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Abstract: Real-world datasets are often contaminated with label noise; labeling is not a clear-cut
process and reliable methods tend to be expensive or time-consuming. Depending on the learning
technique used, such label noise is potentially harmful, requiring an increased size of the training
set, making the trained model more complex and more prone to overfitting and yielding less
accurate prediction. This work proposes a cleaning technique called the ensemble method based
on the noise detection metric (ENDM). From the corrupted training set, an ensemble classifier
is first learned and used to derive four metrics assessing the likelihood for a sample to be
mislabeled. For each metric, three thresholds are set to maximize the classifying performance
on a corrupted validation dataset when using three different ensemble classifiers, namely Bagging,
AdaBoost and k-nearest neighbor (k-NN). These thresholds are used to identify and then either
remove or correct the corrupted samples. The effectiveness of the ENDM is demonstrated in
performing the classification of 15 public datasets. A comparative analysis is conducted concerning
the homogeneous-ensembles-based majority vote method and consensus vote method, two popular
ensemble-based label noise filters.

Keywords: classification; label noise; supervised learning; ensemble learning; multiclass

1. Introduction

In machine learning, the prediction accuracy depends not only on the appropriate choice of
the learning technique, but also on the quality of the database. Quoting [1], “real-world databases
are estimated to contain around five percent of encoding errors, all fields taken together when no
specific measures are taken.” Noise-contaminating databases can be mainly of two types: feature noise
or label noise, also called class noise (i.e., mislabeled data) [2]. Whether one or the other prevails
depends on the application field. Using inaccurate sensors or choosing less invasive measurements
may explain why the feature noise is predominant. On the other hand, labeling training instances may
be contaminated with data entry errors. It is a costly and rather subjective task as the meaning of a
label could be inadequate [3–10], As a result, the label noise could be predominant.

Feature noise is generally spread over many features and each feature noise component tends
to be statistically independent of the others, and most learned classifiers are robust to such noise.
Conversely, label noise can significantly affect the learning performance [11–13] and should be taken
into account when designing learning algorithms [14]. Noise can increase the number of necessary
training instances, the complexity of learned models, the number of nodes in decision trees [1] and the
size (number of base classifiers) of an ensemble classifier [5]. Learning from noisy labeled data can
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also create overfitting [15]. Incorrectly labeled examples may severely bias the learning method and
result in inaccurate models [5].

As learning from noisy labeled data is a challenging issue [3], an important subfield of the
literature is devoted to its study [1,16]. It follows mainly three ideas: finding robust learning
techniques [17,18], postprocessing data by adapting learning techniques, and preprocessing data by
removing some instances, or sometimes by correcting some labels. Many Bagging-based [19] ensemble
techniques are more robust learning techniques as compared to the support vector machine (SVM) [20],
which uses support vectors, AdaBoost [21], which happens to give more weight to mislabeled samples,
or k-nearest neighbor (k-NN) [22], especially when only one neighbor is considered (k = 1).

This first idea—“finding robust learning techniques”—is generally regarded as less effective [3].
The second idea—“postprocessing data by adapting learning techniques”—is an active research topic
that includes probabilistic methods derived from the mislabeling random assumption and model-based
methods, attempting to avoid the consequences of label noise [1]. The third idea—“removing or
correcting some instances”, which we follow in this work—was already popular in the eighties [17].
It consists of designing filters, detecting mislabeled instances and removing them [4,23] or correcting
them [24,25]. Often with some similarities to outlier detection, such noise filters focus on the instances
that are difficult to classify and are easy to use [26]. When filtering a training set, two conflicting
difficulties are encountered:

1. (Case 1) A clean sample is regarded as mislabeled and cleaned. This case harms the
classification performance, especially when the size of the training dataset is small.

2. (Case 2) A mislabeled sample is regarded as clean and retained or unchanged. This makes noisy
samples remain in the training dataset and degrades the classification performance.

The ensemble approach is a popular method to filter out mislabeled instances [4,15,23,27–29].
It constructs a set of base-level classifiers and then uses their classifications to identify mislabeled
instances [11]. The majority filter and consensus filter are two typical noise cleaning methods.
A majority filter tags an instance as mislabeled if more than half of the base classifiers do not predict
the right label. A consensus filter tags an instance as mislabeled if all base classifiers do not predict
the right label. When using the consensus filter whose criterion is strict, only a small portion of
the label noise is removed. Most mislabeled instances then remain in the filtered training set and
performance is hindered, more than when using the majority vote filter, as it removes a higher portion
of the label noise. Because of the diversity of the ensemble classifier used in these majority filter,
samples near the classification boundary have a reduced amount of base classifiers predicting the right
label, and more correctly, labeled instances are removed from the training set, which can negatively
affect the classifier’s performance [1,30].

Depending on whether base classifiers are induced using different or similar learning techniques,
the ensemble-based noise filtering method is referred to as heterogeneous or homogeneous.

