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Abstract: High-aspect ratio silicon (Si) nanostructures are important for many applications. Metal-
assisted chemical etching (MACE) is a wet-chemical method used for the fabrication of nanostruc-
tured Si. Two main challenges exist with etching Si structures in the nanometer range with MACE:
keeping mechanical stability at high aspect ratios and maintaining a vertical etching profile. In this
work, we investigated the etching behavior of two zone plate catalyst designs in a systematic manner
at four different MACE conditions as a function of mechanical stability and etching verticality. The
zone plate catalyst designs served as models for Si nanostructures over a wide range of feature sizes
ranging from 850 nm to 30 nm at 1:1 line-to-space ratio. The first design was a grid-like, intercon-
nected catalyst (brick wall) and the second design was a hybrid catalyst that was partly isolated,
partly interconnected (fishbone). Results showed that the brick wall design was mechanically stable
up to an aspect ratio of 30:1 with vertical Si structures at most investigated conditions. The fishbone
design showed higher mechanical stability thanks to the Si backbone in the design, but on the other
hand required careful control of the reaction kinetics for etching verticality. The influence of MACE
reaction kinetics was identified by lowering the oxidant concentration, lowering the processing
temperature and by isopropanol addition. We report an optimized MACE condition to achieve an
aspect ratio of at least 100:1 at room temperature processing by incorporating isopropanol in the
etching solution.

Keywords: metal-assisted chemical etching; Si nanostructures; high aspect ratio; zone plate

1. Introduction

Nanostructured Si is the material of choice for a variety of applications such as photon-
ics [1], lithium ion batteries [2], solar cells [3], biosensors [4], microfluidic channels [5] and
X-ray optics [6]. Many of these applications require devices with highly vertical and deep Si
nanostructures, i.e., high aspect ratios. The smaller the structures are, the more challenging
it gets to fabricate high-aspect ratio nanostructures that are mechanically stable.

Both dry and wet etching processes are used for the fabrication of Si devices. Reactive
ion etching (RIE) [7] is an example of a commonly used dry etching technique. For Si
devices with nanostructures, maintaining a vertical etching profile becomes challenging
with RIE and thus limits the achievable aspect-ratios [8]. Therefore, RIE is more suitable for
the fabrication of devices with structures in the micrometer range or when extreme aspect
ratios are not needed.

A wet etching process that overcomes fabrication challenges is MACE. MACE is an
electroless method that is gaining a lot of attention as a pattern transfer technique for the
fabrication of deep high-aspect ratio Si nanostructures [9,10]. In MACE, a noble metal
catalyst (e.g., gold (Au) that is lithographically defined or in nanoparticle form) is etching
its way into a Si substrate in an electrolyte (etching solution) composed of hydrofluoric acid
(HF) and a strong oxidizer (e.g., hydrogen peroxide (H2O2)). The noble metal (cathode)
catalyzes the reduction of the oxidizer and consequently electrical holes are formed. The
holes are injected into the Si substrate (anode) locally on the noble metal site and oxidizes
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the substrate. The HF then dissolves the oxidized Si and the catalyst pattern is transferred
into the Si substrate.

Although conceptually simple, MACE can become complicated since many parame-
ters influence the process like etching solution composition [11], etching temperature [12],
doping concentration of the Si substrate [13,14], catalyst thickness [15] or catalyst morphol-
ogy [16,17]. These parameters have to be carefully adjusted to obtain the desired etching
performance. In the literature, there are numerous studies investigating many of these
parameters and their effects on micro- and nanostructure etching. However, comparing re-
sults is often difficult due to the variation in active etching areas and structure sizes. There
is a lack of systematic studies that make direct comparison of etching behavior possible.

For etching of catalyst structures in the nanometer range two main challenges exist.
Firstly, maintaining a vertical etching direction and secondly, keeping a good mechanical
stability for deep etching when reaching extreme aspect ratios. Especially, the catalyst
design has a great impact on these two challenges [11]. In this work we choose zone plate
structures as model catalyst patterns to find the morphological parameters and etching
conditions that are best suited for MACE processing of sub-100 nm high-aspect ratio
Si structures.

