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ABSTRACT: Flexible manufacturing as an essential component of
smart manufacturing implements the customized production mode,
thereby requesting fast controller adaptation for producing different
goods but still with high precision. This problem becomes even more
acute for batch processes. Here we present a solution called learning
of iterative learning control (ILC) based on neural networks. It is
able to recommend control parameters for ILC controllers
accordingly, so as to yield fast tracking error convergence and
smaller steady-state error for disparate set-point profiles, which is
deemed an abstraction of different production needs. The method
substantially outperforms a benchmark ILC on a variety of systems
and cases, thereby showing its potential for deployment in the industrial Internet of Things.

■ INTRODUCTION

Batch processes are among the two predominant production
approaches in modern industry, which fundamentally support
the development of many high-end industries producing such
items as semiconductors and pharmaceuticals.1,2 Despite the
inferior production efficiency as generally compared to
continuous processes, batch processes are indispensable and
in fact are gaining ever-increasing attention. Such an
observation is underpinned by a twofold reason: (i) goods of
remarkable complexity and also of high added value are
produced in a batch processing fashion with a multitude of
processing steps organized sequentially, which are yet difficult
to reconfigure to satisfy continuous production constraints; (ii)
the rapidly fluctuating customer demands and the increasing
pursuit of personalization in the present society collectively
give birth to flexible manufacturing, which is largely
tantamount to producing goods in small batches with myriads
of disparate configurations. This is indeed the outstanding
merit of batch processes. As small as the production scale may
be, there are difficulties in precise regulation. On top of the
notorious presence of considerable nonlinearity, time variation,
and uncertainties incurred by the underlying complex
mechanisms,3 such flexibility renders the precise regulation
of batch processes an even more daunting task.
Just as every coin has two sides, a notable shortcut is enabled

by the repeated operational pattern of batch processes. This is
iterative learning control (ILC), which was initially devised for
robot arm regulation4 and is essentially a feedforward
controller in stark contrast with most classic controllers such
as PID or model predictive control (MPC).5 The underlying
idea is revolutionary, as it vividly mimics the learning process

of human beings and well explains the word ”learning” it bears.
An ILC controller distills information from the tracking error
in the past to better tune the control input of the present trial
(termed “batch” thereafter), etc., until achieving the perfect
tracking of the given set-point profile. Notably, over the past
decades, a multitude of achievements for better ILC have been
witnessed both theoretically6−11 and practically.12−17 Encour-
aging endeavors of applying ILC in practice include injection
molding,18 bioreactors,13 and batch chemical reactors,19

whereas considerable theoretical efforts are devoted to
answering the longstanding questionhow to synthesize an
ILC controller against various uncertainties. Such efforts
include the introduction of feedback,7 multipoint compensa-
tion,8 adaptive tuning,9,11 and optimal design20 for linear
systems and nonlinear systems. The review here is apparently
not exhaustive due to limited space, and readers are
encouraged to refer to excellent surveys in refs 3 and 21.
Yet, readers should bear in mind that almost all the
aforementioned are only suitable for one specific set-point
profile except for adaptive ones. Despite the ability of the
adaptively tuned controllers to track multiple set-point profiles,
its complicated controller structure requires substantial
expertise for intricate implementation in a real setting, which
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is not usually satisfied in industry. The ILC design for multiple
set-point profiles is, to the best of our knowledge, rarely
discussed. Notably, we will show that a universal ILC design
leads to divergent control performance for different set-point
profiles.
Arguably, this problem is pivotal to flexible manufacturing.

