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Abstract
1. The spatial organization of populations determines their pathogen dynamics. This 

is particularly important for communally roosting species, whose aggregations are 
often driven by the spatial structure of their environment.

2. We develop a spatially explicit model for virus transmission within roosts of 
Australian tree- dwelling bats (Pteropus spp.), parameterized to reflect Hendra 
virus. The spatial structure of roosts mirrors three study sites, and viral trans-
mission between groups of bats in trees was modelled as a function of distance 
between roost trees. Using three levels of tree density to reflect anthropogenic 
changes in bat habitats, we investigate the potential effects of recent ecological 
shifts in Australia on the dynamics of zoonotic viruses in reservoir hosts.

3. We show that simulated infection dynamics in spatially structured roosts differ 
from that of mean- field models for equivalently sized populations, highlighting 
the importance of spatial structure in disease models of gregarious taxa. Under 
contrasting scenarios of flying- fox roosting structures, sparse stand structures 
(with fewer trees but more bats per tree) generate higher probabilities of suc-
cessful outbreaks, larger and faster epidemics, and shorter virus extinction times, 
compared to intermediate and dense stand structures with more trees but fewer 
bats per tree. These observations are consistent with the greater force of infec-
tion generated by structured populations with less numerous but larger infected 
groups, and may flag an increased risk of pathogen spillover from these increas-
ingly abundant roost types.

4. Outputs from our models contribute insights into the spread of viruses in struc-
tured animal populations, like communally roosting species, as well as specific 
insights into Hendra virus infection dynamics and spillover risk in a situation of 
changing host ecology. These insights will be relevant for modelling other zoonotic 
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1  | INTRODUC TION

Communal roosting, wherein animals gather for inactive periods of 
the diurnal cycle (Grether et al., 2014), occurs in a wide variety of 
taxa, including primates (Ansorge et al., 1992), bats (Kerth, 2008), 
birds (Goodenough et al., 2017) and invertebrates (Seeley, 1997). 
Aggregations can range in size from a few individuals— for exam-
ple, tent- making bats (Brooke, 1990) and some ‘loosely colonial’ 
seabirds (Coulson, 2002)— to hundreds or hundreds- of- thousands 
of individuals— for example, colonial seabirds (Coulson, 2002), 
pre- murmuration roosts of European starlings (Goodenough 
et al., 2017), cave- roosting bats (Willoughby et al., 2017) and social 
bees (Seeley, 1997). Aggregations can vary in density according to 
roosting behaviour (e.g. attachment to individuals or a roosting sub-
strate) and the structure of roosting substrates (e.g. size of caves 
and hollows or distribution of vegetation; Dollin et al., 1997; Lunn, 
Eby, et al., 2021). Patterns of communal roosting are particularly im-
portant in the context of infectious diseases, as the rate of contacts 
will influence the propensity for infection and spread of pathogens. 
Clustering within communal species has been demonstrated to 
facilitate transmission of pathogens, including the fungal agent of 
white- nose syndrome in bats Pseudogymnoascus destructans (Hoyt 
et al., 2021), phocine distemper virus in harbour seals (Swinton 
et al., 1998) and West Nile virus in American crows and robins (Diuk- 
Wasser et al., 2010).

Importantly, habitat modification has the potential to change 
both spatial and temporal aspects of communal roosting, which could 
be a major contributor to altered infection dynamics. Habitat modifi-
cation can affect aggregations through the addition or loss of roost-
ing structures (e.g. Feldhamer et al., 2003), alteration of group or 
community population sizes (e.g. Davis et al., 2012) or the creation of 
structural or behavioural barriers to movement (Tucker et al., 2018). 
The seasonal ecology of some species may also be impacted, for ex-
ample through altered distribution of seasonal resources (e.g. Leveau 
et al., 2018). These ecological changes are known to have broad im-
pacts on pathogen dynamics: for example, fragmentation of species 
into smaller, disconnected populations can drive local extinction of 
pathogens through stochastic processes first described in human 
populations (Bartlett, 1956) and more recently in animal populations 
(Lloyd- Smith et al., 2005). Periods of local pathogen extinction can 
then cause total loss of immunity in populations, and subsequently 
increase the magnitude of epidemics in events when the pathogen 
is reintroduced (Bartlett, 1956; Plowright et al., 2011). Despite the 
recognized importance of ecological dynamics on transmission, the 

epidemiological consequences of fine- scale animal aggregations, 
and changes to both with habitat modification, have not been well 
studied (Altizer et al., 2006). Work by Laughlin et al. (2019) has 
moved this topic forward, by exploring general theory for how inter- 
roost movements and host attributes can influence pathogen spread 
among roosts. However, fine- scale intra- roost aggregations remain 
unexplored.

