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Multifarious topological 
quantum phase transitions in 
two-dimensional topological 
superconductors
Xiao-Ping Liu1, Yuan Zhou1,2, Yi-Fei Wang3 & Chang-De Gong1,3

We study the two-dimensional topological superconductors of spinless fermions in a checkerboard-
lattice Chern-insulator model. With the short-range p-wave superconducting pairing, multifarious 
topological quantum phase transitions have been found and several phases with high Chern numbers 
have been observed. We have established a rich phase diagram for these topological superconducting 
states. A finite-size checkerboard-lattice cylinder with a harmonic trap potential has been further 
investigated. Based upon the self-consistent numerical calculations of the Bogoliubov-de Gennes 
equations, various phase transitions have also been identified at different regions of the system. 
Multiple pairs of Majorana fermions are found to be well-separated and localized at the phase 
boundaries between the phases characterized by different Chern numbers.

Topological superconductors (TSCs) have been a hot topic in recent a few years due to their unique properties 
and potential applications1. One of the most significant characteristics of TSCs is Majorana fermions (MFs) which 
are found to exist in vortices2–5 or on the boundaries6–15 of the TSC system. MFs are their own anti-particles16,17. 
They obey non-Abelian statistics4 and could be used in topological quantum computation18,19, which is also a 
significant reason for the recent wide concern on TSCs.

Generally, two proposals are suggested to realize TSCs and MFs, either with the spin-triplet p-wave supercon-
ductivity6,7,20–22 or with the conventional s-wave superconductivity by proximity effect in some materials8–15,23–32. 
The simplest and most straightforward model systems are the one-dimensional spinless p-wave TSCs or 
two-dimensional px ±​ ipy TSCs. For example, Read and Green20 considered a chiral TSC state with a Chern num-
ber33 = 1  for px ±​ ipy paired spinless fermions. In a one-dimensional quantum wire model by Kitaev6, MFs 
were found to locate at the ends of the chain. Possible topological quantum phase transitions (TQPTs) among 
TSCs and conventional superconducting or insulating states are also very intriguing, and it is possible to identify 
MFs at the phase boundaries of TQPTs. However, previous works6,7,20–22 are mostly done based upon models with 
topological pairing of fermions in a single topologically trivial band and varieties of TSC phases seem more or less 
limited, and additional condition such as long-range superconducting pairing21,22 is required in some cases to 
achieve other TSC phases. Recently, Qi et al. proposed that when a quantum Hall (QH) state or a quantum anom-
alous Hall (QAH) state near the plateau transition of N to N −​ 1 is coupled to a conventional s-wave superconduc-
tor through the proximity effect, a new TSC phase with a Chern number = −N2 1  will appear between the 
phase  = N2  and 2N −​ 2. Their work illustrates that a nontrivial TSC phase with a Chern number = 1  or 2 is 
achievable through TQPTs from trivial phases30.

In this paper, we address a two-dimensional TSC model of paired spinless fermions (or spin-polarized elec-
trons) on a Chern insulator (CI) with QAH states and focus on the TQPTs that will possibly occur. The 
checkerboard-lattice CI/QAH model which has two nontrivial topological energy bands is our preferred candi-
date system. We only consider the short-range nearest-neighbor superconducting pairing. The possible phase 
diagram has been explored, and rich and interesting TQPTs have been identified. Various TSC phases with the 
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Chern numbers ranging from  = −3 to 3 are found. Then, we further investigate the signatures of TQPTs for 
this checkerboard-lattice model on a finite-size cylinder. A harmonic potential trap which can be easily manipu-
lated in cold atom systems is imposed to regulate the fermion density at lattice sites. According to the numerical 
results obtained from solving the Bogoliubov-de Gennes (BdG) equations self-consistently, TQPTs are also clearly 
identified; MFs are found to be spatially well-separated and distributed near the phase boundaries inside the 
system; the zero-energy local density of states (LDOS) is observed to exhibit prominent peaks on the phase 
boundaries which is suggested to be a signature for observing MFs in experiments.

