isolated, and DNA extracted from the
transformants, digested by SacI (‘+’, with digestion; ‘�’without
digestion), and electrophoresed. The number and size of the SacI
fragments of the plasmids were as expected from the linear plasmids.
Circular plasmids would give only a single SacI fragment.
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S. coelicolor and S. avermitilis genomic databases. No
significant homologous hit (E-values< 0.1) was found.
Therefore, either the NLS motifs in Tpgs and Tpc interact
with a heterologous system in Streptomyces, or they
interact with a system outside of Streptomyces.

TP-mediated transfer is similar to T-DNA transfer

TP-mediated DNA transfer is analogous to the transfer of
T-DNA by Agrobacterium tumefaciens. During conjuga-
tion with a plant cell, a Ti plasmid-encoded VirD2 protein
in A. tumefaciens nicks at a border of the T-DNA
sequence and remains covalently bound to the 50 end.

A rolling circle-type replication initiated at the nick,
followed by a second nick, removes a single-strand stretch
of T-DNA, which is transported into the plant cell. Inside
the plant cells, the T-DNA is bundled by another T-DNA-
encoded protein, VirE2, and led by the VirD2 protein into
the plant nuclei, where integration takes place. VirD2
contains a monopartite and a bipartite NLS, which are
required for nuclear targeting (21). VirD2 is attached
to the T-DNA at a Tyr residue (22), whereas TpgSco is
attached to the Streptomyces DNA at a Thr residue (6).

Both being soil bacteria, agrobacteria and streptomy-
cetes may have more genetic interactions than have
been noted. First, Kelly and Kado (23) recently reported

1

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

6 8 10 12 14 16 18
Time (h)

pLUS966-EGFP3
16.9kb

neo-r

PSV40

EGFP3

PCMVIE

tsr

rep2

rep1

pLUS966-EGFP3L
14.5kb

rep1 rep2 tsrneo-rEGFP3

PCMVIE PSV40

BA

C

4

3

2

D

6h 14h

%
 fl

uo
re

sc
en

t c
el

ls
%

 fl
uo

re
sc

en
t c

el
ls

Figure 5. Delivery of TP-capped DNA into the nuclei. (A) pLUS966-EGFP3 containing a linear plasmid sequence with an EGFP3 gene under the
control of the CMV promoter. The promoters and genes are indicated by the open arrows, and the S. lividans telomeres by filled arrows.
tsr, thiostrepton resistance gene; rep1 and rep2, replication genes of pSLA2 (19); neo-r, neomycin resistance gene. (B) Linear plasmid pLUS966-
EGFP3-L capped by TpgSco (filled circles) obtained by transformation of S. lividans by AseI-linearized pLUS966-EGFP3 DNA. (C) Transfer and
expression of EGFP3 in transfected cells. After transfection, fluorescent cells were photographed and counted under fluorescence microscope.
Representative bright-field and fluorescence photographs of transfected HeLa cells at 6 and 14 h after transfection are shown. 1, pLUS966-EGFP3L
DNA; 2, pLUS986(K3A)-EGFP3L DNA; 3, proteinase K-treated pLUS966-EGFP3L DNA; 4, pLUS966-EGFP3 DNA. (D) Comparison of
efficiency of EGFP3 transfer and expression. Upper panel, HeLa cells; lower panel, HEK 293T cells. Fluorescent cells were counted
after transfection. Filled circles, pLUS966-EGFP3L DNA; open circles, pLUS986(K3A)-EGFP3L DNA; open triangles, proteinase K-treated
pLUS966-EGFP3L DNA; filled triangles, pLUS966-EGFP3 DNA.
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that T-DNA may be transferred and integrated by
Agrobacterium into the chromosome of Streptomyces.
Second, the linear plasmid SLP2 of S. lividans contains a
pair of homologs of two hypothetical genes, ymg and yme,
which are present on an octopine-type Ti plasmid of
A. tumefaciens in an identical arrangement (24). Codon
usage analysis suggests that these two genes were
horizontally acquired, perhaps through gene exchanges
between a linear plasmid of Streptomyces and the
Ti-plasmid of A. tumefaciens.

We propose that TP-capped linear DNA of
Streptomyces, like the Ti plasmids of A. tumefaciens, is
also involved in inter-kingdom gene transfer in soil. The
target of such proposed transfer is not clear. Streptomyces
species are highly abundant in soil, and the likely
eukaryotic targets for transfer include plants and fungi.
Such transfer, if real, would be of great evolutionary and
ecological significance.

The existence of many genes of bacterial origin in the
genomes of plants and other eukaryotes (25) has been
suggested to result from horizontal gene transfer mediated
by bacterial systems such as the Ti-plasmids (26). The
TP-capped linear DNA system may also be involved in
such inter-kingdom gene transfer.

The Streptomyces TP as a gene delivery tool

The Ti-plasmids of Agrobacterium are the most effective
gene delivery tool in plant biotechnology (review in 27).
They have also been adopted for gene transfer for other
targets such as human nuclei (28) and mammalian
mitochondria (29). In addition, NLSs have been used in
various systems to aid non-viral gene delivery in human
gene therapy (reviewed by 30–32). In these schemes, the
positively charged NLSs are coupled with the negatively
charged DNA, or covalently coupled with a carrier
component/condensing agent or the phosphate–sugar
backbone of the DNA.

The disadvantage of non-covalent coupling of NLS-
containing peptides is that dissociation of the complex can
occur during intracellular trafficking. The non-specific
covalent coupling of NLS peptides to plasmid DNA does
not markedly enhance nuclear uptake or increase reporter
gene expression, while the covalent attachment of NLS
peptides may inhibit intended gene expression. To prevent
such inhibition, NLS peptides are coupled with specific
locations in the plasmid DNA—primarily at the termini.
Zanta et al. (33) reported a 10- to 1000-fold increase
(depending on the cell types used) in gene expression using
a linear DNA construct with a SV40-derived NLS peptide
coupled with one of the hairpin ends compared with the
DNA construct without the NLS peptide cap. However,
similar attempts (for example, 34,35) met with little or no
success.

In comparison to the existing NLS-aided gene delivery
systems, the TP-capped Streptomyces replicons offer an
efficient alternative. The TP caps offer both an active
nuclear localization function and protection from cellular
exonucleases, which is one of the gene delivery barriers
(36). TP capping is biological and complete, and does
not require elaborate physical and chemical procedures.

Only standard molecular cloning techniques in E. coli and
Streptomyces are required for production of TP-capped
linear DNA for transfection. The size of inserts is limited
by that of the cloning systems. E. coli plasmid vectors
generally can accommodate inserts of tens of kb, and
linear Streptomyces plasmids reach 1Mb. Such a promis-
ing gene delivery system requires vigorous study and
development. Notably, while this article was being
prepared, the idea of using TP-capped linear DNA as
‘a potential new strategy for assembly of synthetic
therapeutic gene vector’ was proposed by Tolmachov
and Coutelle (37).
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