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ABSTRACT: Integrating scientific principles into machine
learning models to enhance their predictive performance and
generalizability is a central challenge in the development of AI for
Science. Herein, we introduce Uni-pKa, a novel framework that
successfully incorporates thermodynamic principles into machine
learning modeling, achieving high-precision predictions of acid
dissociation constants (pKa), a crucial task in the rational design of
drugs and catalysts, as well as a modeling challenge in
computational physical chemistry for small organic molecules.
Uni-pKa utilizes a comprehensive free energy model to represent
molecular protonation equilibria accurately. It features a structure
enumerator that reconstructs molecular configurations from pKa
data, coupled with a neural network that functions as a free energy
predictor, ensuring high-throughput, data-driven prediction while preserving thermodynamic consistency. Employing a pretraining-
finetuning strategy with both predicted and experimental pKa data, Uni-pKa not only achieves state-of-the-art accuracy in
chemoinformatics but also shows comparable precision to quantum mechanics-based methods.
KEYWORDS: pKa, machine learning, protonation ensemble, pretraining-finetuning strategy, free energy modeling,
chemical thermodynamics

1. INTRODUCTION
Machine learning’s integration into scientific research, known
as AI for Science, has greatly improved our problem-solving
capabilities.1,2 However, challenges of accuracy and general-
izability from issues with data quantity and quality persist,
requiring innovative solutions.3−5 The fusion of established
scientific principles with advanced machine learning is
essential, enhancing model performance, robustness, and
versatility in scientific applications.6,7

The acid dissociation constant (pKa) is a complex modeling
and calculation challenge due to the intricate chemical
equilibria among various protonated forms of a molecule.
While machine learning excels in accuracy and speed for
individual molecular properties, pKa prediction is complicated
by these equilibria, posing difficulties for experimental
measurements, quantum chemical calculations, and machine
learning methods alike. To construct robust models, it is
imperative to integrate scientific principles into machine
learning at multiple stages of the modeling process.
The prediction of pKa is one of the foundations of accurate

chemical modeling in computer-aided molecular discovery. In
particular, ubiquitous acid−base equilibrium adds complexity
to molecular structures in water, which is of great concern in
chemical, material, health, and environmental sciences. Func-

tional molecules universally contain acidic/basic chemical
groups such as carboxyl groups, amino groups, and N-
heterocyclic rings, where pKa is the key physical chemistry
parameter describing their acid−base equilibria. pKa serves as
an informative descriptor for designing catalysis systems8−10

and environmental impact assessment.11 From a drug
discovery perspective, it directly determines structures in
physiological environments, influencing key properties such as
solubility, membrane permeability, and biomolecular inter-
actions. As such, pKa prediction also plays an important role in
screening drug-like molecules with optimal pharmacokinetics,
toxicity, and activity.12 As seen in free energy perturbation
calculations, a molecular simulation method assessing activity,
accurate pKa values also enable proper structure preparation
and thermodynamic correction and improve the accuracy.13,14

Therefore, fast and reliable pKa prediction approaches are
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highly valuable in various applications of molecular discovery
and production.
Due to the prevalence of multiple ionizable groups within

functional molecules, framing pKa prediction as a simple
multilabel regression problem with individual site labels
overlooks its complexity, where both global and local
structures must be encoded, and polyprotonated and
amphoteric cases should be handled. With this consideration,
recent chemoinformatics works use different descriptions of
the molecular structure and ionization:15 (1) Template-based
methods utilize ionization site matching to empirical fragment
values, along with correction of surrounding structural context
by Hammett linear free energy relationships,16 as implemented
in early versions of Epik.17 (2) Local atomic descriptors
represent ionization sites, while global molecular descriptors
cover full structures in traditional machine learning techniques,
including OPERA,18 the work of Baltruschat and Czodrow-
ski,19 and SPOC.20 (3) Graph neural networks learn
hierarchical embeddings of sites and structures at different
levels of molecular graphs, as demonstrated by MolGpKa,21

pKasolver,22 Graph-pKa,
23 MF-SuP-pKa,

24 and Epik 7.25

However, fundamental limitations remain in interpreting
experimental data and ensuring thermodynamic consistency.
On the data side, most pKa measurements reflect coupled
equilibria26,27 but are often ascribed to one dominant
equilibrium in data sets and algorithms, inducing bias.28 As
has been discussed for decades, rigorous interpretation requires
contributions from all equilibria.29 Recent attempts like the
multi-instance learning (MIL) framework proposed by Xiong
et al.23,24 accommodate multiple ionization sites but still ignore
complex protonation networks. On the model side, thermody-
namic coupling emerges when it comes to the modeling of
polyprotonation.30 Independent site modeling loses the
awareness of the coupling, compromises the rigor, and risks
self-contradiction when predicting the distribution of proto-
nation states.25 Under the strong demand for the protonation
state ranking of given molecules, genuinely self-consistent pKa
prediction remains an unmet need. These intertwined
limitations of current approaches underscore the need for a
new modeling perspective. A recent study on the SAMPL6
challenge highlights the necessity of using standard free
energies rather than pKas when representing complex
protonation systems.30

This preliminary effort has validated the feasibility of
applying scientific principles to the prediction of pKa values.
Inspired by such works, we introduce Uni-pKa, a protonation-
ensemble-based framework bridging thermodynamics and
machine learning. We have reorganized pKa data of varying
types and accuracies and meticulously crafted both the
modeling and training methodologies. Ultimately, we encap-
sulate these elements within a unified representational
framework designed to predict a diverse array of pKa-related
tasks.
On the data side, we design a general format of the pKa data

set, which stores the determined molecular structure of
protonation states and is compatible with all kinds of pKa
measurements. We reconstruct several publicly available data
sets in this format and release them as a new, fine-grained
benchmark for high-accuracy pKa models.
On the model side, we introduce a modified Uni-Mol model

into a free-energy-based machine learning framework with
novel pretraining strategies. It allows the model to learn pKa
from different measurements, naturally preserves thermody-

namic consistency, and enables multiple scenarios, including
pKa prediction and protonation state scoring. After pretraining
on large-scale predicted pKas and finetuning on experimental
pKas, Uni-pKa achieves state-of-the-art accuracy for pKa
prediction compared to other chemoinformatics models.

Bridging the gap between data and model, we develop a
structure enumerator to comprehensively generate protonation
states from given molecules. It helps to build the data set and
propose a workflow for structure preparation in molecular
simulation, combining speed and accuracy.

In conclusion, by bridging scientific principles with advanced
machine learning techniques from representation to modeling,
we have established Uni-pKa, a robust framework that not only
accommodates diverse pKa measurements but also upholds the
fundamental laws of thermodynamics, thereby providing a
versatile tool for both pKa prediction and protonation state
evaluation.