In the heterogeneous method, an ensemble classifier detects mislabeled instances by constructing
a set of base-level detectors (classifiers) and then using their classification errors to identify mislabeled
instances. Brodley et al. chose three well-known algorithms from the machine learning and statistical
pattern recognition communities to form the filters: decision trees, nearest neighbor classifiers,
and linear machines. An instance is tagged as mislabeled if α of the T base-level classifiers cannot
classify it correctly. In heterogeneous ensembles, the decision borders are varied because the individual
classifiers are of different types. The dispersion of class noise may reflect this variability. Hence,
this method tends to eliminate instances that lie on the wrong side of the classification boundary,
which can negatively affect the classifier’s performance.

The homogeneous ensemble vote for noise filtering [15] is an improved version of the
aforementioned heterogeneous ensemble-based method. Verbaeten and Assche considered the problem
of mislabeled training examples by preprocessing the training set based on some well-known ensemble
classification methods (Bagging and boosting) [15] using C4.5 as base classifier [31]. They proposed
two approaches:
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1. Filtering based on voting (consensus vote and majority vote) of base classifiers of a Bagging ensemble.
2. Filtering based on removing training examples that obtained high weights in the boosting process.

Indeed, mislabeled examples are assumed to have high weights.

Results show that majority vote filters are still more accurate than consensus filters in the
homogeneous ensemble method. In addition, Bagging majority vote filters outperform the boosting
filters. The boosting filter tends to incorrectly remove many important correctly labeled instances with
large weights. In addition, in a homogeneous ensemble, the decision boundaries of the individual
classifiers are similar to each other. Then, noisy examples close to this decision boundary can
be detected effectively by the majority voting [32]. In summary, in this paper, the homogeneous
ensemble-vote-based method for noise filtering is used as the comparison in the experiment.

As an example of the ensemble approach but in a different manner, there is outlier removal
boosting (ORBoost) [33], where data cleaning is performed while learning, and not after nor before.
The only difference with AdaBoost is that the weight assigned to each sample is set to zero when it
exceeds a certain threshold. Good performance is observed when the label noise is low.

An ensemble classifier induced on a training set is also a precious information source on each
instance: how many base classifiers did not predict correctly? What is the cumulative weight of these
base classifiers failing to predict the assigned label? To what extent might the ensemble classifier have
been able to predict a different label? These questions have greatly influenced our work. Using a
technical definition of an edge [34,35] exploited the answers to the two first questions to detect
mislabeled instances. [23] exploited the answer to the third question to compute for each instance a
margin with which mislabeled instances are detected. However, an important amount of mislabeled
instances are not removed, perhaps because the possibly correct label of instances from the training set
have actually no impact on the margin value and the amount of suspicious instances removed is set
upon the performance on a validation dataset using Bagging, which happens to be fairly robust to
label noise. Our work is different in that (1) to set the amount of removed samples, instead of only
Bagging, it adopts three methods (Bagging, AdaBoost and k-NN, with k = 1 rendering it especially
noise-sensitive); (2) four noise detection metrics are considered (instead of one); (3) the ENDM is
extended to label noise correction. A comparative analysis is also conducted concerning the majority
vote filter [4,15].

In the paper, we deal with the label noise issue using an adaptive ensemble method based on a
noise detection metric (ENDM). It is called adaptive because there is no fixed threshold being used
to select the suspicious instances as for majority and consensus filters—rather, there is a counting
parameter whose value is selected using a validation set. Our proposed method for noise detection
is described in Section 2. In Section 3, we present the results of an empirical evaluation of the
proposed method and a comparison with other state-of-the-art noise detection methods. In Section 4,
the conclusions are provided, and future works are discussed.

2. Label Noise Cleaning with an Adaptive Ensemble Method Based on Noise Detection Metrics

2.1. Label Noise Detection Metric

In this work, it is assumed that all instances have an unknown, yet fixed, probability of being
misclassified. This assumption is called the uniform label noise in [1]. To assess whether an instance is
more likely to be misclassified than another, a homogeneous ensemble classifier is trained and four
metrics are computed based on the votes of the base classifiers and their number [5]. Once samples
are ordered according to one of the metrics, it suffices to use a validation set to fix the exact number
of tagged instances and hence to select the suspicious instances [23]. The flowchart of the proposed
method is shown on Figure 1.

Let us define some notations,
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• ζ is an ensemble model composed of T base classifiers,
• (x, y) is an instance, with x as a feature vector and y as one of the C class labels,
• S = {(x1, y1), . . . , (xn, yN)} is a set of N training samples,
• v(x, c) is the number of classifiers predicting the label c when the feature vector is x,
• Λ(x, y) is a metric assessing the likelihood that a sample (x, y) will be mislabeled (it is used to

sort samples),
• 1(P) is equal to one when statement P is true and is equal to zero otherwise,
• λ counting parameter.

All four metrics proposed are ranging from 0 to 1, 0 indicating that the label is very suspicious
and 1 indicating that this label is reliable.

Predicted labels 
of the training 

instances
Misclassified data

Obtain the best value of , and 
eliminate or correct the first most 

likely mislabeled instances

Clean training 
data

P

Noisy training data 

Training data with 
noise detection 

probability

Validation set

Correct the 
class noise

Construct an ensemble 
classifier with all the 

training data

Y

M
M

Sort the misclassified training data in 
descending order according to the noise 

detection probability

Figure 1. Flowchart of label noise cleaning with an adaptive ensemble method based on a noise
detection metric.