Zone plates are diffractive imaging and focusing optics commonly used in X-ray
microscopes [18]. Their circular grating structures are decreasing in width with the zone
plate radii. Two parameters are key for the zone plate performance: imaging resolution and
diffraction efficiency. The zone plate resolution is defined by the outermost zone width,
whereas the diffraction efficiency is defined by the zone thickness [19]. The X-ray energy
and zone plate material will define the required zone thickness. For the use in the hard
X-ray regime, thicknesses of several micrometers are often needed. In order to fabricate a
high-resolution and high-efficient zone plate, very high aspect ratios are therefore required.
Since X-ray zone plates contain structures ranging from micron-sized features in the
center to nanometer-sized features in the outer parts, they are ideal model patterns to
systematically investigate the MACE process. The obtained results are applicable to other
Si devices with nanostructured, lithographically defined catalyst patterns.

We systematically investigate MACE of two catalyst pattern designs at four different
MACE conditions in order to find optimum process conditions for obtaining vertical,
mechanically stable deep high-aspect ratio Si nanostructures. The first design, called “brick
wall” (Figure 1a), is a grid catalyst with all zones interconnected, whereas the second design,
called “fishbone” (Figure 1b) is a hybrid catalyst with partly interconnected and partly
isolated zones. Both designs have smallest feature sizes of 30 nm (width of the outermost
zones), which are as far as we are aware the smallest lithographically defined catalyst
structures reported for MACE. To our knowledge, this is the first study that combines
the brick wall and fishbone type catalyst designs on the same chip, using the same active
catalyst area and exposes them to the same exact reaction conditions, including cold etching
and IPA addition. This makes direct comparisons of etching behavior possible.
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b)a)
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500 nm

Figure 1. Top-view SEM micrographs of Au zone plate catalyst patterns on Si illustrating (a) brick
wall (red frame) and (b) fishbone designs (green frame). The insets show the outermost parts of the
zone plate designs. The zone plates designs have a 150 µm diameter, 1:1 line-to-space ratio and the
outermost zone widths are 30 nm. Same scale bars apply to the micrographs.

2. Motivation for the Selection of Catalyst Designs and MACE Conditions

In the literature, there are several studies reporting the fabrication of Si zone plate
nanostructures using MACE [11,20–24]. None of the reported studies contain a detailed
motivation for their choice of catalyst design and MACE processing conditions, instead,
the MACE pattern transfer has been presented as one in a series of steps for a complete
device fabrication. Some of the studies used grid catalyst designs [11,20,24] while others
preferred fishbone catalyst designs [21–23,25]. It has to be noted that it is difficult to etch
isolated catalyst structures in a controlled way, so some kind of connected catalyst design
is necessary in order to achieve vertical etching.

There are benefits and challenges with both grid and fishbone designs. A grid catalyst
design has the advantage of maintaining a vertical etching profile owing to the intercon-
nected zones, however, resulting in isolated Si nanostructures. The isolated Si structures
will limit the achievable etch depths due to collapse, especially in smallest features [20].
In the fishbone design, the noble metal rings are interrupted forming sections with per-
pendicular lines crossing each section, resulting in partly interconnected Si after MACE.
This interconnection will contribute with mechanical stability, but at the expense of etching
verticality. It was recently reported that the fishbone design deviates from its vertical
etching path at thicknesses beyond 1 µm due to the free Au ends in the design [23]. It
should be noted that the results were obtained for a specific MACE processing condition,
and it is therefore not possible to identify if this behavior is due to the catalyst design or
the reaction conditions. Here, our aim is to directly compare these two types of catalyst
designs by processing them on the same substrate and studying their etching behavior at
different MACE conditions.

