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ABSTRACT

The complexity of brain activity has been observed at many spatial scales and has been

proposed to differentiate between mental states and disorders. Here we introduced a new

measure of (global) network complexity, constructed as the sum of the complexities of its

nodes (i.e., local complexity). The complexity of each node is obtained by comparing the

sample entropy of the time series generated by the movement of a random walker on the

network resulting from removing the node and its connections, with the sample entropy of

the time series obtained from a regular lattice (ordered state) and a random network

(disordered state). We studied the complexity of fMRI-based resting-state networks. We

found that positively correlated (pos) networks comprising only the positive functional

connections have higher complexity than anticorrelation (neg) networks (comprising the

negative connections) and the network consisting of the absolute value of all connections

(abs). We also observed a significant correlation between complexity and the strength of

functional connectivity in the pos network. Our results suggest that the pos network is related

to the information processing in the brain and that functional connectivity studies should

analyze pos and neg networks separately instead of the abs network, as is commonly done.

AUTHOR SUMMARY

Current measures of network complexity fail to capture the structural and functional diversity

of brain networks, in which hierarchies of linked communities span across several spatial

scales, from cortical minicolumns to large-scale networks. In this paper we use random

walks processes to obtain a time series reflecting the complex structure of brain networks and

use this time series to construct measures of local and global complexity. We found that

complexity is significantly correlated to the strength of the connections in the positively

correlated brain network, being stronger at the global than at the local scale.

INTRODUCTION

The development of a quantitative measure of complexity has proven difficult because of the

variety of systems that may be labeled as “complex.” In the case of the complexity of networks,

perhaps the most popular approach has been the use of information-based measures (Bonchev

& Buck, 2005; Dehmer & Barbarini, 2009). The basic principle to construct these measures
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Complexity of brain networks

is to select an arbitrary graph invariant X, partitioned as X1, . . . , XN . Probabilities can be

inferred for each partition using the entities pi = Xi/ ∑
N
i=1 Xi since it holds that ∑

N
i=1 pi = 1.

The information content of the graph is then computed using the Shannon formula (Shannon,

1948): H = ∑
N
i=1 pilog (pi). Another important definition of complexity was proposed by

Kolmogorov (1968). The Kolmogorov complexity of a network is the length of the shortest

computer program that produces the network as output. Although Kolmogorov complexity is

uncomputable it can be approximated to a degree that allows its practical use (Li & Vitányi,

2008).

The measures of complexity described above assume it to be a monotonically increasing

function of disorder. However, complexity can also be defined as a monotonically increasing

function of order, as shown by McShea (1991), who found that the morphological complexity

of organisms changed with the level of self-organization, and the latter with order. Finally,

complexity can be defined as a convex function of disorder; that is, a quantity that attains

a minimum for both completely ordered and completely disordered systems, and a maxi-

mum at some intermediate level of disorder or order (López-Ruiz, Mancini, & Calbet, 1995;

Shiner, Davison, & Landsberg, 1999; Tononi, Edelman, & Sporns, 1998). Here, we adopt this

latter notion by assuming that network complexity achieves a minimum for regular lattice (RL)

networks (Watts & Strogatz, 1998) and random networks, also known as Erdös–Rényi (ER)

networks (Erdös & Rényi, 1959).

In addition to the global complexity of the brain network, in this work we are interested in

computing the local complexities (a measure for each of the different brain areas), such that

the global complexity of the network is the sum of the local ones; that is, the complexity of the

system is the sum of the complexity of its parts. To estimate the complexities, we let random

walkers diffuse on the network and construct time series of the strengths of the nodes (brain

Random Walk:
A succession of random steps along
some mathematical space. areas) visited by each of the walkers. The sample entropy (SampEn) (Richman & Moorman,

2000) of the time series is then calculated. Local complexities are obtained by iteratively re-

moving a node and all its connections, constructing the time series from the walker movement

in the resulting network, computing the SampEn, and comparing this value to the average

value obtained from 1,000 ER and 1,000 RL networks with the same degree distribution and

connections strengths.