Hendra virus (HeV) is one of several zoonotic viruses that have 
emerged from bats in recent decades (Eaton et al., 2006). It is a 
paramyxovirus (Genus: Henipavirus) that causes highly lethal disease 
in horses and humans in eastern Australia (Plowright et al., 2011). 
Surveillance of virus excretion from fruit bats (Pteropus alecto, the 
primary host in subtropical eastern Australia) has shown strong 
spatio- temporal variation in virus detections in this region (Field 
et al., 2015), and spillover events in horses (Plowright et al., 2015), 
both of which tend to peak in winter months. Two distinct processes 
have been hypothesized to drive this seasonal pattern in bat- virus 
shedding: ‘within- host processes’ in which the virus could persist 
within individuals, with seasonal changes in immune function driv-
ing the reactivation and shedding of virus; and ‘between- host pro-
cesses’ in which host population dynamics drive transmission cycles 
through changes in the density of susceptible individuals, with virus 
re- introduction to roosts occurring through immigration (Plowright 
et al., 2016). Concurrent with the emergence of Hendra virus has 
been the observation of dramatic ecological shifts in flying- fox pop-
ulations (Eby et al., in review; Williams et al., 2006). Wide- spread 
land clearing in south- eastern Australia has resulted in large- scale 
fragmentation of flying- fox roosts, and has seen an increasing tran-
sition from bats forming large roosts of nomadic individuals in areas 
with dense roosting habitat, to small, continuously occupied roosts 
of resident bats in urban areas with sparse roosting habitat (Eby 
et al., in review; Eby et al., 1999; Tait et al., 2014). Increased inci-
dence of spillover has been correlated with the rise of these smaller, 
continuously occupied roosting sites (Eby et al., in review; Plowright 
et al., 2011). Previous studies that have modelled between- host pro-
cesses in pteropodid bats have considered infection in homogenous 
populations (e.g. birth pulses Peel et al., 2014), or population hetero-
geneity at large landscape scales (Plowright et al., 2011), but the role 
of fine- scale roost habitat structure remains unexplored, particularly 
in the context of anthropogenic habitat change.

The goal of the present study is to investigate how infection dy-
namics (including the probability of an outbreak, the magnitude and 
speed of epidemics and persistence of pathogens) is influenced by 
roost stand structure and total bat abundance. To do this, we use 

viruses in wildlife reservoir hosts in response to habitat modification and changing 
populations, including coronaviruses like SARS- CoV- 2.
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empirical data on roost stand structure and flying- fox aggregation 
to develop spatially explicit compartmental models, and simulate the 
spread of Hendra virus within isolated roosts of different sizes. We 
measure the effect of several model features, such as the presence 
of a latent infection period, the strength of connectivity between 
groups and the existence of pre- existing immunity within the pop-
ulation. Outputs from our models extend from works by Laughlin 
et al. (2019) to contribute understanding of epidemic dynamics in-
side structured roosts, and to provide insights from an empirical sys-
tem in a situation of changing host ecology. These findings will be 
relevant for modelling other communally roosting zoonotic reservoir 
hosts and will be particularly relevant for gregarious bat species as 
they, once again, return to the forefront of zoonotic emerging infec-
tious disease research.

2  | MATERIAL S AND METHODS

2.1 | Model description

We use a set of spatially explicit and stochastic compartmental mod-
els to simulate Hendra virus epidemics within isolated flying- fox 
roosts consisting of multiple trees within a square area. We consider 
closed roosts without demographic processes to focus on the ef-
fects of spatial structure on infection dynamics. Moreover, as we 
are mainly interested in short- term dynamics (a single year cycle), 
and flying foxes have synchronous reproduction (a single birth pulse 
per year) and long life spans (McIlwee & Martin, 2002), we consider 
the dynamics in the period between annual birth pulses and ignore 
births and deaths, as a first approximation. Because the community 
structure of tree- roosting pteropodid species is driven by the spatial 
structure of tree stands (Lunn, Eby, et al., 2021), and individual bats 
show tree- level fidelity with moderate movement between trees 
(Markus, 2002), we use a spatial framework where each tree hosts 
a group of bats and transmission occurs among individuals within 
and among these groups (‘tree- groups’). We specify that transmis-
sion is a function of distance, and assume (a) the route of transmis-
sion is through direct contact with infectious urine droplets (as it 
falls towards the ground contacting animals in the three- dimensional 
roost structure) or by exposure to clouds of aerosolized urine over 
small (within- tree) distances (Plowright et al., 2015), (b) that there 
is more mixing within tree- groups than between tree- groups 
(Markus, 2002), (c) mixing between tree- groups decreases with dis-
tance between trees and (d) mixing within tree- groups (or between 
interlocking neighbouring trees) is homogenous.

The force of infection experienced by bats in a given tree i is 
modelled as:

where � ij is the rate at which susceptible individuals in tree i acquire in-
fection from infectious individuals in tree j. The rate of new infections 

in tree i is �i(t)Si(t), where Si is the number of susceptible individuals 
in the ith tree- group, and Ij is the number of infectious individuals in 
the jth tree- group. We assume that transmission is density dependent 
within tree- groups (see Appendix S1 for a description of contact scal-
ing within tree- groups).

In the absence of data on the force of infection within roosts, we 
explore the assumption that contact rates between bats from dif-
ferent groups decreases with the distance between their respective 
trees. Specifically, we model transmission rate between tree- groups 
(denoted i and j) as follows (Lloyd & Jansen, 2004):

where � is the within- tree transmission rate, dij is the distance between 
trees i and j and θ is a scaling parameter that controls the decay of 
transmission with distance (with θ ranging between 0.1 and 10 m). 
Low values of θ correspond to weaker coupling between tree- groups, 
as there is fast decay in transmission with distance. This represents a 
scenario where bats mix freely within their individual roost trees but 
rarely come into contact with bats in other trees. As θ increases, mix-
ing becomes more homogenous as transmission between tree- groups 
becomes as likely as transmission within tree- groups. High values of θ 
hence represent a free flow of bats across the roost. In the Supporting 
Information, we consider an alternative mathematical function 
whereby transmission rate decreases with the square of the distance 
(Appendix S2); both functions generate similar results for comparable 
values of θ (Appendix S3).