We base our choices of different MACE conditions on reaction kinetics. We want to
control the hole injection rate into the Si, and thus, the overall etching rate by lowering the
processing temperature and H2O2 concentration from our previously optimized MACE
condition [11]. In our previous study, a grid catalyst design was used and the MACE
condition was optimized based on etch depth and silicon zone roughness. The aim here is
to investigate if a slower MACE reaction is beneficial for the etching directionality, as cold
etching was used in several other studies without further explanation but showing nice
vertical structures [21–23]. We further investigate the effect of isopropanol (IPA) which
should also lower the etch rate [26]. Additionally, previous work suggests that the transport
of generated gas from the etching location will be improved with the addition of IPA due
to lower surface tension [27]. All MACE conditions are studied for different etching times
to gain an understanding of to what etch depths the two designs are mechanically stable
and if the different reaction conditions affect the mechanical stability of the zones. Our goal
is to provide benchmark results for researchers in various fields that want to find optimum
MACE processes for Si nanostructure fabrication.
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3. Materials and Methods

Si p-type (100) wafers with resistivity of 1–5 Ω·cm were used for all samples. The
zone plate fabrication procedure consisted of a sequence of steps: (1) Ultrasonic cleaning of
wafer pieces followed by a oxygen plasma cleaning step, (2) resist spinning and patterning
via electron-beam lithography, (3) resist development, (4) short oxygen plasma treatment,
(5) electron beam evaporation of catalyst layer, (6) resist lift-off, (7) oxygen plasma cleaning
for removal of organics, (8) MACE and (9) critical point drying. An overview of the
experimental procedure is presented in Figure 2.

The Si wafers were cut into 1.5 cm × 1.5 cm chips and cleaned ultrasonically in acetone
and IPA for removal of Si dust and by an oxygen plasma step (PlasmaLab 80 Plus RIE/ICP
system, Oxford Instruments, Abingdon, UK) for removal of organics and further oxidising
the Si surface (each cleaning step was typically 5 min). We used 80 nm of the positive
resist CSAR 62 (Allresist GmbH, Strausberg, Germany) for the electron beam lithography
step (50 kV Voyager EBL system, Raith GmbH, Dortmund, Germany) and the zone plate
catalyst designs investigated in this study (brick wall and fishbone) were patterned on
each substrate. The zone plate designs had a diameter of 150 µm, 1:1 line-to-space ratio
and zone widths ranging from 850 nm (innermost zones) to 30 nm (outermost zones).
The interconnects in the brick wall design were 40 nm and brick length of the outermost
zones were 460 nm. In the fishbone design, the backbone was 95 nm and free ends were
360 nm of the outermost zones. The resist development was performed in amyl acetate (60
s) followed by rinsing in IPA and n-pentane (10 and 15 s, respectively). The short oxygen
plasma treatment step (13 s) after development was to ensure removal of any resist residues
in the zone plate patterns. For the catalyst layer, 10 nm Au was electron beam evaporated
(in-house Eurovac/Thermionics deposition system) at 1 Å/s on a 2 nm adhesive Ti layer.
The resist lift-off was performed in dimethyl succinate under ultrasonication. The final
oxygen plasma step (3 min) was necessary to remove any organics on the sample surfaces
that might prevent the MACE process.

c) Catalyst depositionb) EBL and developmenta) Substrate preparation e) MACEd) Lift-off

Figure 2. Overview of the experimental procedure. (a) Si substrate (grey) preparation by spin-coating 80 nm CSAR 62 resist
(pink). (b) Zone plate patterning by EBL and development for removal of resist residues. (c) Deposition of 2 nm Ti and
10 nm Au (yellow) by evaporation. (d) Resist lift-off, leaving the metal zone plate pattern. (e) Etching the metal zone plate
pattern into the Si via MACE.

The MACE experiments were all performed in a polytetrafluoroethylene (PTFE) con-
tainer under light protection. Four different MACE conditions were used to investigate the
etching behavior of the two designs (Table 1).

Table 1. Investigated MACE conditions.