2.1.1. Supervised Max Operation (SuMax)

A popular ensemble margin function was introduced by Schapire et al. [36] and has been used in
data importance evaluation [5]. This ensemble margin is defined as

marginSuMax(x, y) =
1
T

(
v(x, y)−max

c 6=y
v(x, c)

)
(1)

A positive value of marginSuMax(x, y) means that this instance is correctly classified by the set of
T classifiers when using a majority vote. A negative value indicates misclassification. When there is
a class c such that v(x, c) equals to T, margin(x, y) = 1 or margin(x, y) = −1 depending on whether
c = y or not. Otherwise, the range of margin(x, y) is (−1, 1).

The SuMax-based noise detection metric is defined by Equation (2).

ΛSuMax(x, y) = |marginSuMax(x, y)| = 1
T

∣∣∣∣v(x, y)−max
c 6=y

v(x, c)
∣∣∣∣ (2)
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2.1.2. Supervised Sum Operation (SuSum)

The margin of a sample is also obtained by the difference between the fraction of classifiers voting
correctly and incorrectly [37]. Unlike the previous definition, in a multiclass context, a negative value
of the margin does not necessarily indicate misclassification. This definition bears some resemblance
with the definition of an edge in [34]: Given an ensemble classifier and an instance, the edge is the sum
of the weights associated to classifiers predicting a wrong label.

The SuSum-based noise detection metric is defined by Equation (3).

ΛSuSum(x, y) = |marginSuSum(x, y)| = 1
T

∣∣∣∣∣v(x, y)− ∑
c 6=y

v(x, c)

∣∣∣∣∣ (3)

2.1.3. Unsupervised Max Operation (UnMax)

In [23], the authors proposed a new margin definition that is more robust to label noise. It is an
unsupervised version of Schapire’s method and defined in Equation (4).

ΛUnMax(x) = marginUnMax(x) =
1
T

(
v(x, ζ(x))− max

c 6=ζ(x)
v(x, c)

)
(4)

where ζ(x) is the predicted class of the ensemble classifier for sample x: ζ(x) = arg maxc v(x, c).

2.1.4. Unsupervised Sum Operation (UnSum)

In our previous work [38], we proposed a new unsupervised data importance evaluation method.
It is an unsupervised version of the SuSum (3) and is defined in Equation (5).

ΛUnSum(x) =
∣∣marginUnSum(x)

∣∣ = 1
T

∣∣∣∣∣∣v(x, ζ(x))− ∑
c 6=ζ(x)

v(x, c)

∣∣∣∣∣∣ (5)

According to the above presentations of the four metrics, the supervised margins need the true
label of the mislabeled instances while the unsupervised margins are robust to the true class values.
In addition, when compared with the max operation, the sum based methods tend to give the
misclassified instances with higher noise weight values.

2.2. Label Noise Cleaning Method

The proposed label noise cleaning method can be used with any of the four noise detection metrics.
The samples tagged as mislabeled are the λN samples having the smallest metric values, with λ itself
depending on whether the tagged samples are removed or corrected.

2.2.1. Label Noise Removal with ENDM

The pseudo-code of the ENDM based noise removal method is presented as Algorithm 1.
In the first step, Bagging is used to induce an ensemble classifier composed of pruned trees from

the whole training set. Collect in S′ the misclassified samples. Based on predictions of base classifiers,
the chosen metric is used to sort samples in S′ according to their metric value. Compute λmax defined
as the ratio of the size of S′ to the size of S.

The second step is an iterative procedure. In this step, λ ranges from 0 to λmax in steps of 1%.
At each iteration, a new subset containing the correctly classified samples of S and the λN-lowest
sorted samples. Then, this obtained subset is used to learn a classifier (Bagging, AdaBoost or k-NN
with k = 1), and the accuracy of this classifier is measured on the validation set. The finally selected
λ-value is the one yielding the highest accuracy of the validation set.
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In the last step, a clean training set is defined with the selected λ-value as in the second step,
and a noise-sensitive classifier, AdaBoost or k-NN, is, induced on this clean training set, and tested on
the test set.

Algorithm 1 Label-noise removal with an adaptive ensemble method based on noise-detection metric

1: Input:
2: Training set S = {(x1, y1), (x2, y2, ), · · · , (xN , yN)};
3: Validation set V;
4: Noise-robust ensemble classifier algorithm A;
5: Noise-sensitive ensemble classifier algorithm B;
6: Choose a metric, Λ ∈ {ΛSuMax, ΛUnMax, ΛSuSum, ΛUnSum};
7: Process:
8: Train ζ according to A with S;
9: Collect in set S′ all misclassified instances, S′ := {(x, y) ∈ S|ζ(x) 6= y};

10: Compute the maximum value of λ, λmax := |S′ |
|S| ;

11: Sort instances in S′ according to Λ in decreasing order;
12: for λ=0:λmax do
13: Initiate clean set with the correctly labeled instances, Sλ := S\S′;
14: Fill in Sλ the λN-lowest samples, Sλ := Sλ

⋃{(xi, yi)|i ≤ λN};
15: Train ζλ according to B with Sλ;
16: Compute accuracy of ζλ on V, aλ := 1

|Sλ |∑(x,y)∈Sλ
1 (y = ζλ(x))

17: end for
18: Select the optimal λ-value: λ̂ = arg max aλ;
19: Select the best filtered training set: S′′ = S

λ̂
.

