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Introduction

Over the last few decades, obesity has become an 
increasing public health problem worldwide, and its 
related conditions differ by region. For example, in 
China, Russia and South Africa, obesity is associated 

with hypertension, angina, diabetes and arthritis, 
whereas in India, it is associated with hypertension1. 
Obesity can also lead to a wide variety of other 
illnesses2,3. Overall, obesity is defined as the excessive 
accumulation or abnormal distribution of body fat (BF), 
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Obesity is a serious medical condition worldwide, which needs new approaches and recognized 
international consensus in treating diseases leading to morbidity. The aim of this review was to examine 
heterogeneous links among the various phenotypes of obesity in adults. Proteins and associated genes 
in each group were analysed to differentiate between biomarkers. A variety of terms for classification 
and characterization within this pathology are currently in use; however, there is no clear consensus in 
terminology. The most significant groups reviewed include metabolically healthy obese, metabolically 
abnormal obese, metabolically abnormal, normal weight and sarcopenic obese. These phenotypes do 
not define particular genotypes or epigenetic gene regulation, or proteins related to inflammation. There 
are many other genes linked to obesity, though the value of screening all of those for diagnosis has low 
predictive results, as there are no significant biomarkers. It is important to establish a consensus in the 
terminology used and the characteristics attributed to obesity subtypes. The identification of specific 
molecular biomarkers is also required for better diagnosis in subtypes of obesity.
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affecting health4. It is classified, primarily, by body 
mass index (BMI, kg/m2), which is a very limited 
criterion5. Obesity is complicated by other diseases such 
as type 2 diabetes mellitus (T2DM), hepatic steatosis, 
cardiovascular diseases, stroke, dyslipidaemia, 
hypertension, gallbladder problems, osteoarthritis, 
sleep apnoea and other breathing problems and certain 
types of cancer (endometrial, breast, ovary, prostate, 
liver, gallbladder, kidney and colon), all of which can 
lead to an increased risk of mortality6. Cases related 
to pituitary, thyroid and adrenal gland diseases are 
considered an independent pathology but may indicate 
obesity7,8.

Multifactorial polygenic obesity involves several 
polymorphic genes. This subtype is caused by 
environmental factors such as diet, lack of physical 
exercise, ultra-processed foods, fast food, microbiome 
and the chemical contaminants, which can alter gene 
expression9. This review was aimed to make a thorough 
investigation of the heterogeneous links and differences 
among various phenotypes for diagnosis and treatment 
of polygenic obesity in adults10 and in the relationship 
between genes and proteins as possible biomarkers. 
Table I shows the definitions for the different obesity 
subtypes11-14.

A selective search of two databases 
(PubMed and the Cochrane Library) between 1998 and 
2017 resulted in the selection of the most commonly 

reported subtypes of obesity and heterogeneity in 
adults. The terminology used for searches was as 
follows: (i) metabolically obese (MO), metabolically 
unhealthy obese (MUO), metabolically abnormal 
obese (MAO); (ii) metabolically healthy obese 
(MHO); (iii) metabolically unhealthy normal weight, 
metabolically abnormal normal-weight, normal weight 
obese; (iv) sarcopenic obese (SO); and (v) metabolically 
healthy normal-weight. All these terms were 
cross-checked with the words, genes, epigenetic, 
genome-wide association studies (GWAS), biomarkers 
and receiver operating characteristic (ROC) analysis. 
The four most common obesity phenotypes are shown 
in Table II.

Heterogeneity in obese individuals

Among overweight and obese individuals, 
significant heterogeneity of phenotypes occurs, which 
is directly related to the participation of molecules, 
genes and cells, in addition to environmental, social 
and economic factors. For example, central obesity 
(also known as visceral obesity) is evident from an 
apple or android-shaped body, and confers a greater risk 
of developing metabolic complications. On the other 
hand, peripheral obesity, or peripheral fat accumulation 
in the gluteofemoral region, gives a pear-shaped body 
and has a gynecoid phenotype associated with reduced 
metabolic risk25.