Condition [H2O2] : [HF] : [IPA] (M) Temperature (◦C)

C1 0.68 : 4.7 : 0 25
C2 0.068 : 4.7 : 0 25
C3 0.68 : 4.7 : 0 8
C4 0.68 : 4.7 : 0.91 25

To understand the reproducibility of the MACE process, eight substrates with three
zone plates per design were processed and each MACE condition was repeated twice.
The etching solution compositions were based on previously reported studies [11,27]. The
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cold MACE experiments at 8 ◦C (C2) were performed using pre-cooled chemicals in a
surrounding cooling bath. Both the patterned Si chips and etching solutions were kept in
the cooling bath prior MACE to ensure temperature stabilization. To carefully investigate
the etching direction and mechanical stability at different etch depths, the processing time
was set to 3, 6, 9 and 12 min for each MACE condition. The samples were transferred to
ethanol after MACE processing and further critical point dried (Leica EM CPD300, Leica
Microsystems GmbH, Wetzlar, Germany). For etch depth analysis, cross-sections were
prepared using FIB milling (Nova 200 NanoLab system, FEI Company, Hillsboro, OR,
USA). Additionally, some samples were cleaved manually for a better visualization of cross
sections. Unfortunately, this is a complicated procedure and cleaved cross-sections could
not be obtained for all etching conditions and designs.

4. Results and Discussion

We characterize the etching behavior of our catalyst designs based on mechanical
stability and etching verticality. The MACE conditions that are favorable for each design in
terms of these two characteristics are identified and discussed.

4.1. Mechanical Stability

As previously reported, a grid-like catalyst design resulted in vertically etched Si
structures, almost independently of the used MACE condition [11]. While its strength lay
in maintaining etching verticality, the mechanical stability of the remaining Si structures
became a limitation at too small structural widths and large etch depths. Zone plates
were therefore ideal catalyst structures to identify at what point the mechanical instability
started thanks to their broad size range of zones.

Figure 3 shows cross-section micrographs of a ≈ 1.4 µm (average thickness over the
zone plate radius) thick brick wall zone plate at three points with different zone widths. The
zone width in Figure 3a was 60 nm and no collapse of zones were apparent. At 50 nm zone
width, as shown in Figure 3b, some tendency of collapse was starting to show suggesting
that a stability limit for the etch depth was reached at this point. At the outermost parts
of the zone plate where the zone widths were 30 nm most of the Si nanostructures had
collapsed (Figure 3c). It should be noted that the etch depth varied over the zone plate,
where the innermost zones were less deep than the outermost parts. The exact depth
where the collapse started appearing at 50 nm zone width was 1.5 µm, suggesting that the
achievable aspect ratio of a stable brick wall design was 30:1.

The etching behavior of the catalysts at the investigated conditions C1–C4 are summa-
rized in Figure 4, a common etching time point of 6 min was chosen for comparison. The
average etch rates for the different conditions are presented in Table 2. Room temperature
processing with the higher H2O2 concentration gave the fastest etch rate (C1) which, based
on the well accepted MACE theory [9,28], suggested the highest hole injection rate into
the Si. The deepest etching of ≈2.4 µm was obtained at this condition and especially the
outermost zones of both the brick wall (Figure 4a) and the fishbone (Figure 4e) design
showed deformation.
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Figure 3. Brick wall catalyst design processed at MACE condition C1. The top micrograph shows
where the three micrographs labeled (a–c) are localized on the zone plate. The cross-sections were
prepared by manual cleaving.
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Figure 4. Brick wall (red frame) and fishbone (green frame) zone plate designs etched for 6 min at MACE conditions (a) C1,
(b) C2, (c) C3 and (d) C4 and (e) C1, (f) C2, (g) C3 and (h) C4, respectively. The two designs shown per MACE condition
were processed on the same Si chip. Same scale bars apply to main SEM micrographs and the insets. The insets show the
outermost zones.
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Table 2. Average etch rates for the investigated MACE conditions.

Condition Rate [µm/min]

C1 0.45
C2 0.090
C3 0.26
C4 0.28

Interestingly, a 10 times lower H2O2 concentration (C2), and consequently a slower
etch rate (Table 2), did not result in a homogeneous and controlled etching. An uneven
etching with both catalyst designs was more apparent here than with any other investigated
MACE condition (Figure 4b,f). Especially for the fishbone design, local differences in etch-
ing within neighboring structures was observed suggesting an uneven H2O2 distribution
over the catalyst area (see Figure 5a). The etch depth was ≈0.5 µm and surprisingly, at
this shallow etch depth collapse of the outermost zone plate structures was observed for
the brick wall catalyst (Figure 4b). A homogeneous and vertical etching was thus key for
mechanical stability of the Si structures. Furthermore, these results showed that verticality
was a prerequisite for the stability of the Si structures. It should be noted that we did not
implement any stirring of the etching solution during MACE to avoid any disturbance of
the process.