20: Output:
21: The clean training set S′′.

2.2.2. Label Noise Correction with ENDM

The only difference with ENDM-based noise correction is in that tagged samples have their label
corrected instead of being removed. Its pseudo-code is presented as Algorithm 2 and its description is
also divided into three steps.

In the first step, the same technique is used to induce an ensemble classifier (Bagging with
pruned trees), and the same misclassified samples are collected in S′ and sorted according to the
metric chosen. The value λmax is the ratio which is used to control the number of the removed instances.

In the second step, λ ranges from 0 to λmax by step of 1%. Then, the first λN-highest sorted
samples of S′ are tagged. This step is different in that instead of collecting the nontagged samples in a
new subset, it is the whole training set that is considered and the labels of the S′ nontagged samples
are changed into those predicted by the ensemble classifier. This modified training set is again used to
learn a classifier (Bagging, AdaBoost or k-NN with k = 1), and the accuracy of this classifier is measured
on the validation set. As the inducing sets have been modified, there is no reason that the selected
λ-value yielding the highest accuracy should be the same.

The last step is the same, though the inducing set is different in size and label values:
a noise-sensitive classifier, AdaBoost or k-NN, is induced on this modified training set and tested
on the test set.
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Algorithm 2 Label noise correction with an adaptive ensemble method based on noise-detection metric

1: Input:
2: Training set S = {(x1, y1), (x2, y2, ), · · · , (xN , yN)};
3: Validation set V;
4: Noise-robust ensemble classifier algorithm A;
5: Noise-sensitive ensemble classifier algorithm B;
6: Choose a metric, Λ ∈ {ΛSuMax, ΛUnMax, ΛSuSum, ΛUnSum};
7: Process:
8: Train ζ according to A with S;
9: Collect in set S′ all misclassified instances, S′ := {(x, y) ∈ S|ζ(x) 6= y};

10: Compute the maximum value of λ, λmax := |S′ |
|S| ;

11: Sort instances in S′ according to Λ in decreasing order;
12: for λ=0:λmax do
13: Initiate clean set with S, Sλ := S;
14: Modify in Sλ with A the λN-highest samples, ∀i ≤ λN, yi := A(xi);
15: Train ζλ according to B with Sλ;
16: Compute accuracy of ζλ on V, aλ := 1

|Sλ |∑(x,y)∈Sλ
1 (y = ζλ(x))

17: end for
18: Select the optimal λ-value, λ̂ := arg max aλ;
19: Select the best filtered training set, S′′ := S

λ̂
.

20: Output:
21: The clean training set S′′.

3. Experimental Results

3.1. Experiment Settings

As in [2,4,5,15,27] and actually following most of the literature addressing the noise label issue,
artificial noise is introduced in the training set and the validation set, not in the test set. In all
our experiments, 20% of the training samples and 20% of the validation samples are randomly selected
and have their labels randomly modified to another label. For a fairer comparison, we included
the validation data in the training data when the validation set was not necessary (e.g., no filtering,
majority vote filters and consensus vote filters). As for the Bagging-induced ensemble classifier using
the uncleaned training set, in all experiments, it is composed of exactly 200 pruned Classification and
Regression Trees (CART) [39] as base classifiers.

To exemplify the proposed method, it is applied with noise removal on Statlog dataset with λ

ranging from 0 up to λmax(= 31%) by step of 1%. Subsets are built by collecting the λN-lowest values
of the training set. AdaBoost is induced on each of those subsets. Figure 2 shows two curves. The lower
is the accuracy measured on the validation set, of each induced AdaBoost classifier, as a function of λ.
The upper is the accuracy measured on the test set of the same classifiers as a function of λ. As the
test set is noise-free, it is no surprise that the test-set measured accuracy is significantly higher than
the validation-set measured accuracy. Note that both curves have very similar shapes, showing the
appropriateness of the proposed way of selecting λ.

A comparative analysis is conducted between the ENDM-based mislabeled data identification
method and the homogeneous-ensemble-based majority vote method [15]. Both label noise removal
and correction schemes are involved in the comparison.
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Figure 2. Classification accuracy of AdaBoost on dataset Statlog’s validation set (20% randomly selected
of its labels are randomly modified) and test set (no labels are modified) as a function of λ (ratio of
tagged labels).

3.2. Datasets

The experimentation is based on 15 public multiclass datasets from the UCI and KEEL machine
learning repository [40]. Each dataset was divided into three parts: training set, validation set and test
set. Those datasets are described in Table 1, where Num. refers to the number of examples, Variables to
the number of attributes (and their type) and Classes to the number of classes.

Table 1. Data sets.