Functional connectivity in the brain is defined as the synchronization of neurophysiologicalFunctional connectivity:
Statistical dependencies between the
time series of different brain areas.

events among anatomically separated brain areas (Friston, Jezzard, & Turner, 1994). Biswal,

Yetkin, Haughton, and Hyde (1995) were the first to report that during resting state the pri-

mary motor regions in the left and right hemispheres were positively correlated. Later studies

identified positive correlations between regions that are now known to comprise the default

mode network (DMN) (Buckner, Andrews-Hanna, & Schacter, 2008; Raichle, Snyder, Powers,

Gusnard, & Shulman, 2001). In addition to the reported correlated networks, anticorrelated

networks have also been reported by several studies (Fox, Zhang, Snyder, & Raichle, 2009;

Gopinath, Krishnamurthy, Cabanban, & Crosson, 2015; Liang, King, & Zhang, 2012). Al-

though anticorrelations have been attributed to the global signal removal, recent studies sug-Global signal:
The mean time course computed
over all voxels within the brain. It is
used a normalization factor for
removing the effects of global
variations in fMRI data.

gest a physiological basis (Fox et al., 2009; Kazeminejad & Sotero, 2019). For this reason, in

this paper we computed three different functional connectivity matrices for each subject by

using the Pearson correlation between the resting-state functional magnetic resonance imag-

Pearson correlation:
A number between −1 and 1 that
indicates the strength of the linear
relationship between two variables.

ing (fMRI) signals recorded from each of the 116 brain areas considered. A matrix consisting

of the absolute value of all connections (denoted as abs), a matrix consisting of only the posi-

tive connections (denoted as pos) representing the positively correlated network, and a matrix

comprising the absolute value of only the negative connections (denoted as neg) representing

the anticorrelation network. We then compute the local complexities of the 116 brain areas,
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Complexity of brain networks

as well as the global complexities of the entire brain network, and seven known functionalFunctional magnetic resonance
imaging (fMRI):
Detect changes in blood oxygenation
and flow that occur in response to
neuronal activity.

networks of the brain (Sedeño et al., 2016): default mode network (DMN), fronto-parietal (FP),

salience (SAL), sensorimotor (SM), visual (V), cerebellar (CER), and temporo-basal-ganglial

(TBG) networks. Our results show that the pos network has higher global complexity than

the neg and abs networks. We also found that the link between complexity and functional

connectivity is stronger for the pos network than for neg network, and changes with the spatial

scale for the pos network, being stronger at the global scale than at the local scale. Also, in the

pos network global complexity was strongly correlated to the network integration and segrega-

Network integration:
The combination of information
exclusive to specialized brain
regions. tion, whereas neg and abs were not significantly correlated with integration and segregation.

Network segregation:
Processes occur separately in groups
of interconnected populations or
regions.

Our results suggest that the pos network is related to the information processing in the brain

network and should be used for functional connectivity analysis instead of the abs network.

METHODS

Data Acquisition and Preprocessing

We requested and received access to data collected by NIH Human Connectome Project

(HCP) for the purpose of scientific investigation and agreed to their open-access terms of use.

The resting-state fMRI dataset of 89 subjects from the HCP (https://db.humanconnectome.org)

(Van Essen et al., 2013) was used in this research. The HCP consent procedure was approved

by the Washington University institutional review board. For more information see Van Essen

et al. (2013). Each subject was involved in four runs of 15 minutes each using a 3 T Siemens

scanner while their eyes were open and had a relaxed fixation on a projected bright cross-hair

on a dark background. The data were acquired with 2.0-mm isotropic voxels for 72 slices, TR =

0.72 s, TE = 33.1ms, 1,200 frames per run, 0.58-ms echo spacing, and 2,290 Hz/Px bandwidth

(Moeller et al., 2010). Therefore, the fMRI data were acquired with a spatial resolution of 2 ×

2 × 2 mm and a temporal resolution of 0.72 s, using multibands accelerated echo-planar

imaging to generate a high quality and the most robust fMRI data. The fMRI data were spa-

tially preprocessed to remove spatial artifacts produced by head motion, B0 distortions, and

gradient nonlinearities (Jovicich et al., 2006). Since comparison of fMRI images across sub-

jects and studies is possible when the images have been transformed from the subject’s native

volume space to the Montreal Neurological Institute (MNI) space, fMRI images were wrapped

and aligned into the MNI space with FSL’s FLIRT 12 DOF affine and then an FNIRT nonlin-

ear registration (Jenkinson, Bannister, Brady, & Smith, 2002) was performed. In this study, the

MNI-152-2mm atlas (Mazziotta et al., 2001) was utilized for fMRI data registration.