500 nm

a)

1 μm

b)

Figure 5. Fishbone zone plate catalyst etched at MACE condition C2. SEM micrographs show (a) local
etching differences (6 min MACE) and (b) non-vertical etching (12 min MACE). The cross-section in
(b) was prepared by manual cleaving.

Lowering the processing temperature (C3) and adding IPA (C4) to the etching solution
resulted as expected in slower etch rates [12,24,29] (Table 2). At etch depths of ≈1.7 µm and
≈1.4 µm with MACE conditions C3 and C4, respectively, a positive impact on the overall
etching uniformity of both the brick wall (Figure 4c,d) and the fishbone (Figure 4g,h)
catalysts was observed. With the IPA addition, slight broadening of the innermost Si
structures could be seen (Figure 4d), but nonetheless, both conditions contributed to a
better mechanical stability of the outermost structures.

4.2. Etching Verticality

Maintaining a vertical etch direction for isolated catalyst structures of nanometer sizes
is challenging [30,31]. The fishbone design with partly isolated structures was also found
to require more careful control of the MACE chemistry and reaction kinetics to maintain
a vertical etching direction throughout the process. At the highest investigated etch rate
(C1) deformation of the outermost zones of the fishbone catalyst indicated a deviated etch
direction (Figure 4e). This was confirmed from the cross-section micrograph in Figure 6a,
where the non-vertical etch profile as well as catalyst deformation is shown (≈2 µm etch
depth). The brick wall design processed on the same Si chip maintained a vertical but
collapsed etching profile (≈3 µm etch depth, Figure 6b). Similarly to the negative effect on
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the Si structure stability, the uneven or limited access of H2O2 to the catalyst surface also
negatively impacted the etching verticality, although etch rates were significantly lowered.
This is illustrated in Figure 4f (outermost zones) and Figure 5b.

Compared to conditions C1 and C2, conditions C3 and C4 indicated a more even
etching, especially at the outermost parts of the fishbone catalyst design (Figure 4g,h). The
impact IPA addition (C4) had on the etching verticality is illustrated in Figure 6c, where
the zones are vertical and the etching profile is uniform. As for most other conditions, the
brick wall catalyst processed on the same chip also kept a vertical etching profile at C4
(Figure 6d). The etch depth of both zone plate designs in Figure 6c,d was ≈3 µm. This
suggests that aspect ratios of at least 100:1 with a maintained vertical etching profile that
can be obtained by IPA addition.

2 μm

a)

1 μm

c)

1 μm

b)

1 μm

d)

Figure 6. The effect of IPA on etching verticality. (a) fishbone and (b) brick wall catalyst designs
etched at condition C1 (no IPA, same Si chip), and (c) fishbone and (d) brick wall catalysts etched at
condition C4 (with IPA, same Si chip). The MACE time was 9 min for both samples. The cross-sections
were prepared by cleaving.

a)

1 μm

c)

1 μm1 μm

b)

Figure 7. Cross-section SEM micrographs of the fishbone design catalyst processed at MACE
condition (a) C1 for 9 min, (b) C3 for 12 min and (c) C4 for 12 min. The cross-sections were made by
FIB milling.
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Figure 7 shows micrographs of cross-sections prepared by FIB milling comparing the
original MACE condition (C1, Figure 7a) with the relatively low processing temperature
(C3, Figure 7b) and the addition of IPA (C4, Figure 7c) at average etch depths of ≈4.2 µm,
≈3.2 µm and ≈4 µm, respectively. It should be noted that FIB milling caused deformation
of the finer structures, but still could give an indication of the etching directionality and
depth. From these micrographs, it is obvious that both C3 and C4 were beneficial with
regards to the etching direction. We draw the conclusion that controlling the MACE kinetics
by lower processing temperature or by addition of IPA in the etching solution had similar,
positive impacts on the etching verticality. However, the effect of IPA addition on the
MACE process was not completely clear. If the effect of IPA was limited to reduction of the
etch rate or if other mechanisms like easier release of formed gases were important is an
open question. From a process handling point of view, we recommend adding IPA to the
etching solution instead of temperature regulation of the etching solution. Temperature
stabilization using a large volume of etching solution was time consuming and needed
pre-cooling of the chemicals. The low heat conductivity of the PTFE container was altering
the temperature of the chemicals and limited the number of MACE experiments that could
be performed due to long temperature stabilization times in between samples. Therefore,
to avoid uneven etch rates due to temperature elevation, room temperature processing
with IPA is preferable.