Data Set Training Set Num. Validation Set Num. Test Set Num. Variables Classes

Abalone 1500 750 1500 8 3
ForestTypes 200 100 200 27 4
Glass 80 40 80 10 6
Hayes-roth 64 32 64 3 3
Letter 5000 2500 5000 16 26
Optdigits 1000 500 1000 64 10
Penbased 440 220 440 15 10
Pendigit 2000 1000 2000 16 10
Segment 800 400 800 19 7
Statlog 2000 1000 2000 36 6
Texture 2000 1000 2000 40 11
Vehicle 200 100 200 18 4
Waveform 2000 1000 2000 21 3
Wine 71 35 72 12 3
Winequalityred 600 300 600 11 6

3.3. Comparison of ENDM Versus no Filtering

Tables 2 and 3 show respectively the accuracy of AdaBoost and k-NN-classifiers induced using three
different training sets: the training set is not modified (no filtering), the training set is ENDM-based
filtered with noise removal and noise correction. On all 15 datasets using both learning techniques
and regardless of the modality chosen (noise removal or noise correction), the ENDM technique is
better performing than not using any filter with an average increase of 2.42%. In comparison with not
filtering, the ENDM-technique yields an increase in accuracy of 10% on dataset Letter with AdaBoost and
about 16% with k-NN on dataset Optdigit. The ENDM noise-correction modality, be it with AdaBoost
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or k-NN, appears to be most often less performing than the noise removal modality; nonetheless,
it remains better than not using any filter.

Table 2. Accuracy of the AdaBoost-classifier induced using 15 different training sets: three filtering
techniques (no filter, majority-vote and ENDM) and two modalities (noise removal and noise correction).
The best results are marked in bold.

Data No Filter
Label Noise Removal Label Noise Correction

Majority Consensus ENDM Majority Consensus ENDMVote Vote Vote Vote

Abalone 53.85 53.92 54.27 54.64 54.19 54.36 54.61
ForestTypes 84.50 84.40 84.70 84.83 84.50 83.40 83.20
Glass 98.00 97.50 98.25 97.92 97.50 97.75 96.50
Hayes-roth 65.00 64.38 64.06 59.38 64.06 65.31 60.94
Letter 46.72 47.83 47.96 56.88 45.59 45.22 50.88
Optdigits 89.32 90.84 88.98 94.14 87.98 88.78 93.23
Penbased 90.05 93.05 90.36 91.89 92.45 90.00 92.23
Pendigit 90.34 92.95 91.73 95.40 89.56 90.80 93.64
Segment 92.12 91.13 93.73 94.90 91.11 93.47 94.41
Statlog 83.38 85.68 86.27 88.75 83.66 86.00 88.15
Texture 86.31 89.52 88.11 94.03 85.83 87.43 91.42
Vehicle 72.20 73.70 73.20 73.00 74.30 71.80 73.80
Waveform 81.44 79.09 81.53 82.97 77.07 81.70 82.41
Wine 90.83 92.78 89.17 91.67 93.33 91.11 93.89
Winequalityred 60.90 60.67 60.70 60.83 60.60 61.47 60.30

Average 79.00 79.83 79.53 81.42 78.78 79.24 80.64

3.4. Comparison of ENDM Versus Other Ensemble-Vote-Based Noise Filter

Tables 2 and 3 also show the accuracy of AdaBoost and k-NN classifiers, respectively, induced using
different training sets: the training sets are majority-vote-based and consensus vote-based filtered with
noise removal and noise correction, and the training set is ENDM-based filtered with noise removal
and noise correction. As noted previously, the noise-correction modality of the majority-vote-based
noise filtering technique is most often less performing than the noise-removal modality when using
AdaBoost or k-NN. On 10 of the 15 datasets, using AdaBoost, and considering only the noise-removal
modality, ENDM is more successful than the other ensemble-vote-based noise filtering techniques.
On dataset Letter, the increase is of 9% using AdaBoost and 25% using k-NN. Both tables show
that ENDM is more safe with respect to majority vote method. The majority-vote-based and
consensus-vote-based methods tend to tag more instances as noisy. When the data removal is carried
out, more useful samples are wasted. With respect to the majority vote filter, the best increase in
accuracy is, respectively, over 9% and 25% with AdaBoost on dataset Letter.

To further analyze the performance of the proposed method, a nonparametric statistical test,
the Friedman test, Refs. [41,42] is used. Tables 4 and 5 have provided a summary of the mean ranks of
all algorithms. To verify whether the proposed method performs better than the reference algorithms,
the critical difference (CD) is adopted by the Bonferroni-Dunn post-hoc test. Figure 3 presents the
results of post-hoc tests for comparative algorithms over all the multiclass datasets. According to
the results of the Bonferroni Test, the proposed method presents a good performance in dealing with
the class noise problem of the multiclass datasets. Furthermore, noise removal outperforms noise
correction for all ensemble-based methods.
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Figure 3. Bonferroni-Dunn (95% confidence level) for the comparative methods on all data sets.

Table 3. Accuracy of k-NN-classifier induced using 15 different training sets: three filtering techniques
(no filter, majority-vote and ENDM) and two modalities (noise removal and noise correction). The best
results are marked in bold.