2. RESULTS

2.1. Overview of the Uni-pKa Framework
In Bro̷nsted-Lowry acid−base theory,31,32 the acidity and
basicity of a molecule in an aqueous solution are defined by the
mutual protonation between itself and the water molecule. pKa
quantitatively describes the extent and direction of protonation
equilibria. Interpreting experimental pKa measurements
requires modeling the underlying chemical structures and
equilibria, which are differently detected in bulk experimental
techniques.26,27,33

1. A microstate of a molecule is a well-defined chemical
structure of its protonation state. A micro-pKa describes
the hidden, detailed equilibrium between two micro-
states, which NMR and kinetics methods can observe.

2. A macrostate of a molecule is a collection of its
microstates with a particular net charge. A macro-pKa
describes the apparent, coarse-grained equilibrium
between two macrostates, which electrochemical and
spectroscopic methods mostly measure.

The microstate-macrostate hierarchy describes a molecule’s
protonation ensemble, which is our core concept to be
revealed. It captures possible protonation states corresponding
to different ionization site combinations for a given molecule
(example of amoxicillin in Figure S1). We emphasize that the
free energies (pH-dependent dimensionless Gibbs free energy
change of formation at a certain pH, βΔfGm(· ; pH), see
formulas eqs 1−4 in The free energy description of the
protonation ensemble) of all the microstates contain the
complete information on coupled acid/base equilibria in the
protonation ensemble (see Section 5.1). This establishes the
theoretical foundation of extracting the integrated equilibrium
information faithfully from both micro- and macro-pKa
measurements by microstate free energy modeling, as well as
predicting both pKa values and pH-dependent protonation
states by microstate free energy prediction.

Our Uni-pKa framework integrates the theory of the
protonation ensemble, a microstate enumerator, and molecular
machine learning. The microstate enumerator implements the
construction of the protonation ensemble of the target
molecules, as explained in the Sections 5.2 and 5.3. The
machine learning part serves as the core algorithm for the
microstate free energy. Receiving molecular structures from the
microstate enumerator and organized by the protonation
ensemble, it converts molecular inputs to free energy outputs
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along the data flow. Following a pretraining-finetuning
paradigm, it learns from data with different fidelity and
grows into a highly accurate free energy predictor along the
model flow.
Scheme 1 provides a schematic overview of the Uni-pKa

framework. Uni-pKa employs a unified data preparation
procedure across the stages of pretraining, finetuning, and
inference. Instead of directly inputting a single ionization
reaction into the model, we recover the protonation ensemble
on the data points to obtain microstates for the acid and base
sides and feed them into the model. The model backbone
originates from Uni-Mol,34 an expressive and universal 3D
molecular representation learning framework based on Trans-
former,35 which has demonstrated effectiveness across a range
of molecular property prediction tasks. In Uni-pKa, we make
necessary modifications, including the incorporation of charge
information and its free-energy-to-pKa (FE2pKa) module
under the protonation ensemble theory.
The pretraining phase leverages about 1 million molecules

with empirical pKa values in the ChEMBL database,36 which
contains more than 3 million protonation states after
microstate enumeration (Table S3). Four tasks are designed

to exploit its abundant chemical information: one weakly
supervised task, pKa prediction, and three self-supervised tasks,
including 3D position recovery, masked atom prediction, and
masked charge prediction. In the pKa prediction task, unlike
previous models that directly predict pKa values, Uni-pKa
ensures the free energy consistency within the whole
protonation ensemble by taking individual microstates as
input and directly predicting microstate-free energies as the
output. We employ the free-energy pKa formulas (2) to predict
the pKa value for the entire data point and compute the loss
with the ground truth, as explained in the Section 5.5.1.

After pretraining, we conduct finetuning with experimental
pKa labels, which endows our model to predict high-precision
pKa, as depicted in Scheme 1 C. The public pKa data set in
DataWarrior37 and the selected entries from the i-BonD
database38 are sampled from a broad chemical space from the
simple carboxylic acid to the complex alkaloids and porphyrins,
covering the whole pH range in the aqueous solution (Figure
S3) and spanning the 106 ionization patterns in our template.
After our microstate enumeration, it is filled with well-
constructed macrostates with at most 18 microstates (Figure
S3).

Scheme 1. Schematic Overview of Uni-pKa Framework
a

a(A) Data preparation workflow. We implement a microstate enumerator to systematically build the protonation ensemble from a single structure.
(B) Pretraining workflow. Our pretraining strategy combines 1 weakly supervised task, pKa-prediction, and 3 self-supervised pretraining tasks,
masked atom prediction, masked charge prediction, and 3D position recovery, to make the most use of the chemical information in 3 million
microstate structures. In the pKa-prediction task, we introduce a free energy-to-pKa (FE2pKa) module to establish the relationship between the
model-predicted free energy and pKa. This module also enables us to predict pKa from free energies. (C) Finetuning workflow. In this phase, we
also employ the FE2pKa module, training the model using experimental pKa to enhance its capability for predicting pKa with high accuracy. (D)
Inference workflow. After pretraining and finetuning, the well-trained Uni-pKa framework is equipped to handle three inference tasks, including
macro-pKa prediction, micro-pKa prediction, and distribution fraction prediction.
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The pretraining and finetuning together develop an accurate

and robust machine learning model in Uni-pKa capable of

effectively learning from macro-pKa data while preserving

thermodynamic consistency. Taking advantage of the physical

interpretation of microstate free energy modeling, Uni-pKa

supports multiple prediction tasks in a unified workflow
(Scheme 2).
2.2. Model Accuracy and Generalizability

We evaluated Uni-pKa’s performance on external data sets
spanning diverse chemical spaces to assess generalizability.
Novartis and SAMPL6 collect a variety of possible protonation

Scheme 2. Inference Stage of Uni-pKa
a

a(A) Structures of microstates in the protonation ensemble of one reference molecule are reconstructed by the microstate generator. (B) The atom
types, atomic charges, and geometry information of the microstates are fed into the Uni-Mol backbone, and the free energies are predicted for each
microstate. (C) If the acid and base macrostates are specified by the user input, the macro-pKa-free-energy formula is used to transform the free
energy prediction to macro-pKa prediction. If the microstates are further specified, the micro-pKa-free-energy formula is used as a special case of the
macro-pKa prediction where there is only one microstate in both macrostates. (D) If pH is given by the user input, the distribution-free-energy
formula is used to calculate the fraction of all the microstates in the protonation ensemble.