Table I. Definitions used for heterogeneity subtypes in obese individuals
Obese groups Definition Other terminology for this group Notes
MHO11,12 Absence of metabolic disorders, including type 

2 diabetes mellitus, dyslipidaemia, and hypertension
Metabolically normal 
obese, metabolically benign 
obese, metabolically healthy 
overweight/obese

Definitions vary in 
different studies, manly 
based on inflammatory 
markers and cut-off values

MAO11,12 Defined by 2 main factors, BMI and metabolic status, 
which is classified as having three or more points 
from the NCEP-ATP III, to define MetS

MUO Several definitions of 
MetS have been published 
since 1999, the first was 
proposed by the WHO

MONW11-13 Individuals are characterized by a BMI <25 kg/m2, 
hyperinsulinaemia and (or) insulin resistance, increase 
abdominal and visceral adiposity, atherogenic lipid 
profile, unfavourable adipokine profile, as well as 
hypertriglyceridaemia and hypertension, and higher 
levels of oxidative stress

Metabolically obese healthy Some definitions consider 
other variables such as 
BMI, FFM, VAT, HOMA, 
ATP III

Sarcopenic 
obese14

BMI <25 kg/m2, low muscle mass and weak muscle 
strength lack physical exercise

Sarcopenic overweight

MHO, metabolically healthy obese; MAO, metabolically abnormal obese; MONW, metabolically obese, normal weight; MetS, metabolic 
syndrome; BMI, body mass index; NCEP-ATP III, National Cholesterol Education Program Adult Treatment Panel III; FFM, fat-free 
mass; VAT, visceral adipose tissue; HOMA, homeostasis model assessment; ATP III, adult treatment program III; MUO, metabolically 
unhealthy obese
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One of the most commonly accepted diagnoses for 
obesity in a caucasian population is evidence of a BMI 
equal to or >30 kg/m26. However, BMIs differ with 
ethnicity. A study on Dual-energy X-ray absorptiometry 
(DEXA) indicates that a BMI of 28 kg/m2 in men, and of 
24 kg/m2 in women correlates better with adiposity27. It 
is generally acknowledged that BMI indicates general 
adiposity, and the waist:height ratio (WHtR) indicates 
abdominal adiposity28. People with ≥0·5 WHtR are 
classified as having high abdominal adiposity29, 
although it may vary in different populations30. A 
discrepancy also exists, particularly in individuals who 
have higher muscle mass31.

Metabolically healthy obese (MHO)

MHO group or metabolically normal obese, 
or metabolically benign obese has been studied 
extensively32, and, depending on the method of 
classification, represents 6-40 per cent of the obese 

population. However, these terms are inconsistent 
with the pathology, leaving no clear consensus on 
phenotype. The metabolic spectrum is defined in 
numerous studies33. The homeostatic model assessment 
(HOMA) index is also used in MHO classification to 
identify an increased risk of mortality11. In all MHO 
individuals, insulin levels and insulin resistance 
indices for HOMA, quantitative insulin-sensitivity 
check index (QUICKI), and Mffm/l, high-sensivity 
C-reactive protein (hsCRP) and interleukin 6 (IL-6) are 
similar to a healthy population15. In addition, higher or 
lower HOMA, Quicki or Mffm/l results are not specific 
to any particular obesity phenotype. However, MHO 
individuals show increase in other biomarkers, such as, 
leptin34.

MHO individuals have a higher risk of developing 
metabolic syndrome when compared to healthy 
individuals of normal weight35. Over time, there 
has been a transition from a metabolically healthy 

Table II. Obesity subtypes and associated biomarkers
Obesity subgroup Study description Associated or expressed chemical, proteins, cells and index Related genes
MHO A cross-sectional sample of 

2047 men and women aged 
45-74 years15

Decreased circulating levels of complement C3, hsCRP, 
TNF-α, IL-6, and plasminogen activator inhibitor-1 and 
increased adiponectin11

-

MAO A cross-sectional analysis of 
7765 with 3135 overweigh and 
obese individuals16.