Data No Filter
Label Noise Removal Label Noise Correction

Majority Consensus ENDM Majority Consensus ENDMVote Vote Vote Vote

Abalone 45.07 53.53 49.27 51.53 53.40 49.47 52.33
ForestTypes 65.00 78.00 65.00 77.50 80.00 65.00 76.00
Glass 63.75 73.75 63.75 70.00 76.25 63.75 72.50
Hayes-roth 45.31 53.12 37.50 46.88 57.81 40.62 51.56
Letter 74.62 59.08 75.02 85.12 63.20 74.72 80.44
Optdigits 77.90 93.30 79.20 93.10 88.70 79.80 90.40
Penbased 80.23 93.41 80.45 94.77 92.50 80.91 93.18
Pendigit 79.75 95.05 85.45 96.30 89.80 85.80 94.15
Segment 81.54 90.30 86.50 93.30 89.12 86.38 93.02
Statlog 73.35 84.95 83.10 87.15 81.40 83.20 85.80
Texture 80.21 94.42 87.10 95.51 87.32 86.90 93.24
Vehicle 59.00 66.50 59.00 71.50 66.50 59.00 67.50
Waveform 62.75 78.40 64.80 77.45 75.20 65.55 75.70
Wine 79.17 94.44 79.17 88.89 93.06 79.17 88.89
Winequalityred 49.67 58.67 48.33 57.33 61.00 48.00 58.17

Average 67.82 77.79 69.58 79.09 77.02 69.88 78.19
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Table 4. Accuracy rank of AdaBoost-classifier on 15 different training sets using no filter, majority-vote,
consensus-vote and ENDM) for both noise removal and noise correction.

Data No Filter
Label Noise Removal Label Noise Correction

Majority Consensus ENDM Majority Consensus ENDMVote Vote Vote Vote

Abalone 7 6 4 1 5 3 2
ForestTypes 3 5 2 1 3 6 7
Glass 2 5 1 3 5 4 7
Hayes-roth 2 3 4 7 4 1 6
Letter 5 4 3 1 6 7 2
Optdigits 4 3 5 1 7 6 2
Penbased 6 1 5 4 2 7 3
Pendigit 6 3 4 1 7 5 2
Segment 5 6 3 1 7 4 2
Statlog 7 5 3 1 6 4 2
Texture 6 3 4 1 7 5 2
Vehicle 6 3 4 5 1 7 2
Waveform 5 6 4 1 7 3 2
Wine 6 3 7 4 2 5 1
Winequalityred 2 5 4 3 6 1 7

Average rank 4.80 4.07 3.80 2.33 5.00 4.53 3.27

Table 5. Accuracy rank of k-NN-classifier on 15 different training sets using no filter, majority-vote,
consensus-vote and ENDM) for both noise removal and noise correction.

Data No Filter
Label Noise Removal Label Noise Correction

Majority Consensus ENDM Majority Consensus ENDMVote Vote Vote Vote

Abalone 7 1 6 4 2 5 3
ForestTypes 5 2 5 3 1 5 4
Glass 5 2 5 4 1 5 3
Hayes-roth 5 2 7 4 1 6 3
Letter 5 7 3 1 6 4 2
Optdigits 7 1 6 2 4 5 3
Penbased 7 2 6 1 4 5 3
Pendigit 7 2 6 1 4 5 3
Segment 7 3 5 1 4 6 2
Statlog 7 3 5 1 6 4 2
Texture 7 2 5 1 4 6 3
Vehicle 5 3 5 1 3 5 2
Waveform 7 1 6 2 4 5 3
Wine 5 1 5 3 2 5 3
Winequalityred 5 2 6 4 1 7 3

Average rank 6.07 2.27 5.40 2.20 3.13 5.20 2.80

3.5. Comparing Different Noise Detection Metrics in ENDM

Tables 6 and 7 also show the accuracy of AdaBoost and k-NN-classifiers, respectively, induced using
twelve different ENDM-based filtered training sets with the noise-removal modality: three different
classifiers (Bagging, AdaBoost, k-NN with k = 1) are used to select λ and four different metrics
(SuMax, UnMax, SuSum, UnSum) yield four different ways of ordering samples. The histogram
figures of the performances of the four different noise detection metrics in the proposed algorithm on
the datasets Letter and Optdigits are shown in Figures 4 and 5.

When comparing columns 1 and 2 or 3 and 4 from both tables, it appears that using supervised
metrics (SuMax and SuSum) are most often more successful than using unsupervised metrics (UnMax
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and UnSum). When comparing columns 3 and 1 from both tables, it appears that using SuSum is
more successful than SuMax quite often. This finding does not extend to the unsupervised metrics,
as UnSum and UnMax yield similar performances. This may be explained by the lack of information
available to unsupervised metrics.

Table 6. Accuracy of the AdaBoost classifier trained on ENDM-based filtered training set with the
noise-removal modality, four different metrics (SuMax, UnMax, SuSum, UnSum) and three different
classifiers applied on the validation dataset (Bagging, AdaBoost, k-NN with k = 1). The values in
brackets are the detected noise ratios. The best results are marked in bold.