Table 1. Performance on External Data Sets

method

Novartis

SAMPL6 SAMPL7 SAMPL8acid base total

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Schrödinger Epik Classical17 0.99 1.531 0.876 1.175 0.83 1.16 0.784 0.962 1.121 1.648
ChemAxon Marvin39 0.808 1.144 0.835 1.145 0.86 1.17 1.007 1.248 0.559 0.708 1.300 1.511
ACD/Labs40 0.55 0.783
SPOC + XGBoost20 0.767 1.011 1.476 1.622 1.108a 1.547
SPOC + NN20 0.832 1.141 0.932 1.156
OPERA18 0.97 1.283 2.135 2.515
MolGpKa21 0.849 1.287 0.789 1.064 0.87 1.27 0.522 0.773 0.797 0.98 0.835 1.150
GraphpKa23 0.594 0.726 0.758 0.934 0.916 1.230
pKasolver22 0.71 0.93 1.244 1.590
MF-SuP-pKa

24 0.85 1.09 0.61 0.79 0.71 0.92 0.687 0.751 0.656 0.816
Schrödinger Epik v725 0.92
Uni-pKa

b 0.810 1.061 0.493 0.653 0.620 0.840 0.554 0.716 0.570 0.735 0.631 0.878
aThe bold figures are the highest accuracy on each dataset. The italic figures present the performance of other methods tested by us on public
platforms. Other external results are from the literature. The data and program sources are explained in Table S1. bUni-pKa with the formal charge
descriptor is the default version. The performance of other versions is listed in Table S1.
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patterns in complex drug-like molecules, which faithfully reflect
the realities of a pKa prediction model’s application. SAMPL7
includes sulfonamides in different scaffolds and chemical
environments, which tests the model’s capacity to resolve
subtle substituent effects. As summarized in Table 1, Uni-pKa
outperforms recent chemoinformatics methods on the
Novartis, SAMPL6, and SAMPL7 data sets.
SAMPL8 is the most recent SAMPL challenge series that

involves a pKa prediction contest; therefore, it refreshes the
benchmarks for previous relevant works. Uni-pKa significantly
exceeds the real submission entries in the SAMPL8 challenge
(Table S2). As shown in Table 1, we further compared Uni-
pKa with several methods with their web platform and their

deployed model, which reflects the best available pKa
prediction service to the public before. Uni-pKa decreases the
MAE by more than 0.2 pKa units (0.631 for Uni-pKa compared
to 0.835 for MolGpKa) on this data set containing drug-like
molecules with multiple ionization sites and successive
ionization.

The macrostates in the training set of Uni-pKa are abridged
to reduce computational cost (Supporting Information: Data
Sets), while the microstates in the external test sets come
directly from the full enumeration without any handpick. The
biggest risk of the direct tandem of the enumerator and the
neural network is that the unusual structures generated by
radical enumeration are unfamiliar to the neural network

Figure 1. Uni-pKa’s concern for detailed acid−base equilibria. (A) Example of 2-hydroxybenzoic acid,41 where one of the dissociation is dominant.
(B) Example of 2-((dimethylamino)methyl)phenol,42 where both reactions are dominant. (C) Uni-pKa results on SAMPL6 micro-pKa data sets
involving tautomerism. (D) Thermodynamic cycle of the glycine. pKi is the dissociation equilibrium constant. The green and orange arrows
indicate different protonation routes.
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trained on the pruned data set. Therefore, the results above
also reveal the effectiveness of the lightweight training set, the
reliability of the enumerator, and the extrapolation ability of
the model, contributing to the performance of the whole
prediction workflow.
In summary, experiments on standardized benchmarks

demonstrate that the enumerator and the neural network in
Uni-pKa cooperate to achieve state-of-the-art accuracy
compared with prior chemoinformatics techniques. The
consistent improvements across heterogeneous evaluation
sets validate the effectiveness of our protonation ensemble
approach on a broad range of the chemical space.
2.3. Interpreting Macro-pKa Data

Accurately modeling macro-pKa measurements requires
accounting for the complete protonation ensemble, which
refers to the collection of microstates with different
protonation site combinations for a molecule. We analyzed
our reconstructed data sets to quantify the additional
information from the full enumeration. As shown in Table
S3, mapping the public pKa data sets from individual structures
to the underlying ensembles expands the data substantially. For
instance, the Dwar-iBonD data set grows over 3-fold from
8232 single data points to 27,138 enumerated microstates.
This affirms the intrinsic complexity obscured by typical data
representations.
We can visualize how ensemble modeling avoids biased

assumptions about dominant sites. As shown in Figure 1A, the
acidity of the carboxyl group is known to be much stronger
than that of the phenolic hydroxyl group, leading to the
obvious assignment. While for molecules with chemical groups
of similar acidity as shown in Figure 1B, ambiguities often exist
in attributing macro-pKas to specific sites, and any assignment
is an oversimplification and introduces bias to the data. Our
protonation ensemble modeling reveals alternative chemically
reasonable sites, including the dimethylamino group and the
phenol group.
Recent works have adopted MIL to decompose macro-pKas

into contributions from specific sites.23,24 However, MIL is a
special case of the proton ensemble and risks misattributions
for complex cases like Figure S1 (also eqs S1 and S2 in
Supporting Information: Theoretical Details). Our iterative,
ensemble-aware enumerator explores the full space, avoiding
assumptions. Thoroughly sampling the ensemble is imperative
in pursuit of rigorous macro-pKa interpretation.
The accuracy of Uni-pKa benefits from the data set built

under the protonation ensemble framework. In Table S5,
ablation studies show that full microstates in the Dwar-iBonD
data set in the finetuning stage improve the RMSE in the cross-
validation and on most external data sets. As we have
emphasized, a correct interpretation of data is key to the
progression of the model. Our reconstructed data sets show
chemical soundness as well as help the model to grasp the
chemical properties.
We further test Uni-pKa on the SAMPL6 micro-pKa data set,

including 10 micro-pKas of SAMPL6 challenge molecules
measured by NMR titration. Uni-pKa ends up with an MAE of
0.592 and an RMSE of 0.719, which is comparable to the
results on the SAMPL6 macro-pKa prediction in Table 1. It
reveals that Uni-pKa learns accurate knowledge of microlevel
free energies from macrolevel equilibria, giving the right
answer for the right reason. It is also worth noting that 5 of the
10 micro-pKas involve tautomerism between enamines and

imines (Figure 1C). Given that our model is trained on data
sets that solely consider acid−base equilibrium, the test
suggests that it has a generalizable perception of the underlying
relationship between molecular structures and thermodynam-
ics.

In conclusion, modeling the complete protonation ensemble
provides a stronger foundation for leveraging experimental
data, as fulfilled by our data set reconstruction. By preventing
biased assumptions, it enables a more accurate pKa prediction
and the potential of extension into a general scope of various
chemical equilibria.
2.4. Preserving Thermodynamic Consistency

pKa itself is a thermodynamic property between the acid and
base, constrained by fundamental thermodynamic cyclic
relations. We illustrate this principle quantitatively in Figure
1D through an amino acid, glycine. The dominance of the
zwitterion form of a neutral amino acid is a classical topic in
biochemistry,43 which can be derived from the micro-pKas of
the carboxyl group and the amino group. c(2-HA)/c(1-HA) =
K3/K1 is based on the acidic ionization of 1-H2A+, while c(2-
HA)/c(1-HA) = K2/K4 is based on the basic ionization of 1-
A−. The consistency K3/K1 = K2/K4 between the two results
reported in both ways relies on the cyclic relation pK1 + pK2 =
pK3 + pK4, which is deducted from the definition of the
equilibrium constant. However, the relation is not guaranteed
in arbitrary individual micro-pKa predictions. Violation results
in contradiction when evaluating the relative importance of
different protonation configurations in different ways. There-
fore, thermodynamic consistency not only promotes coherent
micro-pKa prediction but also avoids conflicts in the
distribution coefficient prediction task derived from micro-
pKa prediction.