A total of 503 individuals with 
abdominal obesity without 
cardiovascular diseases were 
selected17.

Increase uric acid and visceral adiposity18 T45T adiponectin 
genotype is 
associated 
with increase 
of metabolic 
disorders14

MONW 3015 individuals with abnormal 
metabolic phenotype in 
normal-weight adults in a 
cross-sectional study19.

1244 individuals in a 
cross-sectional study 
included20.

17029 non-diabetic individuals 
in a cross-sectional study21.

854 individuals non-obese.

Increase in body fat per cent, uric acid and alanine 
transaminase, decrease in skeletal muscle per cent, and 
body water per cent13.

Increase in hsCRP, uic acid, cystatin C and leukocytes18.

Increase in the production of triglycerides and glucose 
(TyG index)13.

Two disparate 
haplotypes of 
common FTO gene 
variants: TCGA and 
CTAT17

SO 844 individuals in a 
cross-sectional study22.

3763 in a study cohort23.

Increased hsCRP in serum24 PTPRD, CDK14, 
and IMMP2L14

hsCRP, high-sensitivity C-reactive protein; TNF-α, tumour necrosis factor alpha; IL-6, interleukin 6; SO, sarcopenic obese; PTPRD, 
protein tyrosine phosphatase receptor type D; CDK14, cyclin dependent kinase 14; IMMP2L, inner mitochondrial membrane peptidase 
subunit 2
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overweight/obese phenotype to a metabolically 
abnormal overweight/obese phenotype. Wang et al36 
found that MHO, in particular, was associated with 
subclinical cardiovascular dysfunction, lower global 
longitudinal systolic strain, dyssynchrony and early 
diastolic dysfunction. Chang et al37 reported that MHO 
individuals had a higher prevalence of subclinical 
coronary atherosclerosis than metabolically healthy 
normal-weight individuals; however, later studies 
suggested that these problems of MHO individuals 
might be even higher than in the metabolically 
unhealthy group38.

The inflammatory state is reduced in MHO and 
may be explained by the fatty acid profile of myristic, 
palmitic, stearic, oleic and linoleic acids33. MHO is 
also associated with lower levels of proinflammatory 
proteins and higher levels of anti-inflammatory 
molecules39, such as overexpression of fetuin-A 
(AHSG), histidine-rich glycoprotein (HRG) and 
retinol-binding histidin-rich protein 4 (RBP4), and 
downregulation of histamine releasing peptide 
(HRP), hsCRP, complement factor 4A (C4A), and 
inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4). 
Together, these opposing effects counteract each other 
creating a pro-/anti-inflammatory profile33.

One particular feature of MHO is an abnormality 
in Bromodomain and extra terminal (BET) proteins. 
Wang et al40 discovered a connection between Brd2 
obesity and T2DM. The Brd2 isoform promotes 
pancreatic β-cell function and proliferation and is one 
of the protein factors regulating gene transcription. It 
binds with acetylated lysines in nucleosomal chromatin 
and plays a role in energy metabolism41. In MHO, a 
disruption of the BRD2 gene in the promoter region 
results in a reduced level of activity. BRD2 knockdown 
in mice protects them from insulin resistance and 
pancreatic β-cell dysfunction40. Inhibition of BET 
proteins may increase insulin production and improve 
pancreatic β-cell function42.

Metabolically abnormal obese (MAO)

A significant number of individuals in this group 
are overweight and have central obesity with metabolic 
syndrome, T2DM, cardiovascular or cerebrovascular 
disease and are likely to present diastolic or systolic 
high blood pressure and increased waist-hip 
circumference. This group differs significantly from 
the metabolic healthy obese subtype in levels of 
postprandial blood glucose, high-density lipoprotein 
cholesterol, triglycerides, insulin and adiponectin. 