Results
The lattice model.  The minimal CI/QAH model in the checkerboard lattice with nontrivial topological 
bands34,35 we adopt is illustrated in Fig. 1. We consider px +​ ipy pairing between spinless fermions in the near-
est-neighbor pairs of sites. The concerned Hamiltonian is therefore written as

∑ ∑ ∑ ∑µ= − + . . − ′ + . . − + ∆ + . . .φ † † † † †H t e c c t c c c c c c( H c ) ( H c ) ( H c )
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Here, ci †c( )i  annihilates (creates) a spinless fermion on the site i. Staggered fluxes are superimposed in the 
plaquettes and induce additional phase factors ±​φ on the nearest-neighbor hopping t. This means the C4 rota-
tional symmetry is broken, leading to two sublattices A (red) and B (blue). The second-nearest-neighbor hopping 
takes different value ′tij ( ′t1 , and ′t2 for solid, and dotted connection, respectively). μ is the chemical potential. 
∆ = − 〈 〉V c cij j i  is the pairing potential with V the strength of the attractive interaction. We set t =​ 1 as unit and 
′ = − ′ = ′ = .t t t 0 51 2  in the calculations. In fact, our main results are not sensitive to the selected parameters.

In the normal state, the system is a CI/QAH state with two topological bands of Chern numbers N =​ ±​1 when 
φ ≠​ nπ35. Particularly, one of the two bands can be tuned to be very flat with the third-nearest-neighbor hopping, 
which hosts new fractional quantum Hall states36,37.

TQPTs and phase diagram of TSCs.  In order to explore the possible TQPTs, we solve Eq. (2) (See 
Methods) with different parameters at fixed px +​ ipy pairing order parameter Δ​ =​ 0.1. The Hamiltonian can be 
diagonalized under a rational transformation and further a Bogoliubov transformation. In principle, the distinct 
TSC phases can be characterized by the Chern numbers of two lower BdG bands (C1, C2) (also two higher BdG 
bands with C3 =​ −​C2 and C4 =​ −​C1 due to particle-hole symmetry). However, the individual Chern number is not 
well defined in some cases (especially for small |μ|) due to overlap of the two lower BdG bands. We use the sum 
of the two Chern numbers  = +C C1 2 to characterize the TSC phases.

The Chern number of each BdG band can be calculated with those BdG wave functions numerically33. A 
sophisticated way is to find out the condition under which the two middle BdG bands touch and re-open. The 
phase boundaries are μ =​ ±​4 sin φ with a single Dirac point (π, π), μ =​ ±​4 cos φ with a single Dirac point (0, 0), 
and µ = ± ′ − ∆t16( ) 82 2  with two Dirac points (π, 0) and (0, π). Numerical calculations show that each Dirac 
point carries a Berry phase ±​π and the total Berry phase is ±​2π for the case of two symmetric Dirac points with 
the same sign Berry phases. Therefore, when the system crosses a phase boundary, a TQPT occurs with the 
changed Chern number ∆ = ±1, or ±​2 for single, and double Dirac points, respectively.

The overall phase diagram of TSCs with the characteristic Chern numbers   ranging from −​3 to 3 is depicted 
in Fig. 2, showing multifarious TQPTs. In fact, for small enough μ (uncolored region), the system is the same as 
the single band p +​ ip superconductor with strong pairing suggested by Read and Green20 irrespective of the 
topology of the two normal-state bands. Here, the high Chern number TSC is naturally produced without 

Figure 1.  The checkerboard-lattice CI/QAH model. Sites in red and blue constitute two sublattices 
respectively. Staggered fluxes are superimposed on the plaquettes, resulting in an additional phase factor ±​φ on 
the nearest-neighbor hopping (±​ denoted by the arrow direction). Solid and dotted lines, connecting the 
second-nearest-neighbor sites (same sublattice), denote the hopping parameters ′t1 and ′t2.
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applying additional condition, for example the long-range superconducting pairing21,22. The topological phase 
transition in present CI with +p ipx y superconductivity is much richer than that in the QH/QAH states coupled 
to a conventional s-wave superconductor through the proximity effect30,31. Besides the previous suggested  = 1 
TSC phase between the  = 2 TSC phase and = 0  superconducting phase, TSC phases with  = 3 (or −​3) 
also emerge via a series of TQPTs.

Phase diagrams with ∆ < 2 /2 are almost the same except that the phase boundaries of µ = ± ′ − ∆t16( ) 82 2  
(green lines in Fig. 2) have slight shifts. These two phase boundaries disappear when ∆ > 2 /2, resulting in the 
limited TQPTs with Chern numbers   ranging from −​1 to 1. We will not illustrate these cases in detail here. We 
also remark that the corresponding phase diagram for px −​ ipy pairing with Δ​ =​ 0.1 is almost the same as Fig. 2 
except that the Chern numbers of the positive and negative μ region exchange with each other.