Construction of Functional Connectivity Matrices

The peak voxel in each region, that is, the voxel of maximal activation, was selected by com-

puting the root-mean-square for each voxel’s fMRI signal over all time. It has been shown

that the peak voxel provides the best effect of any voxel in the region of interest (ROI) (Sharot,

Delgado, & Phelps, 2004). Additionally, the peak voxel activity correlates better with evoked

scalp electrical potentials than the average activity across the ROI. This means that the peak

voxel represents the ROI’s activity better than other choices (Arthurs & Boniface, 2003). The

peak voxel in each region is determined using previously published Talairach coordinates

(after conversion to MNI coordinates and using Automated Anatomical Labeling (AAL) 116

atlas) (Fox et al., 2005). The resulting signal was filtered to keep only low-frequency fluctu-

ations (0.01–0.08 Hz) (Yan & Zang, 2010). Finally, the global signal (i.e., the average of the

fMRI signals over the whole brain (Moradi, Dousty, & Sotero, 2019)) was regressed out.
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Complexity of brain networks

We then computed the Pearson correlation between all possible pairs of time series, cre-

ating a 116 × 116 functional connectivity matrix for each subject. In all cases p values

were corrected by means of a multiple comparison analysis based on the false discovery rate

(Benjamini & Hochberg, 1995). Three different networks were obtained from this matrix. A

network consisting of the absolute value of all connections (denoted as abs) which is the most

commonly used in fMRI connectivity studies (Meier et al., 2016; Meszlényi, Hermann, Buza,

Gál, & Vidnyánszky, 2017; Salvador et al., 2005), a network consisting of only the positive

connections (denoted as pos), and a network comprising the absolute value of only the nega-

tive connections (denoted as neg).

Construction of Anatomical Connectivity Matrices

The HCP preprocessed diffusion data and the structural preprocessed data were used to

compute the structural connectivity for each subject. The preprocessed steps in HCP were

conducted by using FSL and Freesurfer softwares (Sotiropoulos et al., 2013). The following

describes the preprocessing steps for the DTI data. Six diffusion series were used to normalize

the intensity of mean b0 images. Several algorithms implemented in FSL were used to remove

distortions, that is, the TOPUP algorithm to remove the echo planner distortion and the EDDY

algorithm to correct the Eddy current-induced distortions and subject motion. The registration

was done by using the FLIRT and FreeSurfer’s Bbregister algorithms (Sotiropoulos et al., 2013).

The T1W images were parcellated with the IBASPM toolbox (Alemán-Gómez, Melie-Garcia,

& Valdés-Hernández, 2006) into AAL 116. The MRtrix toolbox was used to perform diffusion-

weighted MRI white matter tractography by using constrained spherical deconvolution and

a probabilistic streamlines algorithm (Tournier, Calamante, & Connelly, 2012). A weighted

structural connectivity matrix was obtained after eliminating volume and fiber length biases

(Tournier et al., 2012).

Construction of the Time Series of the Random Walker’s Movements on the Connectivity Matrix

We first consider an unweighted network consisting of N nodes. We place a large number

K (K ≫ N) of random walkers onto this network. At each time step, the walkers move ran-

domly (with the same probability) between the nodes that are directly linked to each other.

We allow the walkers to perform T time steps. As a walker visits a node, we record the degree

of the node. Thus, after T time steps, we obtain K time series reflecting different realizations

of the random walker’s movement on the network. Nodes with high degree (hubs) will appear

more frequently in the series than nodes with low degree.

In the case of weighted networks, such as the functional connectivity matrix representing

the brain network, the routing strategy is a biased random walker, where the motion of a

random walker located at a given node is biased according to the weights of the connections

to the neighboring nodes (Zhang, Shan, & Chen, 2013). Specifically, the transition probability

pij from brain area i to brain area j is given by pij = wij/ ∑
N
j=1 wij, where wij is the weight

of the connection from area i to area j (Sotero, Sanchez-Rodriguez, Dousty, Iturria-Medina,

& Sanchez-Bornot, 2019). We then construct a time series with the strengths of the nodes i

visited by the walker: stri = ∑
N
j=1 wij.

Computing the Entropy of the Time Series

In this paper we use sample entropy (SampEn) (Richman & Moorman, 2000) to estimate the

complexity of the time series of the diffusion of the random walker in the network. SampEn

improved from approximate entropy (ApEn) (Pincus, 1991) by reducing the bias caused by
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self-matching. For a time series x(i), 1 ≤ i ≤ N, of finite length N, we first reconstitute the

N − m + 1 vectors Xm(i) following the form:

Xm(i) = {x(i), x(i + 1), . . . , x (i + m − 1)} , (1)

i = 1, 2, . . . , N − m + 1

where m is the embedding dimension, that is, the minimum dimension required to recon-

struct the phase space of the time series (Cao, 1997). SampEn is the negative logarithm of the

probability that if two sets of simultaneous data points of length m have distance smaller than

the tolerance r, then two sets of simultaneous data points of length m + 1 also have distance

smaller than r. Mathematically, we start by defining the probability Gm
i (r) that any vector

Xm(j) is within distance r of Xm(i):

Gm
i (r) =

1

N − m + 1
∑

N −m+ 1

j= 1
Θ
(

dm
ij − r

)
(2)

where dm
ij is the distance between the vectors Xm(i) and Xm(j), defined as:

dm
ij = max (|x(i + k)− x (j − k)|) , (3)

k = 0, 1, . . . , m

When the embedding dimension is m, the total number of template matches is:

Bm(r) =
1

N − m ∑
N −m

i= 1
Gm

i (r) (4)

Similarly, when the embedding dimension is m + 1, the total number of template matches is:

Am(r) =
1

N − m ∑
N −m

i= 1
Gm+ 1

i (r) (5)

Finally, the SampEn of the time series is estimated by:

SampEn(r, m, N) = −ln

(
Am(r)

Bm(r)

)
(6)

For all calculations, we take the value of m to be 2 and the value of r to be 0.2 std, where std is

the standard deviation of the time series which should be taken over a large dataset (Delgado-

Bonal & Marshak, 2019). Supporting Information Figure S1 shows the sample entropy of the

time series constructed with the strengths of the nodes visited by a random walker released on

an ER network (N = 100) for different values of the length of the time series. We see that for

series comprising more than 23,000 points there is no significant change in the sample entropy

when the length is increased. Based on this simulation, we chose a length of 25,000 points

for all calculations of the entropy.

Computing Local Complexities and Global Complexity

We propose to obtain local complexities ci by (1) iteratively removing a node and all its con-

nections, (2) constructing the time series from the random walker diffusion in the resulting

network, and (3) computing the SampEn of the time series obtained in the previous step. For

node i, the resulting SampEn is labeled as H6=i. Then we compare this entropy to the aver-

age SampEn (computed following the same procedure outlined before) of 1,000 ER (H̄ER) and

1,000 RL networks (H̄RL) of the same size (i.e, N − 1) and connections strengths taken from

the original matrix. The local complexity is the percent this comparison is of the square of the

Network Neuroscience 579



Complexity of brain networks

entropy of the original matrix (H), multiplied by the probability (pi) of the appearance of the

node in the time series:

ci = 100pi

∣∣(H6=i − H̄ER

) (
H6=i − H̄RL

)∣∣
H2

(7)

Note that the connection strengths of the 1,000 ER and 1,000 RL networks used to compute

H̄ER and H̄RL in Equation 7 are generated using a probability density function estimated from

the original matrix by means of a kernel density estimator (Bowman & Azzalini, 1997) as

implemented by Matlab’s function “ksdensity.” In the case of the functional and anatomical

brain connectivity data, we construct a vector with the nonzero strengths from all subjects and

use as input to the ksdensity function.

Figure 1 shows the steps described above for computing the local complexities. The global

complexity of the network C is then computed as the sum of the local complexities:

C = ∑
N

i= 1
ci (8)

Measures of Network Integration and Segregation

Segregation and integration are two complementary phenomena that coexist in the brain. Seg-

regation is the ability for specialized processing to occur within densely interconnected groups

of areas, whereas integration is the ability to rapidly combine specialized information from dis-

tributed areas (Rubinov & Sporns, 2010). Complex networks present both high integration and

Figure 1. Methodology for computing local complexities. (A) Given a connectivity matrix of size N, each node is removed iteratively and a
new matrix of size (N − 1) × (N − 1) is obtained. Then a time series of node strengths is constructed from the diffusion of a random walker in
the new matrix. (B) A random network of size (N − 1) × (N − 1) with the same average degree and strengths as the matrices obtained in A. (C)
A regular network of size (N − 1) × (N − 1) with the same average degree and strengths as the matrices obtained in A. (D) Local complexities.
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segregation (Tononi, Sporns, & Edelman, 1994). The clustering coefficient is a measure ofClustering coefficient:
Ratio between existing and possible
number of triangle motifs in a
network. Measure of network
segregation.

segregation, whereas global efficiency (Latora & Marchiori, 2001) is a measure of integration.

Global efficiency:
Measures how efficiently the
information is exchanged in the
network. Measure of network
integration.

Since the network is weighted, the weighted version of the complex network measurements

needs to be applied. Let A = {amn} be the directed adjacency matrix (Albert & Barabási, 2002)

of the network (amn = 1 when there is a connection from m to n, amn = 0 otherwise). Let also

dtot
m be the total degree of node m, and d↔m = ∑m 6=n amnanm. The local clustering coefficient

of node m for weighted networks is (Fagiolo, 2007):

Cm =

(
Ŵ + ŴT

)3

mm

2 [dtot
m (dtot

m − 1)− 2d↔m ]
(9)

where Ŵ = W1/3, and
(

Ŵ + ŴT
)3

mm
is the mth element of themain diagonal of

(
Ŵ + ŴT

)3

.

Then, C = ∑m Cm is used as a measure of segregation.