Some of these are measured on the HOMA-IR despite 
variations43. Certain biomarkers associated with 
metabolic syndrome, such as alanine aminotransferase, 
can increase greatly, but are still within the normal 
range of reference44. In addition, the International 
Diabetes Federation (IDF), American Heart 
Association and the National Heart, Lung and Blood 
Institute (AHA/NHLBI) have published a document on 
harmonizing the metabolic syndrome45. The consensus 
criteria for a clinical diagnosis of metabolic syndrome 
is based on this document.

In the overweight and obese individuals, 
cardiometabolic risk is one of the main problems 
for which waist circumference (WC), and WHtR 
are used for identification46. The other examples 
of heterogeneity expression are observed in the 
pro-inflammatory cytokines IL-6, IL-8, monocyte 
chemoattractant protein 1 (MCP-1), regulated on 
activation, normal T cell expressed, and secreted 
(RANTES), macrophage inflammatory protein 1 
alpha (MIP1α), and plasminogen activator inhibitor-1 
(PAI 1) in visceral adipose tissue (VAT), whereas 
leptin and interferon inducible protein 10 are expressed 
mainly in subcutaneous AT (SAT)47,48. VAT is related to 
metabolic disorder and to upregulated activation and 
expression.  Leucine rich repeat containing receptor 
family pyrin domain containing 3 (NLRP3) gene and 
IL1b are upregulated in VAT49, which is infiltrated 
by proinflammatory macrophages in the MUO/MAO 
subgroup. Marques-Vidal et al50 showed increased 
levels of hsCRP and also tumor necrosis factor-alpha 
(TNF-α) in a Swiss population based study which was 
associated with an increase in WC in men, and BMI in 
women. 

It has been shown that high carbohydrate 
comsumption and environmental factors among others 
modulate genotype interactions increases risk of 
obesity. Therefore, epigenetic mechanisms increase 
the number of changes in the genome, which may be 
related to the different phenotypes of obesity51.

All gene variants are related to an increased risk 
of obesity; for example, the fat mass and obesity 
associated gene (FTO rs9939609) significantly 
predisposes an individual to diabetes and increased 
BMI and hip circumference52,53. However, Veerman54 
explained that the predictive power of this gene was 
attenuated significantly by its incomplete penetrance, 
suggesting that exploring gene expression in 
medical practice has limited relevance. Subgroups 
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or subtypes of heterogeneity have also been reported 
in other studies. A clinical subgroup of MAO is the 
hypertriglyceridaemic-waist phenotype (HTGW), 
which is classified by increased WC and increased 
fasting triglyceride levels, and a cluster of factors related 
to metabolic syndrome55. An epigenetic mechanism, 
known as DNA methylation, which is found in the 
HTGW phenotype in carnitine palmitoyltransferase 
1A (CPT1A) and ATP binding cassette subfamily G 
member 1 (ABCG1) genes, may modify gene function 
through the addition of methyl to DNA. This process 
is strongly associated with HTGW in epigenome-wide 
analysis56.

A number of methylated CpG loci are also 
associated with obesity. Crujeiras et al57 showed that 
DNA methylation levels in obese insulin resistant or 
insulin sensitive patients could be classified by the 
clamp technique. Through genome-wide epigenetic 
analysis, 982 differentially methylated CpG sites 
(DMCpGs) were found in VAT. As proposed by 
Huang et al58, most of these DMCpGs could be 
related to the insulin pathway, and some could be 
used as markers. Pietiläinen et al59 studied SAT in 
monozygotic twins with different body masses and 
found 17 obesity-associated genes with differentially 
methylated 22 CpGs regions. 