We exemplify the risk of methods without thermodynamic
concern on the pKasolver, a graph-neural-network-based
model that provides one of the most recent micro-pKa
prediction interfaces in its Colab notebook.44 It shares the
input format with Uni-pKa that takes in both the acid and base
when predicting micro-pKa but with no thermodynamic
constraints between individual predictions. We observe that
pK1 + pK2 = 8.00 but pK3 + pK4 = 13.64 in its predicted values,
which causes K3/K1 = 5.8, K2/K4 = 2.5 × 107, more than 5
orders of magnitude’s difference in the same quantity. As a
result, the model fails to clarify this biochemical problem
quantitatively.

By contrast, our free energy modeling of the protonation
ensemble framework inherently preserves thermodynamic
consistency between coupled pKa values, under which the
thermodynamic cycle is automatically satisfied (Supporting
Information: The Verification of Thermodynamic Consis-
tency). Hence, Uni-pKa reports pK1 + pK2 = pK3 + pK4 = 11.99
and derives c(2-HA)/c(1-HA) = K3/K1 = K2/K4 = 2.0 × 102
without any reference-dependent behavior.

In general, with inherently encoded coupled acid−base
equilibria, Uni-pKa’s thermodynamic awareness improves
current micro-pKa prediction schemes toward a self-consistent
distribution coefficient prediction. This advance enables the
holistic analysis of the protonation network with complex
acid−base reactions.
2.5. Comparison to Quantum Chemistry Methods

The most accurate solutions for calculating thermodynamic
properties, such as pKa, are provided by quantum chemistry.
Schrödinger’s Jaguar, one of the state-of-the-art quantum-
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chemistry-based pKa prediction software, has reached exper-
imental accuracy in a large chemical space.45,46 This DFT-
based prediction is very sensitive to the conformation energy
because 1 kcal/mol corresponds to more than 0.7 pKa unit.
Thus, it heavily relies on a comprehensive conformational
search and weighted average, with a proportionally increasing
amount of computation. In practice, the trade-off between
speed requirement and accuracy expectation determines the
conformation search strategy.
Typically, compared to hours for conformational search and

geometry optimization in an implicit solvent model of a
typical-size molecule in Jaguar, Uni-pKa’s inference speed is 28
macro-pKa per second, and the average prediction time for a
macro-pKa is approximately 0.036 s for the Novartis Acid data
set. With this significant speed up against precise quantum
chemistry calculations, we conducted comparative case studies
with Jaguar to evaluate Uni-pKa’s accuracy loss.

Given practical computational constraints, Uni-pKa demon-
strates promising accuracy relative to that of Jaguar. For
example, without conformational sampling, Uni-pKa matches
or exceeds Jaguar’s accuracy on a family of drug-like molecules
in Table 2. This highlights the benefits of data-driven training
on large data sets. However, accuracy challenges remain for
certain complex systems, where Jaguar’s accuracy improves
significantly with exhaustive conformational modeling (from
MAE = 1.07 down to 0.20 in Table S6). While Uni-pKa cannot
match this (MAE = 0.70), it provides a much faster alternative
within reasonable tolerances for many applications.

While Jaguar’s DFT calculations provide ab initio pKa
estimates, systematic errors remain. To compensate, Jaguar
employs an empirical “shell model” that assigns molecules to
classes with parametrized corrections. However, this classi-
fication contains some arbitrariness, as the original authors
note when evaluating guanidine derivatives (Table S7). By

Table 2. Comparison between Uni-pKa and Jaguar Results: Tertiary Amines

A B n R exp. value Uni-pKa Jaguar Jaguar+a Jaguar++b

A9 B2 0 OCH3 9.9 9.13 9.43 8.13 9.11
A8 B7 0 OCH3 8.5 8.56 7.94 8.23 7.90
A9 B7 1 OCH3 9.2 8.76 8.23 8.68 8.69
A9 B6 1 OCH3 9.1 8.86 9.02 9.30 9.13
A8 B5 0 OCH3 8.6 8.50 7.81 9.04 8.23
A8 B4 0 OCH3 9.3 8.89 8.49 8.34 9.43
A8 B3 0 H 9.3 8.97 8.68 8.62 8.66
A5 B2 1 OCH3 8.5 8.21 6.60 7.96 8.18
A5 B5 0 OCH3 8.4 8.11 7.34 7.03 7.79
A5 B5 0 H 8.4 8.14 7.80 7.22 7.78
A6 B2 1 OCH3 6.5 6.72 7.96 7.91 8.25
A6 B1 0 OCH3 7.5 6.88 8.50 7.04 7.89
A11 B2 1 H 8.9 8.26 8.33 8.12 8.61
A11 B2 1 OCH3 8.9 8.27 8.76 9.05 8.29
A10 B2 0 H 9.0 8.52 8.72 8.33 8.62
A10 B2 0 OCH3 9.0 8.56 8.61 9.17 8.32
A12 B2 1 OCH3 9.0 7.85 8.24 9.41 9.27
A13 B2 0 OCH3 8.5 7.29 8.20 8.42 8.00
A2 B2 0 OCH3 8.0 8.36 8.15 7.69 7.11
A2 B2 0 H 8.5 8.32 6.54 8.22 7.71
A7 B2 0 OCH3 8.1 7.93 8.21 7.56 6.47
A14 B2 0 OCH3 6.0 7.68 7.78 7.07 6.93
A1 B2 0 OCH3 8.6 7.98 8.51 8.32 8.53
A1 B2 0 H 8.6 7.91 8.36 8.57 8.38
A3 B2 0 OCH3 8.4 7.25 7.98 7.88 8.35
A4 B2 0 OCH3 8.2 7.76 7.83 8.00 7.96
A4 B2 0 H 8.0 7.73 7.63 7.80 7.90
MAE 0.52 0.69 0.56 0.51
outlier countc 4 6 5 2
best countd 9 6 4 8