The second measure we are going to compute is the global efficiency, calculated as (Latora

& Marchiori, 2001; Rubinov & Sporns, 2010):

E =
1

N (N − 1) ∑i 6=j

(
~lij

)−1

(10)

where~lij is the shortest weighted path length from i to j.

RESULTS

Global Complexity of Simulated Complex Networks

As stated before, the goal of this work is to propose a new measure of structural complexity

that is useful for brain networks. To demonstrate the usefulness of the quantity we defined, we

start by measuring how changes in the underlying network structure affect the observed values

of global complexity. To this end, we devised a scenario in which the network gradually

transforms from the perfectly orderly state (regular lattice network) to a completely random

state (Erdös–Rényi network). Following Equations 7 and 8 we expect complexity to have aErdös–Rényi network:
A random graph where each possible
edge has the same probability of
existing.

minimum at these states. Network states different from these minimums would have a mixture

of order and disorder and thus were modeled using the small-world model (Watts & Strogatz,

1998). In this model, nodes of the network are placed on a regular k-dimensional grid and

each node is connected to m of its nearest neighbors, producing a regular lattice of nodes with

equal degrees. Then, with probability p, each connection is randomly rewired. The RL network

corresponds to the value p = 0. When p > 0, edge rewiring is applied, and this changes the

degree distribution of nodes. On the other end of the spectrum is the ER model (Erdös &

Rényi, 1959), obtained when p = 1, in which there is no connectivity pattern between nodes.

In between, small-world networks, obtained for values 0 < p < 1, present high clustering andSmall-world network:
Network with high clustering
coefficient and short average path
length.

short path length (Watts & Strogatz, 1998).

Graph theoretical studies of mammalian cortical networks recreated from tract tracing ex-

periments demonstrated that the cat and macaque interareal anatomical networks share sim-

ilar SW properties of short path length and high clustering (Hilgetag & Kaiser, 2004; Sporns

& Zwi, 2004). Additionally, studies of anatomical and functional connectivity networks es-

timated from human neuroimaging data also found SW characteristics (Bassett & Bullmore,

2006; Salvador et al., 2005). To simulate RL, SW, and ER networks we use Matlab’s function

WattsStrogatz.m, which has as inputs the parameters k and p.

Network Neuroscience 581
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Figure 2. Global complexity of simulated networks. (A) All networks have the same size N = 100,
and were simulated using the Watts and Strogatz algorithm for creating small-world networks. The
inputs to the model are the rewiring probability p, and mean node degree k. (B) Global complexity
as a function of the rewiring probability p.

Figure 2A shows examples of matrices of size N = 100, for five different values of the

rewiring probability p, and three values of the mean node degree k. The weights in the net-

work were generated from a uniform random distribution with values between 0 and 1. We

then placed 104 random walkers onto these networks. The steps for estimating the global com-

plexity of the network are presented in Figure 1 and described in detail in the Methods section.

Figure 2B shows the global complexity of a network as a function of the rewiring probability

p. Three different values of the average node degree were used k = 6, 8, 10. The results show

that for a fixed network size the maximum global complexity decreases with the increase of k

(the network gets denser). Additionally, the probability at which the peak in complexity was

achieved, also decreased with the increase of k.

Complexity Analysis of Large-Scale Human Brain Networks

Figure 3A displays the abs, pos, and neg matrices for one subject. Figure 3B shows the node

degree of the three matrices average across all subjects, Figure 3C shows their entropy, and

Figure 3D their global complexity. Our results show that the pos matrices are sparser than the

neg matrices but have approximately the same entropy. This combination results in the pos

network having a higher global complexity than the neg matrices. The abs matrices presented

the lowest global complexity of the three cases. Note that the density of connections by itself

is not a predictor of the global complexity of the network. If the raw fMRI data includes more

positive correlations than negative, which is common, then we expect that removing the global

signal increases negative correlations. This is verified by the increase in the density of negative

correlations and the decrease in the density of positive correlations (Supporting Information

Figure S2A) when removing the global signal. The average weights of the connections follow

the same trend (Supporting Information Figure S2B). This seems to indicate that the spatial

complexity of the network is linked to its density. However, our results indicate this is not the
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Figure 3. Global complexity of the entire brain network. (A) A matrix consisting of the absolute
value of all connections (denoted as abs), a matrix consisting of only the positive connections (de-
noted as pos), and a matrix comprising the absolute value of only the negative connections (denoted
as neg). (B) Node degree averaged across subjects. (C) Entropy averaged across subjects. (D) global
complexity averaged across subjects.

case. Supporting Information Table S1 shows the correlation between global complexity and

network density for the abs, pos, and neg cases. As we can see, the only significant correlation

(r = 0.59) was obtained for the pos case when removing the global signal; in all the other cases

the correlations were small and nonsignificant.