Metabolically obese normal weight (MONW)

The MONW is also known as metabolically 
abnormal with no obesity, metabolically abnormal 
individuals with no obesity (MANO), normal weight 
dyslipidaemia60, or pre-obesity61. As in other subtypes, 
MONW has multiple definitions60, most of which 
are inconsistent. Metabolically abnormal individuals 
with a normal BMI and no visual signs of obesity 
are also known as pre-obese individuals61. More than 
23 per cent BF is evident in men and 30 per cent in 
women62 and both may have a visceral fat area (VFA) 
of ≥100 cm2 with a variable BMI cut off of <23, <25, 
or <26 kg/m2 62. The abnormal accumulation of BF in 
MONW10,63 accounts for only a small number of cases 
but takes into consideration VFA and BF percentage. 
These individuals may also develop prediabetes or 
borderline dyslipidaemia with upper-normal WC64.

In studies conducted in the USA, 24 per cent of 
adults of normal weight (BMI <25 kg/m2) are considered 
metabolically abnormal and are at a high-risk of 
chronic diseases11 such as T2DM and cardiovascular 
disease. These individuals are physically inactive, 
have a BMI in the range of 20-27 kg/m2 and a fat mass 

of 2-10 kg, which is more than healthy controls of the 
same age65.

In MONW, some members of the same family 
may be hypertensive and have metabolic syndrome 
or cardiovascular disease, and a small number may 
be diabetic, although it is notable that the risk of 
developing diabetes mellitus is not dependent on 
central obesity, it depends on a number of factors 
in positive metabolic syndrome66. The adipose mass 
represents an important source of proinflammatory 
cytokines in obese individuals, and circulating 
concentrations of hsCRP, TNF-α, IL-1 α, IL-1β, IL-6 
and IL-8 are elevated67,68. HsCRP in adults is strongly 
associated with a number of factors also seen in 
metabolic syndrome, central obesity and increased 
cardiovascular risk; however, it may not be specific 
to any obesity phenotype69,70. Yaghootkar et al71 
reported on monogenic forms of insulin resistance 
in a subtype of MONW with a ‘lipodystrophy-like’ 
phenotype linked to 11 genetic variants. It can lead 
to hypertension, coronary artery disease and diabetes 
mellitus.

Sarcopenic obesity

Sarcopenic obesity, or sarcopenically obese, is 
defined as a reduction in lean mass and is associated 
with predicting factors such as increased age, low 
socio-economic status, smoking, decreased physical 
activity, atherosclerosis and pulmonary disease72. 
These factors are related to an accumulation of BF 
and a decrease in skeletal muscle mass and muscle 
strength24. The prevalence of sarcopenic obesity 
in adults over 65 yr is higher in countries such as 
Mexico (10.2%), South Africa (10.3%) and Spain 
(11%)72.

For diagnosis, the under quintile of the skeletal 
muscle index (muscle skeletal/BMI) is commonly 
used, along with the measurement for grip strength 
(<30 kg for men and <20 kg for women)73. BF is measured 
by skinfold thickness, bioelectrical impedance analysis 
(BIA), DEXA, or calculation of predictive formulae, 
among other criteria12. DEXA not only detects adiposity 
but also shows osteopenia and osteoporosis74. BIA, is 
quick, inexpensive and non-invasive and is useful in 
clinical practice75. It measures body composition and 
is based on resistance and reactance76. Although there 
is no direct relation between resistance, reactance77 
and adiposity, a different BIA prediction equation has 
been found which gives a positive predictive value for 
fat-free mass (FFM) in adults, for males and females78.
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In particular, in sarcopenia studies with BIA, there 
are three main issues that need to be considered: (i) lack 
of standardization in the definition of sarcopenia, 
(ii) selection of adequate/appropriate equations to 
calculate FFM or appendicular lean soft tissue, and 
(iii) selection of population-specific cut-off points79. 
Sarcopenic obesity can exist in individuals of different 
ages, not only in the older adult. Kim et al80 showed 
the prevalence of non-sarcopenic non-obese (53%), 
sarcopenic non-obese (10%), non-sarcopenic obese 
(20%) and sarcopenic obese (15%) individuals. They 
found an increase in the systolic blood pressure in the 
sarcopenic groups.