The variation of set-point profiles abstractly stands for the
switching of processing needs for producing different goods,
and fast catering for such needs indicates the profit
improvement and waste reduction, e.g., unqualified products,
thereby calling for quick deployment of a precise controller. In
this paper, we intend to present an intelligent system to
recommend suitable ILC controllers for different set-point
profiles so as to achieve faster convergence, which means waste
reduction, and smaller steady-state tracking error, which means
improved quality. Such an intelligent system is implemented
via neural networks, more specifically, multilayer perceptrons.
The most recent decade has witnessed the profound impact
neural networks make in many domains, including playing the
Go game,22 industrial processes,23,24 natural language process-
ing,25 and understanding gene expression.26 The near-
omnipotence of the neural network stems from the universal
approximation theorem,27,28 which states that a one-layer
feedforward neural network is able to approximate any
continuous function, as long as there are adequate neurons.
Such a characteristic perfectly suits our need to develop
quantitative mapping from set-point profiles to ILC con-
trollers. The development of such mapping serves as the core
of this paper.
Indeed, there are endeavors integrating ILC and neural

network for better tracking performance reported in the
literature. A neural network based ILC reported in ref 29 uses a
neural network to approximate the nonlinear component in
ILC output so as to achieve precise positioning compensation
as well as expedite the iteration convergence. Similarly, ref 30
proposes a learning process with adaptable training parameters
for both the intra- and interbatch domains and further shows
that the synthesis of the controller is independent of any
linearization and any complex optimization problem. Both
attempts illustrate that neural networks can play an important
role in the synthesis of the ILC controller of improved
performance; yet neither is suitable for the case in flexible
manufacturing with varying production needs, where the
timely and expedient controller tuning to meet the production
needs matters more. As such, we make use of neural networks
to develop a recommender system suggesting controller
configurations accordingly to achieve fast and precise ILC
regulation, or equivalently better quality and higher production
efficiency simultaneously.
The remainder of the paper is organized as follows: Section

2 presents the system formulation and a motivating example;
the main method is described in Section 3; results are
discussed in Section 4; and Section 5 concludes the work and
provides an outlook.

■ PROBLEM STATEMENT

System Formulation. Without loss of generality, we
assume that the system of interest is in the form
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where ∈u t( )k
nu, ∈x t( )k

nx, and ∈y t( )k
ny are the input

signal, the internal state, and the output signal of the system,
respectively, with nu, nx, and ny being the dimensions. Besides,
k ∈ [1, ∞) and t ∈ [1, T] are the cycle (or batch) and time
indices, respectively. The cycle duration is denoted as T. The
functions f and g are smooth functions. Such a formulation is
so general to cover most cases reported in the literature.3,31

The ILC control can be presented in the following general
form

= [ ]+ +u t h u t e t e t( ) ( ), ( ), ( )k k k k1 1 (2)

If the real-time information ek+1(t) is not incorporated, the
ILC control law reduces to the feedforward typeits original
flavor. As a pilot study, we will only focus on the classic PD-
type ILC,32 which is

= + + [ + − ]+u t u t k e t k e t e t( ) ( ) ( ) ( 1) ( )k k p k d k k1 (3)

Here, the tracking error is defined as

= −e t y t y t( ) ( ) ( )k k d (4)

with yd(t) being the set-point profile. The parameters kp and kd
in eq 3 are proportional and derivative gains that define the
ILC control performance, thereby calling for careful tuning.
Note that the derivative is approximated by one-step backward
finite difference in eq 3, owing to the discrete-time nature of
the system eq 1.
Indeed, the control law in eq 3 can be reorganized into a

compact form so as to improve the efficiency of numeric
implementation. By collecting ek(t) and uk(t) of the entire
duration and formulating supervectors, one can have that

= + + −+ k T k TU U E I E( )k k p k d N k1 2 2 (5)
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T

(8)

Specifically, if the system in eq 1 becomes a linear time-
invariant (LTI) system, i.e.,
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with matrices A, B, and C standing for system matrix, input
matrix, and output matrix, respectively, it is also possible to
rewrite the LTI system into a compact form

= +xY G G U(0)k x k u k (10)

by applying the same trick as before. Here in eq 10, the
matrices Gx and Gu are as follows
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whereas the supervectors thereof are

= [ ]y y y TY (1), (3), ..., ( )k k k k
T

(13)