Because within- host dynamics of henipaviruses in bats are not 
well characterized, we compare two plausible compartmental model 
structure types: a susceptible- infected- recovered (SIR) model, and 
a susceptible- exposed- infected- recovered (SEIR) model, which only 
differ by the inclusion of a latent, non- infectious initial stage follow-
ing exposure to the virus (E). Our focus is on short- term invasion 
dynamics (up to 365 days), therefore we do not consider models with 
waning immunity or cycles of reactivation in persistent infections 
(Plowright et al., 2016) that would only affect longer term infection 
dynamics: indeed, henipavirus antibodies in African fruit bats may 
persist for ~1,500 days (Peel et al., 2018), and reactivation of latent 
infection is likely to occur in annual cycles (Kessler et al., 2018). 
Consistent with empirical evidence, we assume no disease- induced 
mortality (Edson et al., 2015). A visual representation of the model 
is given in Figure 1.

2.2 | Basic reproductive number

Similar to meta- population models, our spatially structured compart-
mental model has two levels to infection dynamics: infection within 
groups, and infection of the global population (Jesse et al., 2008). 
The basic reproductive number (R0) is therefore defined at two lev-
els: within- group R0 (calculated per group) and the global R0 (Colizza 
& Vespignani, 2008). For our models, which have a spatially explicit, 

(1)λi(t) =

n
∑

j=1

� ijIj(t),

(2)� ij =
�

dij

�
+ 1

if i ≠ j, and� ij = � if i = j,
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heterogenous structure, the global R0 depends on the index group 
where the virus is introduced, its location within the spatial struc-
ture, and its local population size (Liu & Hu, 2005). We therefore 
calculate global R0 as the average of within- group R0 values in the 
global population, given that any tree- group could be selected as the 
index case. For our models the global R0 is calculated as:

where n is the number of tree- groups, Ni is the number of individuals 
in the ith tree- group and γ is the rate of recovery. The expression for 
within- group R0 values is contained within Equation 3, as 1

�

∑n

i=1
� ijNi

. Note that the expression of R0 is the same for SIR and SEIR model 
structures because roosts are closed and there is no mortality (i.e. the 
probability of surviving the latent period is one).

2.3 | Roost structure and model parameterization

To explore how infection dynamics are influenced by heterogeneity 
in stand structure, we apply the above models to three empirical 
examples of flying- fox roost stand structures, representing sparse, 
intermediate and dense stand structures respectively (collectively 
referred to as ‘heterogenous’ models; Figure 1). For details on how 

these stand structures were mapped, see details in Lunn, Eby, 
et al. (2021). Because the focus of this study is on spatial structure 
and tree density rather than spatial extent, the modelled roosts are 
contained in 20 × 20 m squares, even though in reality the roosts 
span different areas. Within this area, the dense roost comprises of 
72 trees (with a median pairwise distance of 10.5 m), the intermedi-
ate roost 32 trees (median pairwise distance 10.7 m) and the sparse 
roost four trees (median pairwise distance 12.3 m). See Appendix S4 
for a complete description.

To explore the influence of bat abundance, we populate each 
roost with 288, 2,880 or 4,320 bats in turn, evenly split among trees 
(hence the choice of bat numbers for arithmetic reasons). We chose 
this set of scenarios to reflect empirical observations of bat roost sizes 
and roosting behaviour, where the number of bats per occupied tree 
is typically higher in sparse stand structures than dense structures 
(Lunn, Peel, Eby, et al., 2021). Lastly, previous works on metapopu-
lation models have highlighted the distinct roles of between- group 
coupling and structural heterogeneity on infection dynamics (e.g. 
Colizza & Vespignani, 2008; Park et al., 2002). We explore the ef-
fect of coupling strength (here being the decay of transmission rate 
with distance, θ) and the effect of heterogeneity (stand structure 
scenarios) in the model structure separately, by simulating replicate 
epidemics with a range of values for the distance tuning parameter, 
θ. Specifically, values of θ within a range of 0.1– 10 m represent a gra-
dient of spatial heterogeneity, which we contrast with a homogenous 

(3)R0 =

∑

n
j= 1

�

Nj

∑

n
i= 1

� ijNi

�

� ∗
∑

n
j= 1

Nj

,

F I G U R E  1   Conceptual diagram of the modelling approach. Empirical data on the structure of roosting trees forms the base of the spatial 
framework (1), with transmission between groups of bats in trees (grey circles). We include three scenarios of stand structure density to 
reflect ecological shifts in Australian flying- foxes (‘sparse’, ‘intermediate’ and ‘dense’ structures). Realistic values of total abundance are 
applied to models (N = 288, 2,880 and 4,320), and simulated individuals are divided equally between tree- groups (2). We model transmission 
as � ij, being the rate at which susceptible individuals in tree i acquire infection from infectious individuals in tree j. Transmission is underlain 
by roost stand structure in heterogenous models (3). Specifically, transmission is a function of distance between tree- groups, and a scaling 
parameter that controls the decay in transmission with distance (θ). The influence of θ is represented in the figure as ‘transmission strength’: 
at low values of θ there is fast decay in transmission with distance, shown by the intensity of yellow shading from an index case. As θ 
increases transmission becomes more homogenous, as transmission between tree- groups becomes as likely as transmission within tree- 
groups. In homogenous models (4) transmission is constant (equivalent to mean- field models). From this model framework we calculate the 
basic reproductive number (R0) of each model (5), and use stochastic simulations to investigate the infection dynamics for each scenario (6). 
For all summary measures, we report the median of successful simulations (dark purple), together with the interquartile range to indicate the 
variation between simulations (light purple shading)