Inflammatory markers, such as hsCRP, increase in 
males with sarcopenic obesity22. Further, an increase 
in MCP-1 in serum marks the proinflammatory state. 
Several loci are associated with sarcopenic obesity, 
such as those located in PTPRD, CDK14 and IMMP2L 
genes23. Similarly, single nucleotide polymorphism 
(SNPs), such as the TP53 polymorphism, predict the 
risk of sarcopenia, contrasting with other kinds of 
obesity81. An association between −308 G/A TNF-α  
polymorphism and sarcopenic obesity was also 
established82.

Adipose tissue, biomarkers and heterogeneity

There are three varieties of adipocytes: brown, 
white and beige. In humans, brown adipocytes are 
found in the neck, interscapular and supraclavicular 
areas83. White adipocytes are found in subcutaneous 
and visceral regions, while beige are found in the 
supraclavicular region, inguinal canal and near 
the carotid sheath and the long muscle of the neck 
(musculus longus colli)84.  White adipose tissue (WAT) 
has an intrinsic heterogeneity with depot-specific 
differences85. Subcutaneous depot expresses higher 
levels of TBx15 gene (T-Box transcription factor 15) 
and adiponectin in visceral WAT than other markers86. 
Percentages of arachidonic acid and docosahexaenoic 
acid are higher in subcutaneous WAT and have an 
upregulation of 5-lipoxygenase in T2DM in women, in 
contrast to VAT (vWAT)87.

Other methods providing quantitative non-invasive 
biomarkers include magnetic resonance imaging88, 
near-infrared-based optical spectroscopy and nuclear 
magnetic resonance (NMR), the last two of which have 
been validated by determining hepatic fat content through 
a minimally invasive needle-like probe89. In addition, 
high-resolution pulsed field gradient diffusion NMR 
spectroscopy might delineate WAT and brown AT90.

The adipocytes produce a number of cytokines 
including adiponectin, leptin, interleukin (IL-6), 
PAI-1, adipsin, TNF-α, resistin, angiotensinogen, 
aromatase and CRP91. These are related to obesity, 
hypertension, atherosclerosis, diabetes and 
thrombosis48, and some have a strong association with 
eating behaviours, chronic inflammation and metabolic 
disease.

Abdominal obesity is associated with an increase 
in IL-6, while BMI and WC relate to TNF-α levels50. 
Lim et al92 found that BMI was a poor indicator of 
excess adiposity in the elderly and showed that WC 
was a better marker. They also associated MCP-1 with 
the proinflammatory state, in accordance with studies 
by Yang et al22 in which they found an increase in 
hsCRP in elderly males with sarcopenic obesity.

Accuracy and limitations in terminology and 
biomarkers

When considering the main group classifications 
for, monogenic, polygenic, multifactorial obesity and 
mixed cases9, monogenic is proved to be the most 
useful in confirming the specific type by molecular 
methods, and subsequently, implementing strategies 
for personalized medicine93. In cases linked to multiple 
genes or polygenic phenotypes, the study of genetic 
markers is not beneficial in clinical diagnosis. This 
takes into consideration that genetic predisposition is 
not equal to inevitability of disease in wider concept94. A 
wide spectrum of disease susceptibility may be evident 
from the genes found in polygenic obesity (for example, 
in genes LEPR, MC4R, PCK1, POMC and PPARG), and 
is also significant in monogenic obesity95. This indicates 
that highly penetrant rare variants may be related to 
severe obesity, and genes with common variants could 
be related to more common obesity. In addition, FTO, 
the gene most strongly associated with obesity, only 
explains 0.34 per cent of phenotypic variance, which 
increases to 1.45 per cent with 32 GWAS96. Several 
of studies claimed that parental BMI, birth weight, 
maternal occupation, maternal gestational weight 
and gestational smoking gave a better predictive risk 
of obesity than GWAS97. Therefore, genetic studies 
should be endorsed only in individuals with early-onset 
obesity if they have intellectual disabilities or exhibit 
developmental delays, or in syndromic types.