aJaguar with ordinary conformational search. bJaguar with comprehensive conformational search, weighting 10 conformers. cA prediction with the
error larger than 1 pKa unit is regarded as an outlier. dThe best among 4 methods each molecule is marked by bold figures.
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default, these molecules fall under the guanidine shell, giving
an MAE of 1.34, even with exhaustive conformational
sampling. Yet the “partially substituted amidine” shell yields
superior accuracy, with an MAE of just 0.38 pKa units without
conformational sampling. The authors suggest structural
differences between the guanidine training set, and these
targets contribute to the discrepancy. In contrast, Uni-pKa
adapts more flexibly across chemical spaces. Rather than
human-crafted classes, it relies on automated pretraining over
diverse data to incorporate chemical knowledge. While Uni-
pKa does not match the amidine shell’s accuracy here, it still
outperforms Jaguar’s default corrections, giving an MAE of
0.64.
In conclusion, these benchmarks reveal a complementary

synergy between the computational expense of quantum
chemistry methods and the data efficiency of machine learning
techniques like Uni-pKa. Comparisons to in-depth quantum
chemistry calculations substantiate Uni-pKa’s viability as an
efficient surrogate for pKa prediction, within limitations.
Integrating the two approaches to balance speed and accuracy
is an exciting direction for future hybrid modeling. Targeted
integration of first-principles training data could help address
areas for improvement revealed by quantum chemistry
benchmarks. This further motivates the development of
unified ensemble modeling frameworks.

3. DISCUSSION
Uni-pKa comprises two key components under protonation
ensemble theory: the microstate enumerator and the neural
network predictor. The microstate enumerator systematically
generates the protonation states of molecules, representing the
complete collection of molecular protonation equilibria. The
neural network predictor, trained on well-designed tasks and
well-constructed data sets, ensures precise and reliable
predictions.
The microstate enumerator plays a key role in the

applicability of Uni-pKa in a broad chemical space. A more
thorough ionization pattern template undoubtedly leads to
wider and deeper enumeration and a more complete
description of the protonation ensemble, but the number of
enumerated structures grows exponentially with the number of
matched ionization sites of the molecule. This complexity is
suffered both in protonation ensemble reconstruction and the
neural network computation. Nonetheless, the system size is
controlled in the realm of small organic molecules. Because the
batch-wise inference holds dozens of structures in parallel, even
extremely complex molecules like porphyrins and small
peptides’ macrostates can be evaluated concurrently at an
averaged time. In a manually built, ethylenediaminetetraacetic
acid (EDTA)-like complex molecule example with at most 6
ionization sites, the macro-pKa prediction between central
macrostates regarding the most microstates takes a nearly
constant time across different sizes of macrostates (Figure S5).
Moreover, it is reasonable to prune negligible microstates with
minimal influence on the accuracy of the distribution of the
protonation ensemble. Template refinement and structural
screening are, respectively, procedure-oriented and result-
oriented solutions. Although reasonable pruning rules in the
vast chemical space are case by case, our SMARTS-based
template is well-documented with interpretable chemical
names for specific demands in different chemical domains.
We choose the Dwar-iBonD data set as a representative of the
ionization pattern to determine the standard coverage of the

template. Manual screening also partially complements the
structure filter to build a lightweight but effective training set
for the machine learning model.

Among the models being compared against, the three
technical routes summarized in the Introduction aiming to fast,
general, data-driven pKa prediction methods for small organic
molecules in the aqueous solution are all covered. Epik
Classical,17 ChemAxon,39 and ACD/Labs40 represent popular
choices of commercial software for molecular property
prediction, which share the template matching and empirical
correction methods. From OPERA18 to SPOC,20 molecular
descriptors are refined and customized for pKa prediction with
traditional machine learning. The evolution of deep learning
methods since MolGpKa,21 reflects the deployment of more
powerful graph neural networks that capture the long-range
effects,23,24 the benefits from large pretraining data set22 and
quantum chemistry data set,25 and the progressive consid-
eration of complex acid−base equilibria.23−25,47 Our Uni-pKa
belongs to the deep learning class as well. It adopts the
transformer architecture on 3D molecular structures instead of
GNNs on molecular graphs, which leverages the advantage of
long-range modeling of attentive modules and embraces
cutting-edge molecular representation learning techniques. It
follows the successful practice of multifidelity learning with a
pretraining-finetuning strategy but completes the data with our
microstate enumerator and augments the tasks with self-
supervised learning inspired by the original Uni-Mol work.34 It
gets out of the box of the molecule-site representation of
protonation reactions and complements the partial concerns of
acid−base equilibria in a unified, complete framework, namely,
the free energy modeling of the protonation ensemble. It is
those advances that enable Uni-pKa to explore the boundary of
data-driven pKa prediction under the existing data, toward the
pKa measurement’s uncertainty limit of 0.5 pKa unit.

45

The use of an atomic charge is one of the adaptive
modifications of the general-purpose Uni-Mol model in the
pKa prediction task. The atomic charge describes the local
electrostatic environment around the ionization sites and
reflects the local electronic structure polarization. Thus, it is a
common choice for pKa-related tasks in the feature sets of
traditional statistical learning methods,18−20,48−52 a part of
molecular embeddings in deep learning methods,22−25 and the
semiempirical correction of quantum chemistry in solvent
models.46,53,54 In addition to the formal charge, the perform-
ance of Gasteiger’s empirical charge scheme55 and GFN2-xTB
partial charge56 is also explored during the whole training and
exploration process. We choose the formal charge as default
because it is directly read from the SMILES input without any
further time-consuming calculation and achieves the best
accuracy on the most diverse Novartis, SAMPL6, and SAMPL8
data sets (Table S5) among the three charge schemes.
However, other schemes are still able to outperform other
methods with the Uni-pKa framework (Table S1). Continuous
charge schemes inform more than the discrete and sparse
formal charge when the chemical environment varies subtly. In
SAMPL7, a more homogeneous data set filled with
sulfonamides, the GFN2-xTB partial charge on the dominant
ionization site has a strong correlation with the pKa value
(Figure S6), which explains why Uni-pKa behaves best with the
GFN2-xTB partial charge on this data set (Table S5).
Therefore, we believe that refined descriptors, not limited to
atomic charge schemes, should help Uni-pKa gain more
precision in specific domains of the chemical space. Uni-pKa
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as a general framework always accommodates different
descriptors in its neural network at the molecular and atomic
embedding level and exploits their potential by the
comprehensive free energy modeling of the protonation
ensemble.
However, accuracy challenges persist for certain complexes

with subtle stereoelectronic effects like the proton sponge57,58

and Meldrum’s acid,59−62 not well represented in training data.
Tautomerism has not been explicitly addressed in our
framework. Although Figure 1C gives a positive signal of our
model’s robustness on tautomerism, limited accuracy is
obtained in additional tests on specialized tautomer data sets,
like Tautobase.63 An MAE of 3.435 for log K of the transition
between the tautomer pairs in the aqueous solution was near
room temperature. Observation in Figure S4 shows the model
tends to attach similar free energies to different tautomers and
fails to distinguish the tautomers with drastic energy
differences. The main difficulty in modeling various tautomer-
ism exhaustively is due to the scarcity of experimental data.
Thus, future work will focus on integrating more first-
principles training data and optimizing the enumeration
process to address these challenges.