SuMax UnMax SuSum UnSum

Letter

Bagging 48.13 (12%) 52.83 (30%) 53.08 (24%) 49.60 (28%)
AdaBoost 52.04 (22%) 49.60 (24%) 56.88 (30%) 50.54 (26%)
k-NN (k = 1) 51.72 (21%) 46.79 (16%) 51.03 (16%) 49.35 (7%)

Optdigits

Bagging 93.00 (17%) 90.71 (12%) 90.65 (10%) 93.57 (18%)
AdaBoost 93.43 (15%) 93.15 (22%) 94.14 (20%) 93.23 (20%)
k-NN (k = 1) 93.45 (22%) 92.13 (23%) 93.10 (21%) 91.97 (25%)

Pendigit

Bagging 91.23 (6%) 91.25 (5%) 94.98 (21%) 91.41 (7%)
AdaBoost 95.27 (20%) 94.24 (23%) 95.40 (18%) 93.87 (25%)
k-NN (k = 1) 94.90 (20%) 93.90 (25%) 94.70 (22%) 92.93 (22%)

Statlog

Bagging 86.50 (10%) 86.44 (9%) 87.97 (22%) 86.46 (10%)
AdaBoost 88.75 (22%) 86.68 (13%) 88.66 (20%) 86.98 (14%)
k-NN (k = 1) 88.66 (22%) 86.90 (29%) 87.65 (26%) 85.98 (30%)

Vehicle

Bagging 72.10 (14%) 72.90 (6%) 70.35 (8%) 72.60 (7%)
AdaBoost 72.30 (20%) 72.05 (17%) 72.05 (18%) 73.00 (13%)
k-NN (k = 1) 72.80 (6%) 72.25 (10%) 70.85 (8%) 72.15 (20%)

Table 7. Accuracy of the k-NN (k = 1) classifier trained on ENDM-based filtered training set with
the noise-removal modality and four different metrics (SuMax, UnMax, SuSum, UnSum) and three
different classifiers (Bagging, AdaBoost, k-NN with k = 1) applied on the validation dataset. The values
in brackets are the detected noise ratios. The best results are marked in bold.

SuMax UnMax SuSum UnSum

Letter

Bagging 79.32 (14%) 78.22 (18%) 80.88 (30%) 76.64 (6%)
AdaBoost 77.68 (35%) 73.52 (35%) 79.00 (35%) 76.52 (5%)
k-NN 79.94 (23%) 78.18 (13%) 85.12 (16%) 77.60 (8%)

Optdigits

Bagging 90.60 (17%) 85.30 (10%) 91.90 (20%) 87.30(14%)
AdaBoost 90.30 (18%) 88.40 (15%) 92.70 (24%) 89.10 (19%)
k-NN 93.00 (25%) 92.90 (25%) 93.10 (23%) 93.00 (25%)

Pendigit

Bagging 87.40 (7%) 89.15 (9%) 96.05 (23%) 87.40(7%)
AdaBoost 95.90 (21%) 95.80 (22%) 96.25 (20%) 95.20 (24%)
k-NN 96.30 (22%) 95.90 (25%) 95.85 (19%) 94.20 (20%)

Statlog

Bagging 84.20 (13%) 81.00 (9%) 86.55 (22%) 83.60 (12%)
AdaBoost 86.80 (23%) 84.90 (15%) 85.95 (18%) 85.90 (23%)
k-NN 87.10 (22%) 86.40 (25%) 87.15 (23%) 86.85 (29%)

Vehicle

Bagging 59.50 (2%) 60.00 (2%) 59.00 (2%) 59.00 (2%)
AdaBoost 70.00 (14%) 65.50 (12%) 71.50 (22%) 67.50 (14%)
k-NN 63.00 (4%) 64.00 (9%) 70.00 (17%) 66.00 (13%)

3.6. Comparing Different Classifiers Used for λ-Selection in ENDM

Tables 6 and 7 show the accuracy of AdaBoost and k-NN classifiers, respectively, induced using
twelve different ENDM-based filtered training sets with the noise removal modality: four different
metrics (SuMax, UnMax, SuSum, UnSum) and three different classifiers (Bagging, AdaBoost and k-NN
with k = 1) are used to select λ . Tables 8 and 9 show the accuracy of AdaBoost and k-NN, respectively,
when both classifiers are combined with the proposed noise correction modality.
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Figure 4. Evaluation of the Overall Accuracy Letter according to the ensemble size, T.
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When comparing the accuracies yielded using the Bagging-selected λ-value with those yielded
using AdaBoost and k-NN, it appears that Bagging is most often not the appropriate tool to select
λ. For example, in Table 7, when compared with bagging, the AdaBoost/k-NN could increase the
accuracy of over 11% on the Vehicle. Actually, Bagging is known to be more label-noise-robust than
AdaBoost and k-NN when k = 1, and λ is estimated as the value yielding the best performance when
trained on a λ-dependent training set and tested on a validation set. Therefore, it makes sense to use
noise-sensitive classifiers instead of noise-robust classifiers.

In Table 6, when comparing the AdaBoost-tested accuracies yielded using the AdaBoost-selected
λ-value with those yielded using the k-NN-selected λ-value, AdaBoost seems more appropriate
to select λ. Now, in Table 7, when comparing the k-NN-tested accuracies yielded using the
AdaBoost-selected λ-value with those yielded using the k-NN-selected λ-value, k-NN seems more
appropriate to select λ. Hence, when the classifier used on the clean training set is noise-sensitive,
it seems sensible to use that same learning technique when selecting λ.