Without agreed terminology, at present, no research 
or clinical diagnoses define the different phenotypes 
sufficiently. Paradoxically, if the individual has normal 
biochemical blood parameters, they are considered 
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accurate, but is useful if factors such as age, race, 
ethnicity and gender are taken into consideration. For 
examples, WC has a good correlation with DEXA 
measures of trunk fat mass percentage and metabolic 
syndrome102. To predict estimated per cent BF in 
older Caucasian American females and males, use of 
Siri-Brozeck equations is recommended26. A simple 
index, which was evaluated in a cross-sectional study 
with 17,029 non-diabetic individuals from the Korea 
National Health and Nutrition Examination Survey, 
discriminated individuals with MONW from MHO 
is the triglyceride glucose (TyG) index21. Others 
markers of visceral obesity: the visceral adiposity 
index and the lipid accumulation product (LAP) 
are good to identify MONW phenotype; these were 
evaluated in 3552 normal-weight individuals from 
the China Health and Nutrition Survey 2009 and 
identified people predisposed to develop metabolic 
diseases13.

Conclusion

Although all obese individuals have excess BF, 
there are important heterogenic differences between the 
subtypes. After reviewing various clinical, biochemical 
and genetic reports it is found that important progress 
has been made by the different groups in identifying 
specific differences in types of obesity, and the present 

healthy. The question, originally raised by Scully98, still 
remains, as to how to properly distinguish between a 
real disease and merely disturbing risk factors, defects 
or deficits. One other concern of MHO diagnosis is the 
doctor´s bias towards, or perception of a patient99. Other 
obesity subgroups related to diet, physical activity 
chemical compounds and endocrine disruptors100 
(dichloro-diphenyl-dichloro-ethylene, bisphenol A, 
polychlorinated biphenols, phthalates, phytoestrogens, 
glycyrrhetinic acid and tricyclic antidepressants 
among others), have not been taken into consideration, 
that will very likely be participating.

Perspectives

Despite a lack of clear definitions to classify 
obesity subgroups, there are markers or indeces that 
are useful to make basic differentiations such as VAT, 
and fat mass, that together with BMI, WC and WHtR, 
all related with intra-abdominal adiposity could help in 
the subgroups classification18 (Figure).

To differentiate the presence or absence of the 
metabolic component, VAT is useful because it is 
mechanistically related and strongest predictor to 
insulin resistance, T2DM, hypertension dyslipidaemia 
and cardiovascular disease101. The drawback of 
measuring VAT is the high cost and difficulty in 
carrying out these procedures. It may not be not 

Figure. Differences between phenotypes of obesity. aNormal weight (NW) metabolically healthy and normal visceral adipose tissue (VAT) and 
normal BMI. bMetabolically healthy obese (MHO) individuals have high body mass index (BMI) and healthy metabolic profile, characterized 
by having excessive body fat, high insulin sensitivity, low VAT/total body fat mass index and low VAT. cMetabolically abnormal obese (MAO) 
individuals present high BMI, are associated with abnormal metabolic profile,  high VAT and increased uric acid. dSarcopenically obese (SO) 
are characterized by loss of skeletal muscle mass and function, increases risk of metabolic alterations mainly in older individuals and have 
high VAT with BMI between 25 and 30 kg/m2. eMetabolically obese normal weight (MONW) individuals are characterized by high VAT and 
a normal BMI. Source: Ref. 17.
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criteria can help in diagnosis and treatment of obesity. 
Ideally, we need progress in two ways, first, to find better 
markers to distinguish each subtype of obesity more 
accurately for improvements in treatment, and second, 
to have an international consensus on terminology.
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