Figure 4A shows the linear fits between the global complexity and the sum of the functional

connectivity strengths (SFCS) of the entire brain network for the abs, pos, and neg cases. We

found that for the pos case, there is a strong correlation (r = 0.63, p < 0.05) between global

complexity and SFCS. The anticorrelation network (r = −0.07, p = 0.51) and the abs network

(r = −0.19, p = 0.07) were not significantly correlated with SFCS. We also computed the

linear fits between local complexities and the SFCS of each brain area (Figure 4B). We found

that for the pos case the link between complexity and functional connectivity was significantly

weaker at the local scale (r = 0.45, p < 0.05) compared with the global scale (Figure 4A). For

the anticorrelation network there was no link at the local scale (r = 0.02, p = 0.18), while we

found a weak correlation for the abs case (r = 0.12, p < 0.05).

In the analysis involving local complexities, the large number of samples (we consider all

subjects and all brain areas resulting in a maximum of 89 × 116 = 10, 324 points) allows us to

compute the mutual information (MI) (Cover & Thomas, 2006) between local complexities andMutual information:
Quantifies the reduction in
uncertainty about one random
variable through observing another
variable.

SFCS, which was not feasible for the analysis involving global complexities where we only had

89 data points. The advantage of using MI is that it is model free and can estimate nonlinear

interactions, which are not possible to detect using the linear analysis presented in Figure 4.

We computedMI with theMATLAB toolbox for the analysis of neuroscience data developed by

Timme and Lapish (2018). A significant value was attached to the MI by using a surrogate data

approach (Pereda, Quiroga, & Bhattacharya, 2005). We created surrogate data by randomly

shuffling the local complexity series 1,000 times. For each new surrogate series, we computed

its MI with the SFCS series. We then calculated the mean and the standard deviation of the

MI surrogates and used the MI value obtained from the original signals to construct a Z-score.

The results (Supporting Information Table S2) show that both pos and neg networks present a
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Figure 4. Link between complexity and connectivity. (A) Global complexity versus the sum of functional connectivity strengths for all
subjects, resulting in a maximum of 89 points. (B) local complexities versus the sum of functional connectivity strengths, for all subjects and
brain areas, resulting in a maximum of 89 × 116 = 10,324 points. The abs, pos, and neg networks appear in that order from left to right. In
all panels, points outside of the percentiles 5 and 95 were classified as outliers and were removed.

significant statistical dependence between local complexity and SFCS, being the dependence

for the pos network more than 10 times stronger than the dependence for neg networks.

Complex networks are expected to present high values of both integration and segregation.

Thus, we also explored the link between them and global complexity (Figure 5). Integration

and segregation were estimated using the global efficiency and average clustering coefficient

of the network, respectively (Sporns, 2013). We found strong correlations between global

complexity and both integration (r = 0.59, p < 0.05) and segregation (r = 0.57, p < 0.05)

for the pos network, and no significant correlations for the neg case (r = −0.02, p = 0.86

for integration, and r = −0.02, p = 0.82 for segregation). Correlations were negative for the

abs case (r = −0.20, p = 0.06 for the correlation with integration and r = −0.19, p = 0.07

for the correlation with segregation). Although nonsignificant, the p values were close to the

p = 0.05 threshold. These negative correlations are counterintuitive, since we expect that a

complex network has both high values of integration and segregation, and as we increase the

complexity of the network those topological values should also increase.
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Figure 5. Link between global complexity and integration (blue) and segregation (red). Points outside of the percentiles 5 and 95 were
classified as outliers and were removed.

We also investigated the link between the three network types at the global (Figure 6A) and

local scales (Figure 6B), finding that the pos and neg networks are not significantly correlated

at any spatial scale.

Figure 7 presents the local complexity of the 116 brain areas for the pos and neg cases.

Seven resting-state networks (Sedeño et al., 2016) were considered (DMN, FP, SAL, CER, V,

Figure 6. Link between the three network types (abs, pos, and neg) at the global (A) and local (B)
scales. Points outside of the percentiles 5 and 95 were classified as outliers and were removed.
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Figure 7. Local complexity of the 116 brain areas for the pos and neg cases. Seven resting-state
networks (see Supporting Information Table S3) are represented through different colors: default
mode network (DMN), fronto-parietal (FP), salience (SAL), sensorimotor (SM), visual (V), cerebellar
(CER), and temporo-basal-ganglial (TBG) networks. The gray color represents areas not assigned
(NA) to any of these networks.
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SM, TGB) as well as areas that were not allocated to a network (NA). In the pos case, the

area with the highest complexity belongs to the DMN (Angular L), whereas for the neg case,

the area belongs to the salience network (Insula R). Figure 8 displays the local complexity for

the abs case and the sum of the complexities of the neg and pos case (neg+pos). In the abs

case, the highest complexity was obtained for the Occipital_Sup_R, while the Occipital_Inf_L

presented the highest complexity for the neg+pos case.