4.3. Process Reproducibility

Many reports on MACE either use the process as one in a series of steps for micro-
and nanofabrication, or investigate the process performance for a given application. As far
as we are aware, there are no reports that discuss the reproducibility of the process. In this
study, we explored four different MACE conditions and examined the etching behavior at
four time points per condition, which in turn was repeated twice. We believe this large set
of experiments gave a good indication of the reproducibility of the MACE process.

Figure 8 shows the average etch depth of one brick wall and one fishbone zone plate
catalyst design processed on the same chip as a function of processing time at conditions
C1–C4. The error bars represent the standard deviation and indicate the variation in depth
between the two zone plates. As previously reported, the decreasing width of the zones
over the zone plate radius resulted in relatively deeper etching of the smallest, outermost
zones than the largest, innermost zones. This gave a local variation of a few per cent
over the same zone plate [11,20]. This variation is not shown here, but was present for all
devices. Overall, all conditions gave larger zone thicknesses with longer processing time.
However, the etch depth did not increase linearly with time. Even though both zone plates
had the same active catalyst area, etch depth variations could be observed for certain time
points.

Furthermore, differences in etch depths of zone plates on two different Si chips
processed at identical conditions are shown in Figure 9. The error bars represent the
standard deviation of the measurements. The variations in etch depth were largest for
samples processed at conditions C1 and C2, and smaller for C3 and C4. Even though
identical samples with same sizes and same active catalyst areas were processed at identical
conditions, etching behavior differed depending on condition.
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Figure 8. Average etch depths of brick wall and fishbone catalysts processed on the same Si chip as a
function of etching time at MACE conditions C1–C4. The error bars show the standard deviation of
the measurements.
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Figure 9. Average etch depths of zone plates on different Si chips processed at conditions C1–C4 for
9 min. The error bars indicate the depth variation between different chips.

With these results, we want to highlight that precise control of the etching process was
challenging and that the depth might vary not only between samples from run to run, but
between structures on the same Si chip. The outcome of our experiments indicated that
conditions C3 and C4 were also preferable for good reproducibility.
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5. Conclusions

We demonstrated the MACE effect of catalyst design and reaction kinetics on fabri-
cation of high-aspect ratio Si structures as a function of mechanical stability and etching
verticality. Two zone plate catalyst designs with structural sizes ranging from 850 nm
down to 30 nm have been used, brick wall (interconnected) and fishbone (partly connected
and partly isolated), and their etching behavior at four different conditions has been sys-
tematically studied. Our findings reveal that the Si structures of the brick wall design
were mechanically stable up to an aspect ratio of 30:1, while deeper etching resulted in col-
lapse of the outermost zones with the smallest structures. Furthermore, etching verticality
could be maintained with the brick wall design, independently of the MACE condition.
The fishbone design required more careful control of the reaction kinetics for the catalyst
to translate linearly into the Si. Addition of IPA and a lowered processing temperature
showed a significant improvement in etching verticality of the fishbone design as opposed
to room temperature processing without any additive in the etching solution. The cold
MACE required a rather complicated cooling setup, and therefore, we recommend IPA
addition to the etching solution for controlled kinetics at room temperature processing. For
the future, the influence of other alcohols on the processing of Si nanostructures should be
investigated. We also show data indicating the sensitivity of the MACE process. These are
the first results showing the reproducibility of the process and more statistics are needed
for further characterization.

We think our findings provide relevant information for micro- and nanofabrication
of high-aspect ratio Si structures with MACE. The easy processing without any need of
complicated experimental setups or tools will be beneficial for applications that require
controlled Si fabrication with lithographically defined morphology.
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