TA B L E  1   Model parameters

Parameters Value Description (reference)

Infectious period (1/γ) 7 days Shedding duration (Halpin et al., 2011)

Incubation period (1/δ) 6 days Time between infection and shedding (Halpin et al., 2011)

Mean seroprevalence 0.25; 0.5; 0.75 Seroprevalence values from wild Pteropus alecto (Breed 
et al., 2011; Edson et al., 2019; Field, 2004)

Transmission rate (β) 0.001984 (0.25);
0.000992 (0.50);
0.000661 (0.75)

Calculated from field seroprevalence data: R0Υ∕N, where 
R0 = (1∕seroprevalence), and seroprevalence = 0.25, 0.50 
or 0.75, Υ = 1∕7 and N = 288

Threshold epidemic size 10 Minimum separation point from bimodal distributions of 
frequency of epidemic peak versus epidemic size

Distance tuning parameter (θ) 0.1; 0.5; 1; 2; 10 m Gradient of values from low decay in transmission with 
distance (10) to high (0.1)

Radius scaling factor (1/α) 3 m Mean tree radii for roost trees (Lunn, Peel, Eby, et al., 2021)
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scenario where θ tends to infinity, such that every inter- tree transmis-
sion rate βi,j is equal to the within- tree rate β. Mixing in homogenous 
models is random (all bats have an equal probability of coming into 
contact, regardless of underlying stand structure), and are equivalent 
to standard, mean- field models. As underlying stand structure does 
not matter here, outputs from ‘dense’, ‘intermediate’ and ‘sparse’ ho-
mogenous models are combined into one group for presentation.

Hendra virus epidemiological parameters were derived from 
experimental, field and captive studies of Pteropus alecto (Table 1). 
Direct empirical estimates of transmission rates � have not been 
obtained, so we inferred a range of plausible values from field sero-
prevalence data (Breed et al., 2011; Edson et al., 2019; Field, 2004). 
Seroprevalence reports typically range between 25% and 75%. 
Assuming Hendra virus in natural populations is stationary, we can 
approximate R0 as the inverse of the proportion of seronegative bats 
(Appendix S2; also see Plowright et al., 2011), hence a range of 2– 4. 
We chose three values for R0 (2, 3 or 4), from which we derived cor-
responding values of β under each set of roost structure and popula-
tion size (see Appendix S2).

2.4 | Stochastic simulations

The model is implemented as a continuous- time, discrete- event 
Markov stochastic process with exponentially distributed time 
to next event. Simulations were run using a tau- leap algorithm 
(Gillespie, 2001) implemented in R. Because of the heterogenous 
structure of the roosts, simulation outputs depended on the 
choice of index location relative to the structure of the roost (Liu & 
Hu, 2005). Therefore, at the start of each simulation we introduced 
one infected individual into a randomly selected tree- group. Data 
and annotated R code are available at https://github.com/Tamik 
aLunn/ spati al- model - HeV.

For each scenario and parameter combination, we ran 500 sim-
ulations from which we calculated summary statistics, including the 
probability of virus extinction within a year of its introduction. In 
each simulation, virus introduction was considered successful if the 
number of total infections exceeded a threshold of 10 bats. The 
threshold was chosen as a standard mid- point in the bimodal distri-
bution of final epidemic sizes across a broad set of parameter values. 
We then calculated time to extinction, given as the time (in days) 
when the last infected bat recovered. We calculated the magnitude 
of the epidemic peak as the proportion of infections at the infection 
peak, as well as the duration (the number of days spanning the inter- 
quartile range of the curve) and timing of the epidemic peak. For all 
summary measures, we report the median of successful simulations, 
together with the first and third quartile to indicate the variation 
between simulations.

3  | RESULTS

The effects of stand structure, total abundance and between- tree 
coupling on infection dynamics are largely conserved between 

scenarios of pre- existing immunity (25%, 50% and 75% initial sero-
prevalence) and model compartmental structure (SIR and SEIR). For 
simplicity in reporting general patterns, we focus on outputs from 
models with an SIR structure and 50% starting seroprevalence, but 
highlight differences in absolute values between scenarios of im-
munity and model structure at the end of this section. Figures for 
additional model outputs are given in the Supporting Information.