Again, the form in eq 10 is helpful for numeric
implementation. Furthermore, the matrices A, B, and C can
be functions of time, i.e., A(t), B(t), and C(t). If so, the system
of interest becomes a linear time-varying (LTV) system, which
is, in some literature,33 thought to be a linearization of a
nonlinear system around a given set-point profile. Note that
similar formulation in eq 10 is also valid for LTV systems but
with slight modifications. The objective of the paper is to
present a function mapping from the set-point profile yd(t) to
PD-type ILC parameters kp and kd so as to minimize some
function of tracking error ek(t), which is generally interpreted
as the control performance.
Motivating Example. Next we will show why carefully

tuning kp and kd for each set-point profile is of great
importance by using a toy nonlinear system as an example.
Let us consider the system

+ = +

+ = +

x t x t x t

x t x t u t

( 1) sin ( ) ( )

( 1) sin ( ) ( )

k k k

k k k

1 1 2

2 1 (14)

which is regulated by PD-type ILC with kp = kd = −0.3, and the
second internal state x2k serves as the process output as well.

The system is operated within a duration T = 10 s, and its data
is collected every 0.1 s. That means there are 100 data points in
each cycle. It clearly shows in Figure 1 that a fine-tuned ILC
controller that works well for one set-point profile may not
work for another, even possibly leading to tracking error
fluctuation (see Figure 1b). Either slow convergence or
fluctuation of tracking error indicates the economic loss in
practice. Hence, what people expects from ILC is the
monotonic convergence of tracking error, which mathemati-
cally means

≤+E Ek k1 (15)

for any positive integer k. This point is not new and has been
bred in refs 34 and 35 and later strongly emphasized in ref 11.
In short summary, the sensitivity of the ILC performance to
set-point profile change, particularly the marked performance
degradation, motivates us to develop a mapping from set-point
profile to kp and kd.

■ METHODS
Prior to establishing such a mapping, one needs to figure out
how to represent different set-point profiles. People may argue
to use the supervector = [ ]y y TY (1), ..., ( )d d d

T for the purpose;
however, the high dimension of Yd may impose a burden on
the subsequent model training, for example, by increasing
computational cost. Hence, in general, it is not trivial to
introduce a low-dimensional representation. Fortunately, set-
point profiles are not arbitrary in practice but in some standard
form, for instance, step-change signal and slope-climbing
signal. These signals can be represented by much shorter
vectors. For instance, a step-change signal can be determined
by three factors a, b, and c, where a, b, are the levels of the
steps prior to and after the change, respectively, and c is the
time when the change occurs. As such, any step-change signal
can be conveniently represented as a point = [ ]s a b c, ,i i i i

T in

space 3 as shown in Figure 2. By randomly sampling points in
the space of si, one can get a set S = [s1, s2, ..., sM] representing

Figure 1. ILC controller performance is highly sensitive to set-point profiles. (a,b) For the same system, eq 14 regulated by the same PD-type ILC
law, different set-point profiles lead to divergent responses of the cycle tracking error. It clearly shows that an ILC controller that achieves
monotonic decrease on tracking error for one set-point profile still may have a cyclewise fluctuating tracking error for another. At point 1, perfect
tracking is achieved, whereas the tracking performance is rather poor at point 2. (c,d) Corresponding process output of points 1 and 2 indicated in
(a) and (b).
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a collection of set-point profiles. Indeed, such low-dimensional
representation is general, as many complex set-point profiles
can be approximated by a series of step-change signals. For the
sake of neat presentation, we only focus on step-change set-
point profiles.
Due to the powerful capability of functional approximation

of the neural network, the mapping is decided to be neural-
network-based. That is a mapping