Cylinder with a harmonic trap.  To better understand the TQPTs that occur in our model, and more 
importantly, the nature of induced MFs, which are proposed to be generated on the phase boundaries of this 
quasi-one-dimensional system7,38, we study the present model in real space. A harmonic potential trap39 

= −U r U r r( ) trap 0
2 (here r −​ r0 has a unit length a / 20  with a0 =​ 1 the length of a unit cell) is imposed on a 

finite-size Lx ×​ Ly =​ 400 ×​ 8 checkerboard lattice, which introduces an effective chemical potential 
µ µ= − U L( )i i

eff  at a site i. The fermion density can be regulated and various TQPTs as well as phase boundaries 
in Fig. 2 can be induced by varying the trap potential.

Both the x and y lattice directions are treated with periodic boundary conditions. Due to the puny size of the 
lattice in y direction compared with the large size in x direction, in the numerical calculations, we will neglect the 
y dependence and only consider the x dependence of physical quantities. The trap center is located at L0 =​ 200. By 
solving the BdG equations self-consistently, some interesting results are revealed below.

We select the parameters φ =​ 0.42π, V =​ 1.75, μ =​ −​0.9, Utrap =​ 0.00018 to study the TQPTs and the corre-
sponding MFs. The fermion density ni [red line in Fig. 3(a)] decreases monotonically to zero from the center to 
the left/right edge, which is well confined by the trap potential. In comparison, the superconducting order param-
eter Δ​ (green line) exhibits interesting site dependence. Its amplitude increases from a relative smaller value at the 
center site (Li =​ 200), and reaches a maximum value at a critical length (Li =​ 90, 310). The superconducting gap 
then weakens down to zero upon further moving outwards. The non-monotonic behavior can be understood as 
follows. The energy scales of the two normal-state bands are ascertained to ∪− . − . . .[ 3 87, 0 96] [0 96, 3 87] at 
φ =​ 0.42π. The on-site potential U(Li) is weak enough for − <L L 27i 0  and the corresponding effective chem-
ical potential µi

eff  stays in the normal-state band gap. Small density of states near Fermi energy naturally leads to 
weak superconducting order parameters. The density of states increases when µi

eff  crosses the lower normal-state 
band with increasing |Li −​ L0|. However, µi

eff  locates below the lower band for − >L L 182i 0 , resulting in the 
near zero value of Δ​. Here, we emphasize that the superconducting gap Δ​ near the edge in the p +​ ip TSC is 
always zero regardless whether the trap potential is applied due to lack of counterpart edge state. This differs from 
the on-site s-wave pairing in HgTe quantum well40 and QAH state with a conventional s-wave superconductivity 
proximity effect30, where the strongest superconductivity locates near the edge.

Figure 2.  Phase diagram in the (φ, μ) parameter space. The pairing amplitude is fixed to Δ​ =​ 0.1. Red, blue, 
and green lines represent three phase boundaries with μ =​ ±​4 sin φ, μ =​ ±​4 cos φ, and µ = ± ′ − ∆t16( ) 82 2 , 
respectively. The TSC Chern numbers   are specified. Green arrows mark the slightly shifted positions of the 
phase boundaries in green for a fixed Δ​ =​ 0.35. Black dots with serial numbers will be discussed in the next 
subsection.
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In fact, the possible TSC phase transitions are well illustrated within the present trap potential. From the 
center to the left/right edge, the system undergoes the TSC phases with  = −2, −​3, −​1 respectively, and then 
the insulating phase  = 0 with decreasing µi

eff , consisting with the notations in Fig. 2. This process can also be 
signified by the first-order derivatives of the superconducting order parameter and the fermion density [Fig. 3(b)]. 
A few peaks can be identified, corresponding to the above mentioned TSC phase transitions.

In general, the MFs emerge near the phase boundary between the different TSC or TSC and insulating phases, 
as well as near the edge of the TSC phases. In Fig. 3(c), we output all 6400 eigenvalues of this cylinder system. The 
middle energy spectrum and four pairs of zero-energy modes protected by an energy gap about 0.06 can be 
clearly observed in the insert. As we know, for the E =​ 0, one fermion can be separated into two MFs which are 
expressed as γ = + †c c( )/ 21  and γ = −†i c c( )/ 22  with c† the zero-energy fermion16,17. According to zero 
modes, we plot spatial distributions of the corresponding four pairs of MFs in Fig. 4. Two MFs of each pair are 
well-separated and locally distributed on the lattice. Distributions of all the MFs are summarized in Fig. 4(e) 
where a subtraction |ρi −​ ρi+1| (i =​ 1, 3, 5, 7) is adopted to eliminate the overlapping between the MFs in the same 
pair. The locations of the MF peaks in Fig. 4(e) are the same as those of the peaks in Fig. 3(b), further manifesting 
the TQPTs in TSC and MFs emerging near the phase boundaries. Moreover, the effective chemical potential 
where the MF peaks locate also corresponds to the phase boundaries μ =​ −​4 cos φ, µ = − ′ − ∆t16( ) 82 2  and 
μ =​ −​4 sin φ as we discussed in the above section. The TQPTs and MFs can also be verified by the zero-energy 
LDOS11 along the lattice sites, where six peaks exist with the positions same as those of the MFs, and peaks of the 