3.1 | Effect of roost structure on infection dynamics

Simulated dynamics for structured populations differ substantially 
from that of mean- field (homogenous) compartmental models for 
equivalently sized populations. Models that assume homogenous 
mixing (equivalent to bats continuously flying throughout the roost 
and contacting all other bats with equal likelihood) are more likely to 
generate successful outbreaks (Figure 2) of higher and faster mag-
nitude (Figure 3) than any model with heterogenous mixing, where 
contact rates are governed by stand structure. Differences in out-
break success can be seen by comparing the height of the dark blue 
bars in Figure 2— for example, under the scenario of a small roost size 
(288 bats) and low between- tree coupling (θ = 0.1; panel a) outbreaks 
failed in nearly 100% of simulations for heterogenous (‘dense’, ‘in-
termediate’ and ‘sparse’ stand structures, left- hand bars), compared 
with ~80% of simulations for homogenous models (‘homogenous’, 
right- hand bar). Differences in the magnitude of epidemics can be 
seen in Figure 3: for example, in the medium- size roost (2,880 bats) 
with low contact rates between tree- groups (θ = 0.1 m; panel a- iv), 
the prevalence peaked at 10% or less for all three roost structures 
under heterogenous mixing (red, green and blue boxes), compared to 
over 30% under homogenous mixing (purple box). Under the same 
scenario, the time until the epidemic peak is also shorter with ho-
mogenous mixing (reached within a week) than with homogenous 
mixing (reached after a week; Figure 3b- iv).

As expected, heterogenous models became more indistinguish-
able to homogenous models when they approached free mixing (in-
creasing values of θ). This can be seen in the outbreak success of 
simulations, for example— in medium and large roosts, the propor-
tion of successful outbreaks was ~90% for all models (sparse, inter-
mediate, dense and homogenous bars) in medium and large roosts 
with free mixing (Figure 2f,i). Moreover, for small roosts, success-
ful outbreaks in heterogenous models (three left- hand bars) were 
only observed with freer mixing (Figure 2c, but not Figure 2a,b). 
Additionally, the epidemic curve of simulated infections became 
more similar between models as mixing became more free, including 
the magnitude of the peak, timing of the peak and duration of the 
peak (Figure 3, compare panels - i, - iv, - vii to panels - iii, - vi, - ix for 
each set).

The underlying structure of roosting trees created different 
infection dynamics in heterogenous mixing models. Differences 
between infection dynamics with different stand structure types 
(dense, intermediate or sparse) were most pronounced with re-
stricted mixing (low θ) but were observable for all but the high-
est value of θ (closer to homogenous mixing). This can be seen by 

https://github.com/TamikaLunn/spatial-model-HeV
https://github.com/TamikaLunn/spatial-model-HeV
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F I G U R E  2   Probability of outbreak success. Bars show the proportion of simulations that were successful, and the time until extinction (in 
days). Bars are split by stand structure (x axis). Vertical facets show the total number of individuals in the population, and horizontal facets 
show the strength of between- tree coupling moderated by θ. Low values of θ correspond to weaker coupling between tree- groups, as there 
is fast decay in transmission with distance, represented in the figure by the intensity of yellow colouring. Maximum time to extinction shown 
here (84 days) is the end of a single season period

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
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comparing bars (Figure 2) and boxes (Figure 3) of stand structures 
within panels where θ = 0.1 and θ = 10. To highlight the effects of 
stand structure on simulated infection dynamics, we report output 
values for an intermediate mixing scenario (θ = 1) in the following 
paragraphs, where there is some effect of distance on transmission, 
but this is not so exaggerated that there is either completely free 
transmission (high θ) or no transmission (low θ) between tree- groups. 
Outputs for other values of θ can be viewed in the figures.

Sparse stand structures (with fewer trees but more bats per tree) 
are more likely to generate successful outbreaks, as well as larger and 
faster epidemics with shorter virus extinction times, compared with in-
termediate and dense stand structures with more trees but fewer bats 
per tree. The probability of successful outbreaks is highest in sparse 

roosts, with the average proportion of successful outbreaks being 0.75 
(interquartile range 0.72– 0.78, given θ = 1), versus 0.55 (0.49– 0.60) 
and 0.47 (0.42– 0.51) for intermediate and dense stand structures re-
spectively (averaged across abundance scenarios, i.e. panels b, e and 
h in Figure 2). Sparse stand structures also generate the largest ep-
idemics, followed by intermediate, then dense stand structures. The 
mean prevalence of infection at the epidemic peak is: 0.20 (interquar-
tile range: 0.16– 0.23; 1,048 infected) for sparse structures, 0.10 (in-
terquartile range 0.06– 0.13; 998 infected) for intermediate structures 
and 0.08 (0.04– 0.11, 885 infected) for dense structures (averaged 
across abundance scenarios— panels a- ii, a- v and a- viii, Figure 3).

The epidemics also occur earlier (Figure 3b) and are of shorter 
duration (Figure 3c) for sparse structures (also see epidemic curves 

F I G U R E  3   Characteristics of the epidemic peak for successful outbreaks. Plots show (a) magnitude of the epidemic peak, (b) time (days) 
till the epidemic peak and (c) the duration of the epidemic peak (days). Panels show stand structure (x axis and bar colouring), total number 
of individuals in the population (vertical facets), and the strength of between- tree coupling moderated by θ (horizontal facets). Low values of 
θ correspond to weaker coupling between tree- groups, as there is fast decay in transmission with distance, represented in the figure by the 
intensity of yellow colouring
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in Appendix S5). Sparse stand structures reach their epidemic peak 
at 22 days (interquartile range 17– 26) and last 41 days (37– 45), inter-
mediate structures at 42 days (32– 49) lasting 58 days (50– 65), and 
dense structures at 51 days (38– 60) lasting 67 days (56– 77; averaged 
across abundance scenarios— panels b- ii, b- v and b- viii, Figure 3). 
Time to extinction is similarly faster for sparse structures. Average 
extinction time is 82 days (73– 89) compared with 116 days (99– 130) 
and 134 days (111– 154) for sparse, intermediate and dense stand 
structure respectively, averaged across abundance scenarios (panels 
b, e, h, Figure 2).