→ { }θ s k kNN : ,i p i d i, , (16)

where θ encapsulates weights and biases of the neural network
and will be determined through training. The neural network
we use in this paper is the feedforward multilayer perceptron
(MLP). If well trained, the neural network together with the
PD-type ILC constitutes the learning of iterative learning
control (LILC), the main result of the paper, which is shown in
Figure 3.
Next we are going to fill in the last puzzlethe loss function

for training. First, we define the following tracking error index

∑ ∑ ∑= =
= = =NT NT

e tE
1 1

( )i
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k
k

N

t

T

k
1

2
2

1 1

2

(17)

for each recommended {kp,i, kd,i} and given set-point profile
yd,i(t). The index i sums the tracking error of the first N
cycles, thereby implicitly emphasizing the cyclewise decrease of
tracking error. Note that N is a hyperparameter that needs
tuning and should not be too small; otherwise, the steady state
may not reached. If one would like to yield a smaller steady-
state tracking error, a larger weight can be imposed on the term
∥EN(t)∥. Then, by summing the error index for each point in
the set S, one can have the loss function

∑θ =
=M

( )
1

i

M

i
1 (18)

for a given θ. Following that, the neural network training
becomes an optimization problem

θθmin ( )

s.t. eqs (1), (3) (19)

Such an optimization problem can be solved by many
standard optimization tools; however, given its neural network
structure, the back-propagation (BP) algorithm is probably
more efficient than others. Note that BP is still a gradient base
method, and the gradient ∇θ thereof can be calculated by
automatic differentiation, which has been included in many
machine learning packages such as PyTorch. Besides, the Adam

Figure 2. Parameterization and vectorization of set-point profiles in
the form of step change.

Figure 3. Block diagram of the proposed LILC. The neural network
aided recommender system quickly suggests appropriate kp,i and kd,i
for the ILC controller according to the low-dimensional representa-
tion of set-point profile yd, while catering to the needs of fast-tracking
error convergence.
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optimizer36 can be used to update the neural network
parameters θ. After each update, the neural network is able
to recommend a new batch of {kp,i, kd,i}, which is fed to the
system regulated by ILC for simulation and calculation of i. It
should be noted that given the structure of the loss function,
the simulation step can be implemented in parallel to
accelerate the training. Subsequently, the new gradient is
computed again and used to update θ. These steps keep
looping until a proper neural network aided recommender
system is obtained. The entire training procedures of LILC are
summarized in Algorithm 1.
Note that variable cycle duration usually occurs for batch

processes, particularly in pharmaceutical industry, thereby
becoming an important issue for iterative learning control.
Indeed, there are many solutions reported,37,38 among which
the truncation method is the simplest.37 Our proposed method
here can be easily extended to cater for variable cycle duration
by the truncation method, i.e., equating the cycle duration T to
the minimal duration of all cycles.

■ NUMERICAL EXPERIMENTS
Data Set. First, we sampled 1250 data points uniformly

from the normalized space [0,1]3, of which 80% (1000 data
points) form the training set and the rest become the test set.
The data distributions of the training set and the test set in the
normalized space [0,1]3 are visualized in Figure 4. By doing so,
we impose constraints on the range of the low dimension
representation of set-point profiles, and it matches the reality
that set-point profiles are not allowed to be arbitrarily chosen
but are within a certain range. For linear systems, the range of
a and b is [30, 40], whereas that of nonlinear systems is [3, 6].
The range of c is [200, 800] for linear systems, while it is [20,
80] for nonlinear systems. The data points should be scaled as
per the ranges and converted into the set-point profiles yd for
simulation steps in the training.
Neural Network Training. Here we use a three-layer MLP

wherein there are 3, 10, and 2 neurons in the input, hidden,
and output layers, respectively. All the activation functions are
ReLU. All the weights are initialized with Xavier uniform39 with
a gain of 0.05, while the biases are set to 0 except the ones of
the output layer, which are set to the fixed values of kp and kd
of some benchmark and will be detailed later. The neural
network is trained by using Adam optimizer with the learning
rate set to 0.001. The training is implemented in a minibatch
fashion with a size of 250.
Note that for some initialization, the network may generate

kp and kd that yield tracking error divergence and interrupt the
training process. To circumvent the problem, the neural
network parameters are initialized in a small-value region, and

the biases of the output layer are set to a pair of kp and kd that

yields a converged tracking error. This is akin to the idea of

fine-tuning of neural networks.