4. CONCLUSIONS
In this work, we present Uni-pKa, a novel framework that
integrates thermodynamic principles with advanced machine
learning techniques to predict the acid dissociation constants
(pKa) of organic molecules. The significance of this work lies
in its introduction of physical knowledge into machine learning
modeling, which establishes a reliable framework for the pKa
prediction.
A highlight of Uni-pKa is its innovative approach to unifying

micro- and macro-pKa values using thermodynamic free energy
relationships. This method ensures thermodynamic consis-
tency across different protonation states, addressing a common
limitation in traditional models. By modeling the free energies
of all microstates through well-defined thermodynamic
equations, Uni-pKa provides a comprehensive and coherent
depiction of acid−base equilibria. This approach not only
maintains consistency but also extends to the distribution
coefficient prediction across various pH values.
Uni-pKa leverages Uni-Mol as the molecular encoder, a

transformer-based architecture designed for molecular repre-
sentation. Its invariant spatial positional encoding allows the
model to distinguish the 3D spatial positions of atoms, while
the pair representation captures the spatial relationships
between atom pairs. Uni-pKa follows a pretraining-finetuning
paradigm. During pretraining, the model learns high-level
chemistry from large-scale, low-fidelity, computationally
predicted pKa data. This process includes one weakly
supervised task of predicting pKa values from ChEMBL data
and three self-supervised tasks: masked atom prediction,
masked charge prediction, and 3D position recovery.
Subsequently, Uni-pKa is fine-tuned on high-fidelity exper-
imental pKa data for enhanced accuracy.
Our extensive evaluation demonstrates the state-of-the-art

accuracy of Uni-pKa. On the Novartis, SAMPL6, and SAMPL7
benchmarks, Uni-pKa achieves mean absolute errors (MAEs)
of 0.810, 0.493, and 0.554, respectively. Moreover, in the blind
SAMPL8 challenge, Uni-pKa significantly outperforms other
competitors with an MAE of 0.619. These results qualify Uni-
pKa as a competitive tool in pKa prediction. Case studies
further consolidate the model’s accuracy and robustness. For

instance, in predicting the pKa of tertiary amines, Uni-pKa
exhibits an MAE of 0.52, outperforming traditional quantum
chemistry methods such as Jaguar, which has an MAE of 0.69.
Additionally, Uni-pKa demonstrates its capability in handling
complex cases involving multiple ionizable groups and
tautomerism, as evidenced by its performance on the
SAMPL6 micro-pKa data set.

Integrating data-driven techniques such as our framework
with first-principles training is an exciting path forward. With
free energy as a pivot, our protonation ensemble approach
establishes a strong foundation to accommodate all kinds of
interconnected equilibria for future synergistic hybrid model-
ing.

5. METHOD

5.1. Free Energy Description of the Protonation Ensemble
The simplest acidic ionization reaction in water is

F + = [ ][ ]
[ ]

+ +
+

+KHA (aq) H (aq) A(aq),
H A

HAa

where [ · ] is a chemical species’s activity (or dimensionless
concentration, approximately). The equilibrium produces
various chemical structures of the same initial molecule,
namely, its protonation states in the solution. pKa is the
negative logarithm (base 10) of the acid dissociation
equilibrium constant Ka.

The micro-pKa-macro-pKa hierarchy is further clarified from
a free-energy perspective. If we denote the k-th microstate in
the microstate of a neutral structural core A with m protons as
k-HmAm+. Micro-pKa values arise from the standard free energy
change ΔfGm

⊖ between a defined microstate pair k-HmAm+ and
i-Hm+1A(m+1)+. Let R be the molar gas constant, and β =
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Macro-pKa values originate from the collective contribution
of all microstates in adjacent macrostates, derived as

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

[ ] [ ]

=

+ +

+
+ +

+

+
+ +( ( ))

K
i

i

G i

G i

H H A

H A

exp( ( H A ))

exp H A

m
i m

m

i m
m

i m m
m

i m m
m

a,
1

( 1)

f

f 1
( 1)

(2)

The macro-pKa-free-energy formula 2 degrades to the micro-
pKa-free-energy formula 1 when the microstate index i, k in
both macrostates HmAm+, Hm+1A(m+1)+ is unique. As a result,
micro-pKa is a special case of macro-pKa, and both micro- and
macro-pKa are described by ΔfGm

⊖.
We can define a pH-dependent free energy for the general

case of a multiprotonated acid,

= ++ +G G
m

(H A ; pH) (H A (aq))
ln 10

pHm m
m

m m
m

f f

(3)

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00271
JACS Au 2024, 4, 3451−3465

3459

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00271/suppl_file/au4c00271_si_001.pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00271?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


where ΔfGm
⊖(·) is the standard molar Gibbs free energy change

of formation at the temperature T we study. The motivation of
this definition is shown in Supporting Information: Theoretical
Details. pH-dependent free energies give the fraction of each
microstate across the ensemble under particular pH con-
ditions:
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Unifying the micro-pKa-free-energy formula 1, macro-pKa-
free-energy formula 2, and distribution-fraction-free-energy
formula 4, we can see that free energies of all the microstates in
the protonation ensemble contain the complete information on
the acid/base equilibrium.
5.2. Microstate Enumerator
We implement a microstate enumerator for the systematic
reconstruction of the protonation ensemble from a single
structure. It processes the structure of a part of the macrostate
HmAm+ to generate all microstates in HmAm+ and a neighboring
macrostate Hm+1A(m+1)+ or Hm−1A(m−1)+.
The enumerator uses a template containing SMARTS

patterns of ionizable sites. It is modified, augmented, and
annotated based on the template in MolGpKa21 with chemical
consideration. It contains 53 common acidic and basic groups
with separate entries for deprotonation and protonation
(examples in Table S8) and covers all the ionization patterns
demonstrated by the Dwar-iBonD data set introduced in
Reconstructed data sets.
When the enumeration starts, A and B Micropools are first

built. They are dynamic sets containing microstates of higher
and lower charged macrostates (Acids and Bases), respectively,
in two adjacent protonation levels (Figure S2). The algorithm
then iteratively grows the pools:

1. A to B (A2B) round: deprotonation. For each structure
in A Micropool, substructure matching finds all possible
deprotonation sites in the template, and corresponding
deprotonated structures go into B Micropool.

2. B to A (B2A) round: protonation. For each structure
in B Micropool, substructure matching finds all possible
protonation sites in the template, and corresponding
protonated structures go into A Micropool.