The spatial coverage of infection is consistently greater for 
sparse stand structures than intermediate or dense structures. The 
proportion of infected tree- groups more commonly reaches 100% 
under sparse structure scenarios. This can be seen in Figure 4, where 
the blue line (sparse structures) reaches saturation for every value 
of θ, under population sizes where successful outbreaks were con-
sistently achieved (i.e. medium and large populations; Figure 4d– i). 
This contrasts with intermediate and dense structures, which range 
between 21%– 100% and 7%– 100% of tree- groups infected for the 
same population size scenarios and values of θ (red and green lines, 
Figure 4d– i). In other words, in intermediate and dense stand struc-
tures, infections typically spread beyond the index tree- group, but 
do not necessarily reach all tree- groups.

Moreover, the proportion of infected tree- groups reaches its 
peak most quickly under sparse structure scenarios (shown by the 
timing of the peak in the blue curve relative to red and green curves, 
Figure 4d– i). The duration of peak infection is also longest under 
sparse stand structure scenarios (45– 59 days) compared with inter-
mediate (1– 30 days) and dense (1– 18 days) stand structures (values 
reported across all values of θ). This is shown by the duration of the 
flat part of the peak in the blue curves relative to red and green 
curves in Figure 4d– i. This is an important note, as the spread of 
infection to tree- groups can be thought of as essentially ‘unlocking’ 
groups of individuals exposed to infection and will drive the speed 
and magnitude of the epidemic.

3.2 | Effect of total abundance on 
infection dynamics

Predictably, infection dynamics are highly dependent on popula-
tion size. For heterogenous models, almost all simulations with small 
populations (total abundance of 288) fail to generate outbreaks of 
more than 10 infected bats. Simulations with medium populations 
(total abundance of 2,880) and large populations (total abundance 
of 4,320) have a higher proportion of successful outbreaks (i.e. pro-
ducing more than 10 infections). This pattern in outbreak success 
is conserved between stand structure types, as shown by the mir-
rored decrease in the height of blue bars per structure, across rows 
in Figure 2b,e,h. These patterns are consistent in other metrics of in-
fection, with shorter extinction times, and faster and larger epidemic 
peaks observed for increasing population sizes (shown by respective 

heights of boxes per structure, across rows in Figure 3— e.g. panels 
- ii, - v, - viii).

Viral persistence for at least 84 days (~3 months) is frequently 
observed for all stand structures for which there are successful out-
breaks (shown by the proportion of red in bars, Figure 2). Notably, 
increasing total abundance in sparse structures (but not dense or 
intermediate structures) more commonly promotes outbreaks that 
fade out within 84 days (shown by the reduced proportion of red in 
bars, for sparse structure in panel e compared with panel h, Figure 2). 
Persistence for 3 months is ecologically relevant for Hendra virus, 
which has seasonal dynamics in prevalence, and a peak season over 
winter (Field et al., 2015). Virus persistence for more than 360 days 
(roughly 1 year) was not observed despite the maximum duration 
for simulations being set at 365 days. The longest duration of per-
sistence of the virus occurs in intermediate to dense stand struc-
tures, with a medium to large bat abundance, and with a restricted to 
intermediate level of connectivity between tree- groups (θ: 0.1– 1; see 
the proportion of orange/red bars in Figure S3b). We provide more 
detailed explorations into scenarios that promote outbreak success 
and virus persistence in the Supporting Information (Appendix S6).

3.3 | Effect of pre- existing immunity on 
infection dynamics

General patterns of the effect of stand structure, total bat abun-
dance and effect of distance on infection dynamics are largely con-
served between scenarios of pre- existing immunity (25%, 50% and 
75% starting seroprevalence), but absolute values differ. When in-
fection is introduced into a population with lower seroprevalence 
(25%), successful outbreaks are more likely, time to extinction is 
faster and epidemics are slightly larger, faster and of shorter dura-
tion (Appendix S3). When infection is introduced into a population 
with higher seroprevalence (75%), successful outbreaks are much 
less likely but last longer (Appendix S3).

3.4 | Effect of compartmental structure on 
infection dynamics

General patterns of the effect of stand structure, total abundance 
and values of theta on infection dynamics are largely conserved be-
tween the compartmental model structure types, although absolute 
values differ. Models with an incubation period (SEIR) show simi-
lar probabilities of outbreak success but promote longer viral per-
sistence in the population (Appendix S3). Scenarios that allow the 
longest persistence of the virus are the same for those in the SIR 
scenarios: dense and intermediate structures, with either medium 
or large total abundances. Patterns in infection dynamics (relat-
ing to stand structure, total abundance and values of theta) mirror 
those for SIR models, only with smaller and longer peaks in infection 
(Appendix S3).
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4  | DISCUSSION

This study was motivated by the hypothesis that recent trends in 
Hendra virus spillover have been driven by dramatic ecological 
changes in flying- fox populations in Australia, including shifts in their 
roosting behaviours (Williams et al., 2006). Integrating empirical 

data into models allows us to investigate how changing roost struc-
tures may affect the spread of pathogens within roosts, and pro-
vides a case study of epidemic dynamics in a high- profile communal 
host– pathogen system. Outputs from these models also contribute 
insights into the spread of viruses in structured populations more 
generally, adding to general theory posed by Laughlin et al. (2019). 