■ RESULTS

LTI System. We first tested LILC on an LTI system, which

is defined by matrices

Figure 4. Data distribution of the training set (a) and the test set (b) in the normalized space [0,1]3.

Figure 5. Control performance of benchmark ILC and LILC on an
LTI system. The process outputs at cycles 1, 2, and 5 are plotted.
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The system indeed describes the typical dynamics of
injection molding.40,41 The sampling period of the system is
0.01 s, and the cycle duration is 10 s, which equivalently means
there are T = 1000 points in a cycle. The internal states are
initialized as = [ ]x (0) 0, 0k

T . The benchmark ILC that LILC
will be compared against has the controller parameters kp =
−0.01 and kd = −0.3. In order to achieve accelerated
convergence of the averaged cycle loss (ACL), both ILC
controllers are initialized with a PI controller in the first cycle,
whose control law is

= − + [ − − − ]u t u t K y t y t( ) ( 1) ( 1) ( 1)r1 1 1 (21)

In this case, K is set to 0.001. The hyperparameter N plays
an important role in controlling performance, and it should
generally be chosen to be not less than 20 so as to ensure that
the steady state is reachable. An empirical value N = 50 is
selected to appropriately trade off the transient and steady-
state control performance, and the value will be used in the
remaining examples of the paper. The control performance of
benchmark ILC and LILC is compared in Figure 5, and it

Figure 6. Control performance of LILC and the benchmark ILC indexed by ACL is compared on an LTI system (a,d), an LTV system (b,e), and a
nonlinear system (c,f). (a), (b), and (c) correspond to the noise-free case, whereas (d), (e), and (f) are for the case wherein the process noise is
subject to unit normal distribution. The blue stands for LILC, while green stands for the benchmark ILC. The mean (solid line) and standard
deviation (std, shaded area) are calculated for all the data points in the test set.

Figure 7. Averaged cycle loss of LILC and benchmark ILC in the
repetitive disturbance case.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01741
ACS Omega 2022, 7, 19939−19947

19944

https://pubs.acs.org/doi/10.1021/acsomega.2c01741?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01741?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01741?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01741?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01741?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01741?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01741?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01741?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01741?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


clearly shows that LILC is able to track the given set-point
profile almost perfectly in cycle 2, whereas benchmark ILC still
has a marked overshoot. The averaged cycle loss (ACL) is
defined as the squared error averaged for each time point
within a cycle. Such an index as a function of the cycle of both
ILC and LILC is plotted in Figure 6a and d for noise-free and
unit normal process noise, respectively. For the noisy case, if
the accepting ACL is less than 0.01 (denoted as dashed gray
line in Figure 6), LILC converged 2.5 times faster than the
benchmark ILC, implying a remarkable reduction of waste.
In some batch processes, there exist repetitive disturbances

which need to be rejected. Here we also show the capability of
LILC to reject the repetitive disturbance in the LTI system.
Within this example, the benchmark and neural network
remain the same as mentioned before except the process noise,
which replaced by a deterministic sine signal

π= i
k
jjj

y
{
zzzw t t( ) 100 sin

5 (22)

The result is shown in Figure 7, where LILC outperforms
the benchmark ILC on repetitive disturbance rejection.
LTV System. LILC is further tested on an LTV system. All

the configurations remain the same except the system matrix A,
which has a slope change from the 200th to 700th data points,
i.e.,
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The results for the LTV system are shown in Figure 6b and
e. In both the noise-free and noisy cases, LILC robustly
outperforms the benchmark ILC.
Nonlinear System. Another test is performed on a

continuous stirred tank reactor (CSTR),42 whose dynamics
are described by
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The sampling time Ts is equal to 0.1. The other parameters
are θ = 1, β = 0.3, γ = 20, and Da = 0.072.43 The second
internal state x2k

also serves the process output of the system
and is required to follow the set-point profile yd. The cycle
duration is 10 s or equivalently T = 100 data points in a cycle.
The system is initialized with =x (0) 0.571k