We computed the global complexity of the seven resting-state networks (Figure 9A). We

found that the network with the highest complexity for all cases was the cerebellar network,

while the network with the lowest complexity was the salience network. The DMN, FP, CER,

V, and SM networks presented more complexity in the pos than in the neg case, while the SAL

and TGB networks were more complex in the neg case. When interpreting this result we need

to be aware of the fact that since the global complexity of the network is computed as the sum

of the local complexities (Equation 8), networks comprising few brain areas (as is the case of

the salience network) will have a low value of global complexity provided that the difference

in the values of the local complexities is not high (see Figures 7 and 8). To account for this

issue, we also divided the global complexity of each network by the number of areas in each

network (Figure 9B). As a result, although the average contribution of the areas in the salience

network to the network complexity is still the lowest among the seven resting-state networks

for the pos case, it is the areas in the visual network the ones with the lowest contribution in

the neg case.

Along these lines, hemispherical differences can be investigated as well. Previous studies

have found interhemispheric asymmetry in brain connectivity during resting state (Medvedev,

2014). We found that the left hemisphere was significantly more complex than the right hemi-

sphere for the seven resting-state networks (Figure 10).

The results presented above were obtained in connectivity matrices obtained from fMRI

signals where the global signal was removed. For comparison, we also computed the global

and local complexities of the networks constructed from fMRI data without global signal re-

gression. Supporting Information Figure S3 shows the local complexity of the 116 brain areas

for the pos and neg cases, while Supporting Information Figure S4 shows the complexities for

the abs and pos+neg cases. When comparing these results to the global signal regression case

(Figures 7 and 8), we found that the rank of areas with high complexity changed completely.

Additionally, we also computed the correlation between global complexity and the integration

and segregation of the abs, pos, and neg networks. Our results show that while there is a strong

correlation between these topological measures and global complexity when the global signal

is regressed out (Figure 5) for the pos case, no significant correlation exists when the global

signal is present (Supporting Information Figure S5).

Previously, we have focused on the complexity of fMRI-based brain networks. For compari-

son, we also analyzed the complexity of the anatomical network underlying brain activity. For

this, the anatomical connectivity matrix of each subject was computed using the HCP pre-Anatomical connectivity:
Network of structural (synaptic)
connections linking sets of neurons,
neuronal populations, or brain areas.

processed diffusion data (see Methods). Supporting Information Figure S6 shows the average

anatomical connectivity across all subjects. Supporting Information Figure S7 shows the com-

plexity of the 116 areas. Most of the top-ranked areas according to complexity values belong

to the TBG network. Additionally, the global complexity of the anatomical matrix was not sig-

nificantly correlated to the integration and segregation of the network (Supporting Information

Figure S8).
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Figure 8. Local complexity of the 116 brain areas for the abs and pos+neg cases. Seven resting-
state networks (see Supporting Information Table S3) are represented through different colors:
default mode network (DMN), fronto-parietal (FP), salience (SAL), sensorimotor (SM), visual (V),
cerebellar (CER), and temporo-basal-ganglial (TBG) networks. The gray color represents areas not
assigned (NA) to any of these networks.
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Figure 9. Network complexity. (A) Global complexity of seven resting-state networks. (B) Global
complexity divided by the number of areas in each network. Seven resting-state networks (see
Supporting Information Table S3) are represented through different colors: default mode network
(DMN), fronto-parietal (FP), salience (SAL), sensorimotor (SM), visual (V), cerebellar (CER), and
temporo-basal-ganglial (TBG) networks. The gray color represents areas not assigned (NA) to any
of these networks.

Figure 10. Interhemispheric asymmetry of global complexity. L = left hemisphere R = right hemi-
sphere. Seven resting-state networks (see Supporting Information Table S3) are represented through
different colors: default mode network (DMN), fronto-parietal (FP), salience (SAL), sensorimotor
(SM), visual (V), cerebellar (CER), and temporo-basal-ganglial (TBG) networks. The gray color rep-
resents areas not assigned (NA) to any of these networks.

DISCUSSION

In this study, the complexity of each node in a network (i.e., local complexity) was computed

using an index that compares the sample entropy of the time series generated by the movement

of a random walker on the network, resulting from removing the node and its connections,

to the sample entropy of the time series obtained from a regular lattice (the ordered state)

and an Erdös–Rényi network (disordered state). Then, the network (global) complexity was

constructed as the sum of the complexities of its nodes. Our simulations demonstrated that

our measure of complexity (Equations 7 and 8), achieves a minimum for the regular lattice and

Erdös–Rényi networks, and a maximum at some intermediate state, representing a small-world

network with both order and disorder characteristics (Figure 2).