Therefore, beginning with some HmAm+, if the macrostate
Hm−1A(m−1)+ is needed, the initial structures will be thrown
into the A Micropool with the B Micropool empty, and an A2B
round will go first (Acid mode). Hm+1A(m+1)+ is also available
when starting from a B2A round (Base mode).
The two rounds alternate until the two pools are not

growing anymore or the maximum number of iterations has
been reached, and then A and B Micropools are output as the
final enumeration results. The maximum iteration limit is
customized to reduce memory consumption and increase
efficiency when the huge enumeration results of very complex
molecules are poured into the machine learning model. In
addition, another template filters out chemically unreasonable
structures during enumeration (Structure Filter in Figure S2),
like the coexistence of acidic ionization of the amino group and
basic ionization of the amino group. These structures can be

pruned because of their small contribution to the protonation
ensemble.

The whole protonation ensemble is obtained by successively
running the enumeration process above in A and B modes. In
the case of Figure S1, the whole macrostate of H2A and can be
enumerated from 1-H2A in the A mode, H3A+ comes from
H2A in the B mode, and A2− steps further from HA− in the A
mode.

The width (the number of microstates in macrostates) and
depth (the number of macrostates) of the protonation
ensemble enumeration are both determined by the coverage
of the template. For example, if the template only contains the
basic ionization of amino groups, acidic ionization of phenolic
hydroxyl groups, and acidic ionization of carboxyl groups, the
enumeration between H2A and HA− in Figure S1 will stop at
the structures illustrated in the figure. However, if the acidic
ionization of amide is recorded in the template, more
structures with the proton on amide groups transferring to
other sites will occur in H2A and HA−, increasing the width of
the enumeration results. Furthermore, when the amide group
in 1-A2− is deprotonated, the macrostates extend to H−1A3−,
increasing the depth of the enumeration results.
5.3. Reconstructed Data Sets

In existing public pKa data sets, like DataWarrior pKaIn-
Water37 and iBonD,38 each entry contains only one microstate
structure with a designated ionization site and mode,
empirically assumed to correspond to the reported macro-
pKa value. This risks a biased interpretation of experimental
measurements reflecting coupled equilibria. Benefiting from
the advancement of the protonation ensemble framework, we
reconstructed several data sets by leveraging our microstate
enumerator to recover the complete protonation ensembles
underlying reported macro-pKa values.

While the single provided structure is incomplete, properties
such as the core scaffold, initial charge, and reaction type
contain sufficient information for the enumerator to regenerate
the full macrostates involved in the macro-pKa equilibrium
through iterative templated protonation and deprotonation.
This process reformats the data sets into a unified SMILES-like
structure that stores the enumerated microstates mapped to
each published macro-pKa measurement.

Our release covers 7 experimental and predicted data sets
relevant to drug-like chemical space from ChEMBL,24,36

DataWarrior,37 iBonD,38 Novartis,24,64 SAMPL6,65

SAMPL7,66 and SAMPL867 (Table S3), including:

1. Small molecule compilations like SAMPL - with
exhaustive microstate enumeration

2. Large predicted set from ChEMBL - with one-iteration
enumeration

This work integrates robust chemical knowledge about
protonation mechanisms with consistent experimental meas-
urements into high-quality data sets tailored for developing
accurate and physically consistent machine learning models.
Full details of the source data and reconstruction process are
provided in Supporting Information: Data Sets.
5.4. Backbone and Model Input

We chose Uni-Mol as the encoder for individual molecules.
Uni-Mol is a standard transformer35 based on Pre-Layer
Normalization68 with several modifications.

Uni-Mol incorporates invariant spatial positional encoding.
Vanilla Transformer cannot distinguish the positions of inputs
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without positional encoding because the model architecture is
permutation invariant. Uni-Mol uses Euclidean distances of all-
atom pairs, plus with the edge type aware Gaussian kernels,69

as the spatial positional encoding. This encoding is invariant
with global rotation and translation. Formally, the D channel
positional encoding of atom pair ij is denoted as

= { | [ ]}

= +

p a b

a b

d t k D

d r

a d b

( ( , ; , ), , ) 1,

, ( , ; , )

ij ij ij
k k

r r (5)

where ·( , , )k k is a Gaussian density function with
parameters μk and σk, dij is the Euclidean distance of atom
pair ij, and tij is the edge type of atom pair ij. The edge here is
not the chemical bond, and the edge type is determined by the
atom types of pair ij. · · a b( , ; , ) is the affine transformation
with parameters a and b, it affines dij corresponding to its edge
type.
Transformer typically maintains the token(atom) level

representation. In Uni-Mol, spatial positions are encoded at
the pair level; therefore, pair-level representations are
maintained as well. Spatial information is propagated through
atom-to-pair and pair-to-atom communications to better
understand spatial representations. Specifically, the pair
representation is initialized by invariant spatial positional
encoding and updated using atom-to-pair communication
through the multihead Query-Key resulting in self-attention.
Formally, the update of ij pair representation is denoted as
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where H is the number of attention heads, d is the dimension
of hidden representations, Qi

l, h is the Query of the i-th atom in
the l-th layer h-th head, Kj

l, h is the Key of the j-th atom in the l-
th layer h-th head, ×M D H is the projection matrix to make
the representation the same shape as multihead Query-Key
product results. Besides, pair-to-atom communication, using
the pair representation as the bias term in self-attention, helps
leverage spatial information in the atom representation.
Formally, the self-attention with pair-to-atom communication
is denoted as
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where Vj
l, h is the Value of the j-th atom in the l-th layer h-th

head.
A simple SE(3)-equivariance head is also added to Uni-Mol

to enable the model to directly output coordinates. This plays
a role in the 3D position recovery task in pretraining. The
design of the SE(3)-equivariance head is denoted as
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where n is the number of total atoms, xi
3 is the input

coordinate of the i-th atom, and xi
3 is the output

coordinate of the i-th atom, ×U H H and ×W H 1 are the
projection matrices to convert pair representation to a scalar.

For model input, unlike standard Uni-Mol, Uni-pKa takes
three inputs. Along with atom types and coordinates, we also
consider the influence of atom charges, as they are closely
related to molecular protonation. Atom representations are
initialized through an embedding layer based on atom types.
Atom charges are categorized into discrete and continuous
charges. We consider states with formal charge values of 0, 1,
and −1 for discrete charges, representing neutral, positively
charged, and negatively charged atoms. Similar to atom
representations, discrete charge representations are initialized
through an embedding layer based on charge types. For
continuous charges, we employ a multilayer perceptron (MLP)
to obtain their initial representations.
5.5. Pretraining
Inspired by the success of large language models in natural
language processing70−73 and computer vision,74 the machine
learning model in the Uni-pKa framework follows the
pretraining-finetuning paradigm. The objective of pretraining
is to learn the underlying structures and features from the
massive amount of data, enabling the model to capture high-
level representations. Finetuning allows the model to optimize
its performance on the specific prediction task through
supervised learning.