4. Conclusions

This paper has focused on cleaning training sets contaminated with label noise, a challenging
issue in machine learning, especially when a noise-sensitive classifier is desired. In line with the
literature, we have proposed a two-stage process called ENDM, where an induced ensemble classifier
enables the measuring of label’s reliability of each training instance, and then the maximization
of the accuracy of a second classifier tested on a validation provides an estimate of the number of
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samples that should be removed or corrected. When compared on 15 public datasets, with no cleaning,
with the majority-vote-based filtering method, and with the consensus-vote-based filtering method,
ENDM appears to perform significantly better.

In addition, experiments and discussion have provided some insights into how a label’s reliability
should be measured, whether suspicious samples should be removed or have their labels modified
and how the second classifier ought to be chosen.

Future work will investigate more realistic ways of introducing artificial label noise in the
datasets. Imbalanced label-noisy datasets will also be considered as cleaning filters tend to be more
discriminative against minority instances, being more difficult to classify.

Table 8. Accuracy of the AdaBoost classifier trained on the ENDM-based filtered training set with the
noise-correction modality, four different metrics (SuMax, UnMax, SuSum, UnSum) and three different
classifiers (Bagging, AdaBoost, and k-NN with k = 1). The values in brackets are the detected noise ratio.
The best results are marked in bold.

SuMax UnMax SuSum UnSum

Letter

Bagging 50.94 (1%) 50.85 (1%) 46.02 (0%) 50.88(1%)
AdaBoost 50.44 (1%) 50.44 (1%) 48.40 (0%) 50.32 (1%)
k-NN 43.56 (9%) 46.11 (7%) 41.81 (15%) 44.00 (8%)

Optdigits

Bagging 89.80 (0%) 90.10 (0%) 89.87 (0%) 89.80 (0%)
AdaBoost 93.23 (16%) 92.30 (15%) 92.21 (18%) 91.33 (17%)
k-NN 92.36 (17%) 92.73 (16%) 92.17 (19%) 90.51 (22%)

Pendigit

Bagging 90.89 (6%) 90.76 (3%) 90.04 (0%) 91.05 (6%)
AdaBoost 93.57 (19%) 91.84 (16%) 93.64 (18%) 91.57 (12%)
k-NN 92.11 (15%) 91.00 (14%) 93.08 (18%) 91.11 (14%)

Statlog

Bagging 86.48 (14%) 86.02 (16%) 84.83 (0%) 86.50 (12%)
AdaBoost 87.80 (20%) 86.39 (9%) 88.15 (19%) 86.38 (13%)
k-NN 86.58 (18%) 86.16 (16%) 86.92 (23%) 86.24 (16%)

Vehicle

Bagging 73.90 (1%) 73.75 (1%) 73.50 (0%) 72.95 (0%)
AdaBoost 73.85 (17%) 72.00 (20%) 73.55 (17%) 72.80 (23%)
k-NN 73.85 (11%) 72.90 (2%) 73.05 (8%) 72.95 (2%)

Table 9. Accuracy of the k-NN classifier trained on the ENDM-based filtered training set with the
noise correction modality, four different metrics (SuMax, UnMax, SuSum, UnSum) and three different
classifiers (Bagging, AdaBoost, and k-NN with k = 1). The values in brackets are the detected noise ratio.
The best results are marked in bold.

SuMax UnMax SuSum UnSum

Letter

Bagging 74.10 (1%) 73.96 (1%) 73.02 (0%) 74.94 (2%)
AdaBoost 73.74 (1%) 73.74 (1%) 72.86 (0%) 73.76 (1%)
k-NN 76.44 (11%) 75.72 (4%) 80.44 (15%) 75.98 (5%)

Optdigits

Bagging 76.60 (0%) 76.60 (0%) 78.80 (2%) 76.60 (0%)
AdaBoost 88.90 (15%) 89.30 (17%) 90.10 (19%) 88.00 (17%)
k-NN 89.10 (16%) 89.20 (17%) 90.40 (20%) 88.00 (20%)

Pendigit

Bagging 83.55 (3%) 84.25 (4%) 79.90 (0%) 83.55 (3%)
AdaBoost 93.15 (21%) 88.80 (9%) 94.15 (19%) 91.85 (13%)
k-NN 92.60 (15%) 91.75 (15%) 93.65 (18%) 92.05 (16%)

Statlog

Bagging 80.30 (8%) 84.55 (16%) 73.70 (1%) 82.20 (10%)
AdaBoost 83.40 (11%) 82.40 (10%) 85.75 (18%) 83.80 (12%)
k-NN 85.05 (18%) 84.45 (16%) 85.80 (19%) 84.70 (16%)

Vehicle

Bagging 63.00 (2%) 63.00 (2%) 60.00 (1%) 62.00 (1%)
AdaBoost 65.50 (15%) 65.50 (10%) 67.50 (20%) 66.00 (15%)
k-NN 64.00 (12%) 63.50 (8%) 64.50 (6%) 61.50 (2%)
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