, =x (0) 0.32k
for

any k. The benchmark ILC is set with kp = −6.00 and kd =
−35. Additionally, the PI controller for the first cycle is set
with K = 0.5. The results for both cases are shown in Figure 6c
and f, and substantial improvement of LILC against the
benchmark ILC is clearly observed.

Motivating Example. Finally we present how to use the
proposed LILC method to resolve the problem shown in
Figure 1. Within this example, the benchmark ILC uses kp = kd
= −0.3. The tracking error comparison in terms of ACL of
both LILC and the benchmark ILC for two different set-point
profiles is summarized in Figure 8a and b, where LILC
outperforms the benchmark ILC on the speed of error
convergence and steady-state tracking error. Indeed, the
advantage of LILC in terms of steady-state tracking error is
tangible. Such an observation is again confirmed in Figure 8.
Figure 8c,d shows that LILC achieves almost perfect tracking,
while the benchmark ILC starts to fluctuate after 8 s, which is
generally unacceptable in industrial reality. In all, it again
advocates the superior performance of LILC.

■ DISCUSSION
In this paper, we presented learning of the ILC method for
batch processes that need to manufacture different products.

Figure 8. Averaged cycle loss and the tracking performance at cycle 50 when LILC and benchmark ILC tracking two different set-point profiles for
the motivating example eq 14. (a) and (b) correspond to the averaged cycle losses of two different set points, respectively. (c) and (d) correspond
to the tracking performances at cycle 50.
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As a pilot study, different manufacturing needs for various
products are abstracted as different set-point profiles for the
same process. We used a toy nonlinear system as an example
showing that different set-point profiles for the same process
with the same ILC controller may lead to divergent regulation
performance, thereby clearly showing the needs for adaptive
ILC tuning for different set-point profiles. Set-point profiles
were represented in low dimensions to facilitate the neural
network training. The well-trained neural network was able to
robustly outperform the benchmark ILC on an LTI system, an
LTV system, and a nonlinear system no matter whether
process noise is present or absent. Though used for ILC
tuning, the method is quite general and is able to solve a range
of tuning problems such as weight tuning of model predictive
controller and controller tuning for multiagent systems. Hence,
it is worth further exploring in the future.
It should be noted that the LILC serves for the controller

tuning for one specific batch process. However, the LILC
framework is rather flexible to achieve the interprocess
generalization given that the class of the processes can be
parametrized. These parameters can be lumped together with
the parameters of set-points and are as a whole fed to neural
networks. By collecting more data for various combination of
processes and set-points, the intelligent recommendation for
ILC controllers can be achieved.
In fact, there is an underlying assumption behind the

method; that is, we require the model of the process to be
readily available for training. Despite being seemingly strict at
first glance, it is possible to satisfy in practice. Such a process
model can be obtained by system identification based on data
or derivation based on first-principles. The former is possible
because of the abundance of data given the rapid development
of 5G and cloud-based technology and increasing deployment
of the industrial Internet of Things. For example, in the
injection molding industry, such techniques can help to collect
abundant data to develop a precise model for each type of
injection molding machines of the same manufacturer. The
mechanistic modeling is also possible, as some manufacturers
provide such services by using their rich knowledge about
equipment they sell. Alternatively, the transfer learning
technique is also helpful to circumvent such an assumption.
Indeed, this is also the major point to be distinguished from
model-free optimization methods for batch processes.44

Additionally, it is also worthwhile to investigate the
robustness of LILC, including the robustness against model
mismatch, repeatable disturbance, and stochastic factors on
different parts of a system, as well as its application to
stochastic batch processes, biological processes in partic-
ular.45−50
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