The rationale behind the use of random walks is that diffusion processes are capable of

uncovering the large-scale topological structure of complex networks (Noh & Rieger, 2004;

Simonsen, Astrup Eriksen, Maslov, & Sneppen, 2004; Skardal & Adhikari, 2018). For instance,

random walks are the basis of Infomap (Rosvall & Bergstrom, 2008), a popular method for
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detecting community structure in complex networks. Past studies of anatomical and functional

brain connectivity have found interlinked communities that form a partly decomposablemodu-

lar architecture (Ashourvan, Telesford, Verstynen, Vettel, & Bassett, 2019; Meunier, Lambiotte,

Fornito, Ersche, & Bullmore, 2009). Such architectures are hallmarks of complex systems and

are thought to be of fundamental importance for understanding mental processing and cog-

nition (Bola & Borchardt, 2016). In the brain, hierarchies of linked communities span several

levels including brain regions, functional circuits, and large-scale networks. This structural

diversity cannot be captured by previous structural complexity measures relying mainly on

Shannon entropy (Shannon, 1948), but can be probed using randomwalks (Rosvall & Bergstrom,

2008).

Once we constructed the time series of the random walker’s movement in the network,

we needed a measure to estimate its complexity. There is a diversity of complexity measures

based on different entropy definitions, such as Shannon entropy (Shannon, 1948), Tsallis en-

tropy (Tsallis, 1988), spectral entropy (Inouye et al., 1991), wavelet entropy (Rosso et al., 2001),

approximate entropy (Pincus, 1991), sample entropy (Richman & Moorman, 2000), fuzzy en-

tropy (Chen, Wang, Xie, & Yu, 2007), and permutation entropy (Bandt & Pompe, 2002).

In this work we selected sample entropy as it quantifies the amount of regularity and unpre-

dictability of fluctuations in a time series (Richman & Moorman, 2000). This is important be-

cause of the presence of communities in brain networks (Ashourvan et al., 2019;Meunier et al.,

2009), which will result in repetitive patterns of nodes in the time series of the random walker’s

movement (Fortunato & Hric, 2016; Sanchez-Rodriguez, Iturria-Medina, Mouches, & Sotero,

2019). On the other hand, this same community structure will result in a random walker’s

movement that can be decomposed into different oscillatory modes (or temporal scales). This

is because the random walker will spend considerable time in large communities (reflected

in slow modes) and significantly less time in smaller clusters (reflected in fast modes). These

multiple temporal scales are not considered in the sample entropy method, which is based on

a single temporal scale. To address this issue in future works, we propose to use the multi-

scale entropy method (Costa, Goldberger, & Peng, 2005), which computes sample entropy at

shorter and longer timescales, and the quantification of the overall entropy of the time series

is computed as the sum of the entropy values over all individual timescales.

Our study of brain complexity found interhemispheric asymmetry, where the left hemi-

sphere was significantly more complex than the right hemisphere, for all the seven brain

networks explored. Previous studies have also found interhemispheric asymmetry in brain

connectivity during resting state. For instance, a recent study used near-infrared spectroscopy

signals to estimated functional connectivity matrices (Medvedev, 2014). Their results revealed

significantly stronger and denser connectivity patterns in the right hemisphere in most subjects.

This denser pattern of connections in the right hemisphere compared with the left hemisphere

can lead to a lower structural complexity if it is not accompanied with a significant increase

in the entropy of the network. Thus, the balance between the entropy of the network and its

density determines the network’s complexity. This was exemplified in Figure 3 where we found

that the entropy of the positive network and the anticorrelated network were essentially the

same, but the positive network was sparser, which resulted in it being more complex than the

anticorrelated network.

Finally, we found that the complexity of the pos network is correlated to functional con-

nectivity between the brain areas comprising the network, as well as to the integration and

segregation of the network, suggesting the pos network is related to the information process-

ing in the brain. On the other hand, the neg network presented a weaker (although statistically

significant) nonlinear dependence between local complexity and functional connectivity than
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the pos network. Althoughweaker than the pos case, this dependence should not be neglected.

For example, a recent study has shown that the inclusion of anticorrelations improved the per-

formance of a support vector machine model for classifying autism spectrum disorder by using

fMRI-based functional connectivity data (Kazeminejad & Sotero, 2019). Based on these re-

sults, we suggest that functional connectivity studies should analyze pos and neg networks

separately, instead of the abs network as is commonly done.
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