Figure 3.  Cylinder system. (a) Superconducting order parameter (green line) and fermion density (red line) 
along lattice sites. (b) First-order derivatives of order parameter (green line) and fermion density (red line) 
versus sites. (c) Energy spectrum of the lattice. Low-energy spectrum is magnified in the inset. Parameters are 
V =​ 1.75, φ =​ 0.42π, μ =​ −​0.9, Utrap =​ 0.00018.

Figure 4.  MFs in cylinder system. (a–d) Display distributions of the corresponding MFs. Solid and dash lines 
are used to distinguish MFs in the same pair. (e) Summary of distributions of all the MFs. Here, |ρi −​ ρi+1| (i =​ 1, 
3, 5, 7) is adopted to eliminate the overlapping. Equivalent positions of sites ➀​ (L =​ 200), ➁​ (L =​ 140, 260),  
➂​ (L =​ 60, 340) are marked in Fig. 2. (f) Zero-energy LDOS along x-direction.
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first-order derivative of the order parameter. We further show the LDOS at some selected sites in Fig. 5. A zero 
energy mode peaked at E =​ 0 emerges at the sites near phase boundaries [(b), (e), (h)], but is absent in other sites, 
supporting our analysis.

Summary and Discussion
In conclusion, we illustrate the multifarious TQPTs of two-dimensional spinless fermions with p-wave super-
conducting pairing on a checkerboard-lattice CI/QAH model. Various TSC phases, especially with high Chern 
numbers, are established with just short-range nearest-neighbor pairing. A rich TSC phase diagram is revealed 
by tuning the chemical potential and staggered-flux phase factor. This is in sharp contrast to the previous theo-
retical works based on single-band p +​ ip TSC or QAH states coupling to a conventional s-wave superconductor 
through the proximity effect. Furthermore, with the recent development on generating artificial gauge fields41 and 
especially realizing artificial staggered fluxes in optical lattices42–45, such a checkerboard-lattice CI/QAH model 
could be potentially realized in the near future. A finite-size checkerboard-lattice cylinder with a confining har-
monic potential trap has been further explored using the self-consistent BdG method. Well-separated multiple 
pairs of MFs emerge at topological phase boundaries, identifying the TQPTs. These MFs are well controllable 
and robust against perturbations, and might be used for implementing the non-Abelian statistics and topological 
quantum computation18,19. In addition, such a checkerboard-lattice model might carry a topological flat band at 
selected model parameters which is beneficial to the superconducting pairing due to the large density of states. 
Future work might be very interesting to explore the competition of these TSC phases with other possible phases 
involved with the topological flat band.

Methods
For the system with the periodic boundary conditions, the Hamiltonian can be rewritten in momentum space as
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with Δ​ the superconducting order parameter.
When the lattice system has a finite size Lx ×​ Ly, we solve the BdG Hamiltonian self-consistently in real space
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Figure 5.  LDOS at different sites of cylinder system. (a) L =​ 200, (b) L =​ 170, (c) L =​ 140, (d) L =​ 120, (e) L =​ 100, 
(f) L =​ 80, (g) L =​ 60, (h) L =​ 20, (i) L =​ 5. LDOS at sites [(b), (e), (h)] lying on the phase boundaries are plotted by 
red lines.
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where δ δ µδ= − − ′ −φ
τ τ+ + ′H te tij

i
i j ij i j ij, ,ij  is the single particle Hamiltonian with τ and τ′​ vectors linked to the 

nearest-neighbor and second-nearest neighbor sites. u v( , )i
n

i
n T is the quasiparticle wave function corresponding 

to the eigenvalue En. Due to the particle-hole symmetry of the BdG equations, the wave vector ⁎ ⁎v u( , )i
n

i
n T is also 

an eigenvector corresponding to eigenvalue −​En. The superconducting order parameter, on-site particle number 
ni, and the LDOS ρi(ω), are determined self-consistently by
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respectively with fn as the Fermi distribution function.
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