F I G U R E  4   Proportion of infected trees over time (days) for successful outbreaks. Stand structure is shown by line colour. Models with 
heterogenous mixing and homogenous mixing are indicated by line type (heterogenous = solid, homogenous = dashed). Vertical facets 
show the total number of individuals in the population, and horizontal facets show the strength of between- tree coupling moderated by 
θ. Low values of θ correspond to weaker coupling between tree- groups, as there is fast decay in transmission with distance, represented 
in the figure by the intensity of yellow colouring. Lines are median values of simulations (500 simulations per set) with lower and upper 
interquartile range shaded. Time is shown over a single season period (90 days) although simulations could run for up to 365 days
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This will be relevant for modelling other zoonotic viruses in wild-
life reservoir hosts in response to habitat modification and changing 
populations.

The outputs of our homogenous and heterogenous models 
demonstrate that infection dynamics of heterogenous models are 
qualitatively unlike that of mean- field models for equivalently sized 
populations, and will vary under increasing levels of heterogeneity. 
The observation that spatially explicit stand structures had lower 
probabilities of outbreak success, with slower and smaller outbreaks, 
is consistent with comparable studies on network models that com-
pare infection propagation in random versus community networks 
(Huang & Li, 2007; Liu & Hu, 2005). When mixing is homogenous, all 
individuals have an equal likelihood of exposure, and global infection 
in the population is more likely. By contrast, structured populations 
have a higher probability that pockets of the population could re-
main uninfected. This highlights the importance of including spatial 
structure in disease models for communally roosting species whose 
patterns of aggregation are driven by the spatial structure of their 
environment.

Within heterogenous models, the higher probabilities of success, 
faster extinction times and higher magnitudes of epidemics ob-
served in sparse structures compared with intermediate and dense 
structures are likely attributable to differences in the rate and spread 
of infection between tree- groups. In sparse structures, infection 
spreads quickly and consistently throughout the whole population. 
In contrast, while infections in intermediate and dense structures 
typically spread beyond the index tree- group, they do not neces-
sarily reach all tree- groups, and the rate of spread is consistently 
slower. Sparse structures had a higher abundance of individuals per 
tree than intermediate and dense structures, chosen to reflect ex-
pected packing patterns of bats (Lunn, Peel, Eby, et al., 2021). This 
yields higher values of group- level R0 within sparse structures, and 
consequently a higher force of infection from these infected groups.

Because of the specificities of bat roost structures, our results 
contrast with Bartlett’s (1956) seminal classification of disease dy-
namics in spatially structured systems. In particular, he predicted 
irregular epidemics in systems with a small number of groups, pre-
dictable epidemics interspersed with periods of pathogen extinction 
for systems with an intermediate number of groups, and regular 
epidemics in systems with many groups. In our models increasing 
group- level R0 increases the probability of infection transmission be-
tween groups, because there are a larger number of infected hosts to 
spread the infection (Park et al., 2002). Higher group- level R0 values 
within sparse structures would therefore (a) increase the probabil-
ity of transmission between groups, and therefore the probability of 
success and magnitude of epidemics, and (b) increase the frequency 
of transmission between groups, consequently accelerating the ep-
idemic and decreasing the extinction time. In contrast, intermediate 
and dense structures, having a smaller proportion of the popula-
tion exposed to infection, produce a dampened epidemic peak (a 
mechanism similarly described by Jesse et al., 2008), and a lower 
rate of transmission between groups likely slowed the epidemic and 
increased extinction time (a mechanism similarly described by Park 

et al., 2002). This example reflects the importance of considering 
both infection spread (dependent on the total number of groups 
and the strength of coupling between groups, as in Bartlett (1956)), 
as well as the force of infection from infected groups, for under-
standing infection dynamics in spatially structured populations (Park 
et al., 2002).

Observed differences in the pattern of infection between roost 
structure types will be important for understanding local infection 
dynamics of Hendra virus, and may be important when consider-
ing the potential impact of urbanization on infection dynamics and 
spillover risk from roosts. In our data- driven stand structure sce-
narios, sparse structures promote a higher probability of outbreak 
success, indicating that roosts of this type may be more suscepti-
ble to local epidemics once an infection is introduced, and so, may 
contribute to spillover more frequently than other roost structure 
types. Introduction of infection into the roost population could 
occur through migration from another roost (Plowright et al., 2011) 
or reactivation of a latent infection within bats occupying the roost 
(Glennon et al., 2019). Importantly, roosts of this type are common 
to human- dominated landscapes, where exacerbated stressors may 
increase the rate of reactivation of latent infections within bats 
(Kessler et al., 2018; Plowright et al., 2008), and may further con-
tribute to these roosts as frequent hotspots for virus spillover. This 
would be consistent with the correlation seen between the rise of 
these roosts types and increasing incidence of spillover (Eby et al., in 
review; Plowright et al., 2011) and may be one mechanism to explain 
this correlation.