In the scenario of pKa prediction, previous work has proved
the reasonability and effectivity of this paradigm, using
predicted pKa values in the ChEMBL data set as “low fidelity
data” for a weakly supervised pretraining of pKa models.21,22,24

Our strategy further combines one weakly supervised task and
three self-supervised pretraining tasks to make the most use of
the chemical information in these 3 million microstate
structures.

5.5.1. Weakly Supervised Task: pKa-Prediction. First,
supervised pretraining is performed to predict the labels
provided with the ChEMBL data, helping the model to learn
mapping relationships from the large-scale labeled data. As
mentioned previously, to ensure the consistency of molecular
protonation ensembles, Uni-Mol in Uni-pKa takes individual
microstate molecules as input, and the output is interpreted as
predicted free energy. Specifically, similar to the language
model BERT,70 we introduce a special atom called [CLS]. Its
coordinates represent the center of the molecule. We used this
atom to represent the entire molecule.

Then, we introduce a FreeEnergy2pKa (FE2pKa) module.
With a linear head, Uni-Mol utilizes the representation of
[CLS] to obtain the raw vector output. Enabled by the
proton ensemble theory, this output will be interpreted as the
predicted βΔfGm

⊖s for given microstates, guaranteed by its
relationship to the pKa labels. In a data entry, if the free energy
output of Uni-Mol is g1A, g2A, ··· for the microstates in A
macrostate and g1B, g2B, ··· for the microstates in B macrostate,
then the final loss function of a single data point is a
combination of mean square error loss and the macro-pKa-free-
energy formula 2:
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This loss function links the predicted free energy of Uni-Mol
with the experimental macro-pKa label to enforce consistency
with the protonation ensemble view:
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1. For each data point, Uni-Mol in Uni-pKa outputs free
energy vectors gA and gB for the microstates in
macrostates A and B.

2. These are used to compute the total Boltzmann-
weighted partition functions of A and B microstates
based on eq 2.

3. The loss function (eq 9) compares this logarithmic
partition-function ratio to the reported macro-pKa
through a mean squared error term.

4. By back-propagating this ensemble-aware loss, Uni-Mol
in Uni-pKa learns consistent free energy predictions.

We also note that standard label preprocessing such as
scaling would break the physical meaning of the outputs.
However, translation by a value of t maintains interpretation as
pH-dependent free energies, βΔfGm(· ; pH = t), as proved in
Supporting Information: Theoretical Details.

5.5.2. Self-Supervised Tasks. Additionally, we introduced
three self-supervised learning tasks in the pretraining phase.
Apart from the existing masked atom prediction and 3D
position recovery tasks in Uni-Mol, we add a new masked
charge prediction task, as atom charges are closely related to
pKa prediction.
Specifically, similar to the approach used in masked language

models, we randomly select 15% of the atoms in the molecule
to mask and use [MASK] token prediction by replacing
masked atom types with a [MASK] token and predicting their
original ones during pretraining with a linear head. We utilize
the cross-entropy loss function for this task, and this loss
constitutes a part of the original Uni-Mol loss. Here, we denote
this loss as atom:

= |P y xlog ( )
i

i iatom
(10)

where denotes the set of masked atoms, yi is the true type
of atom i, and xi is the input containing the [MASK] token.
Then, in Uni-pKa, we introduce a unique task known as

masked charge prediction. Molecular electronegativity is
closely related to acid−base properties, and in pKa prediction,
the transfer of protons in a molecule is often associated with
the distribution of atom charges. By prediction of atom
charges, the model can learn about the electrostatic
interactions between different atoms, thereby enhancing its
understanding of proton transfer. Similar to the masked atom
prediction, we also perform masking for discrete charges of
these masked atoms. The masked charges are replaced with a
[MASK] token and predict their original ones during
pretraining. We also use the cross-entropy loss function in
this task. The loss for this task is referred to as charge:

= |P c xlog ( )
i

i icharge
(11)

where denotes the set of masked atoms, ci is the true charge
of atom I, and xi is the input containing the [MASK] token.
We consider that masked charge prediction contributes to a
deeper understanding of a molecule’s chemical properties,
leading to more accurate predictions of acid−base properties
and pKa values. For continuous charges, since they cannot be
directly masked like discrete charges, we simply add their
representations to the atom representations.
Furthermore, we aim for the model to learn 3D structural

information within molecules. Therefore, we retained the 3D
position recovery task from Uni-Mol. Since molecular

coordinates are continuous values, we introduce noise to the
masked atoms’ coordinates instead of masking and train the
model to recover the ground truth coordinates from corrupted
ones. This allows the model to capture structural information
during pretraining. We employ two additional heads to recover
the true coordinates from the corrupted ones. The first one is
the pair-distance prediction head, where the model is tasked
with recovering the original Euclidean distance matrix based
on the pairwise distances computed from the corrupted
coordinates. The second head is the SE(3)-equivariant
coordinate prediction head, where the model aims to recover
the true coordinates while preserving the equivariance to
rotation and translation of the molecule. We use the smooth 1
loss for both of these tasks. They are denoted as coord and
dist.

= r rsmooth ( )
i

l i icoord
(12)

= d dsmooth ( )
i j

l i j i jdist , ,
(13)

where denotes the set of masked atoms, rî and ri are the
predicted and true coordinates of atom i, respectively, and d̂i, j
and di, j are the predicted and true pairwise distances between
masked atom i and all other atoms j, respectively. These two
losses also constitute part of the original Uni-Mol loss. The
smooth l loss is used to ensure stability during training, and
its formula is as follows:
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(14)

5.5.3. Training Objective. Due to the combination of
supervised and self-supervised pretraining, the training
complexity increases, and we adjust the proportion of self-
supervised task loss accordingly. The final composition of the
loss function and the corresponding formulas are as follows:

= + + + +2 2Kall p charge atom coord dista (15)

5.6. Finetuning
To ensure consistency with the pretraining phase, we maintain
the same data preparation workflow during the finetuning
process. During finetuning, we also follow the setup of the pKa
prediction task in the pretraining phase. The pretrained Uni-
Mol model in Uni-pKa is then fine-tuned on the Dwar-iBonD
data set using the loss function (9).

For aiding model convergence, the pKa target is translated by
the average of the data set in both the pretraining and
finetuning stages. In addition, regarding molecules, leveraging
the ability to swiftly generate multiple random conformations
allows us to incorporate data augmentation techniques during
finetuning. This approach enhances both performance and
robustness.

In summary, pretraining and finetuning synergistically
integrate the benefits of representation learning at scale from
abundant inaccurate pKas, with focused supervised tuning on
limited accurate measurements.

■ ASSOCIATED CONTENT
Data Availability Statement
Relevant data sets can be obtained from https://www.
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github.com/dptech-corp/Uni-pKa. Users can utilize Uni-pKa
for predicting and ranking the protonation states of molecules
under various pH conditions via https://bohrium.dp.tech/
apps/uni-pka.
*sı Supporting Information
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https://pubs.acs.org/doi/10.1021/jacsau.4c00271.
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