Additionally, epidemics in these roost structure types are 
characterized by high magnitude pulses of short duration. Having 
a high proportion of bats shedding virus, concentrated within a 
small timeframe, may also contribute to spillover risk from these 
roosts. While our models were only run for 1 year, there was also 
a tendency for viruses in these roosts to fade out more quickly 
than other roost structure types. This could create a pattern of 
fast, high magnitude epidemics interspersed with periods of local 
pathogen extinction (and total loss of immunity), in contrast to sce-
narios of longer viral persistence, where the maintenance of im-
munity within roosts would dampen the magnitude of epidemics 
between cycles of infection (Bartlett, 1956; Plowright et al., 2011). 
Tight boom- bust cycles of infection in these roost types may fur-
ther add to spillover risk and contribute to the observed correla-
tion with Hendra virus spillover. Practically, this may also reduce 
the detectability of circulating infection in these roosts, as virus 
will frequently be absent. Regular sampling may be required to 
confirm these modelling outputs.

Our finding that pathogens spread most rapidly in sparse 
structures, when hosts form a small number of large groups, are 
dynamically similar to those described in Laughlin et al. (2019). 
However, the difference in scale of the two models— intra- roost in 
the current study, and inter- roost in Laughlin et al. (2019)— creates 
a divergence in ecological interpretation of the models. Laughlin 
et al. (2019) suggest that large roosts amplify pathogen spread 
and are thereby important sites for pathogen surveillance. Small 
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roosts, by contrast, are suggested to be buffered against the 
spread and impact of emerging pathogens. In the current study, 
we take a fixed area inside single roost to explore how fine- scale 
spatial aggregations within roosts influence infection spread, 
given a fixed population size. In reality these roosts span differ-
ent areas and have different total population sizes. Importantly, 
roosts with sparse stand structures are more typical of small 
roosts that span small (often urban) areas, while roosts with dense 
stand structures are more typical of large roosts that span larger 
areas of intact forest (Lunn, Eby, et al., 2021). Our findings show 
that in this system, small but sparse structures may be an import-
ant target for surveillance, and highlight that fine- scale attributes 
of roosts are also important to consider when understanding pat-
terns of infection spread.

These interpretations are based on outputs from SIR compart-
mental models with an existing seroprevalence of 50%. Models with 
an incubation period (SEIR) at a higher seroprevalence equilibrium, 
could also be realistic for Hendra virus infection in bat populations 
(Glennon et al., 2019). While specific choices of compartmental 
model structure and seroprevalence value influenced the absolute 
values predicted by simulated dynamics, we have shown that the 
general effects driven by stand structure and bat aggregation remain 
consistent, and so the relative risk of sparse structures compared 
with intermediate and dense structures remain. We also note that 
these interpretations are dependent on the assumption that the 
number of bats per tree will be higher in sparse stand structures 
where there are fewer trees available to roost in. This scenario was 
deliberately chosen to reflect empirical data on bat aggregation pat-
terns in Australia (Lunn, Peel, Eby, et al., 2021) but may not be the 
case for all Australian bat roosts, nor reflect the biology of all com-
munally roosting species.

We have considered a closed system, but our model could be 
easily extended to include demographic processes and other cy-
cles of infection and immunity (such as those identified in Glennon 
et al., 2019), for example, with immune waning and reactivation 
of latent infections. These processes are more likely to affect 
longer term virus spread and persistence at the metapopulation 
level. Extensions to these models along these lines could be used 
to reaffirm the relative importance of demographic versus epi-
demic processes in different population structure types. We use 
a specific example of flying- fox roosts in this paper, but our code 
is generalizable to other systems where roosts might act as im-
portant transmission sites— for example, to model interactions be-
tween colonies or subcolonies of colonial seabirds (Coulson, 2002) 
or clusters of microbats in structurally complex cave systems 
(Willoughby et al., 2017). Generation of the spatial model struc-
ture simply requires input of a distance matrix between groups, 
and specification of how transmission is expected to relate to 
distance. This model framework could be easily adopted to com-
bine basic data on population structures with empirical data on 
pathogens of potential threat, to understand and predict the risk 
of novel pathogen introduction, spread and persistence in commu-
nally roosting wildlife systems.

5  | CONCLUSIONS

Our results highlight that explicit consideration of spatial structure 
is important in models of structured, communally roosting species. 
In our models, unstructured populations were more easily invaded 
and experienced faster and larger epidemics than in structured 
populations. This will have implications for predicting infection and 
identifying spillover risk from communal species, including bats, and 
emphasizes the importance of appropriate model choice informed 
by host ecology. Within the context of Hendra virus specifically, we 
demonstrate that modified patterns of animal aggregation driven by 
urbanization have the potential to change infection dynamics in al-
tered host populations. Counterintuitively, we identify sparse stand 
structures with fewer trees but more bats per tree, most typical of 
anthropogenic habitats, as the highest risk for pathogen spillover, 
with these roosts generating a higher probability of outbreak suc-
cess, larger and faster epidemics, and shorter virus extinction times. 
This information could be used to predict spillover risk from roost 
features at a landscape scale across Australia, particularly in the 
context of rapidly changing host ecology. Lastly, our modelling ap-
proach provides a framework for combining data- driven scenarios 
of communal roosting with theoretical modelling of infection. This 
will be valuable for future pathogen modelling efforts in communally 
roosting species across wide- ranging taxa of zoonotic importance.
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