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Local adaptation, adaptation to specialized niches and environmental clines have been
extensively reported for forest trees. Investigation of the adaptive genetic variation is crucial
for forest resource management and breeding, especially in the context of global climate
change. Here, we utilized a Pinus yunnanensis common garden experiments established at
high and low elevation sites to assess the differences in growth and survival among
populations and between the two common garden sites. The studied traits showed
significant variation between the two test sites and among populations, suggesting
adaptive divergence. To detect genetic variation related to environment, we captured
103,608 high quality SNPs based on RNA sequencing, and used them to assess the
genetic diversity and population structure. We identified 321 outlier SNPs from 131 genes
showing significant divergence in allelic frequency between survival populations of two sites.
Functional categories associated with adaptation to high elevation were found to be related
to flavonoid biosynthesis, response to UV, DNA repair, response to reactive oxygen species,
and membrane lipid metabolic process. Further investigation of the outlier genes showed
overrepresentation of the flavonoid biosynthesis pathway, suggesting that this pathway may
play a key role in P. yunnanensis adaptation to high elevation environments. The outlier
genes identified, and their variants, provide a basic reference for advanced investigations.

Keywords: elevation adaptation, RNA-seq, FST outlier, flavonoid biosynthesis, nucleotide diversity
INTRODUCTION

In harsh environment such as in high elevations, natural selection may result in changes in allele
frequency to maximize fitness (Hoffmann and Sgrò, 2011). Understanding the influence of natural
selection on genomic variation in natural populations, and identifying the adaptive loci have
received increased attention in the field of adaptive evolution and evolutionary ecology (Tiffin and
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Ross-Ibarra, 2014; Flood and Hancock, 2017). Organisms are
adapted to diverse habitats. Highlands are characterized by
intense ultraviolet radiation, low temperatures, hypoxia, and
reduced pathogen incidence, providing a unique environment
to study adaptation to high elevation. Survival at high elevation
environments is challenging and native plants and animals have
developed effective strategies through specific morphological and
physiological adaptations (Monge and Leon-Velarde, 1991;
Alonso-Amelot, 2008; Storz et al., 2010; Gong et al., 2018;
Halbritter et al., 2018). For example, maize plants growing at
high elevation often accumulate flavonoids in their leaves and silks as a
mechanism for coping with high levels of UV-B exposure (Zhang et al.,
2003; Casati and Walbot, 2010). The recent development of high-
throughput sequencing technologies has greatly accelerated the
identification of key genes and genomics research, significantly
promoting the research of adaptive evolution and ecology on non-
model organisms (Stapley et al., 2010; Ekblom and Galindo, 2011),
including conifers (Yeaman et al., 2016; Lind et al., 2018;DeLaTorre and
Neale, 2019; De La Torre et al., 2019; Lu et al., 2019; Tyrmi et al., 2019).

Pinus, with >100 species, is the largest conifer genus with
widespread natural distribution ranging from arctic and
subarctic to subtropical and tropical regions in the Northern
Hemisphere (Richardson, 1999; Farjon and Farjon, 2010). Pines
display diverse mountainous adaptability, with parapatric closely
related species continuously distributed across varying elevation
gradients (Kuan, 1981; Richardson, 1999; Farjon and Farjon,
2010). Although pines span a large elevational range, the genetics
of adaptation to high elevation is still poorly understood. Pinus
yunnanensis is the dominant pine in southwest China with a
continuous distribution in the Yunnan–Guizhou region at
elevations ranging from 700 to 3,000 m above sea level
(m.a.s.l.) (Wu, 1956; Mao and Wang, 2011). P. yunnanensis
morphological variation is significant across its range, and
regions divided by mountain chains featuring different climatic
conditions (Yu et al., 1998; Yu et al., 2000; Mao et al., 2009).
Recent analysis based on maternally inherited mitochondrial
(mt) and paternally inherited chloroplast (cp) DNA markers
found continuous genetic differentiation over the majority of its
range, and discrete isolated local clusters in the northwest and
east peripheries. The discrete differentiation between the two
genetic groups is coincident with their niche divergence and
geographical isolation (Wang et al., 2013).

The genus Pinus and other conifers are known for their
exceedingly large and complex genomes, varying from 16 to 35
Gbp (De La Torre et al., 2014; Leitch et al., 2019). Despite the
decreasing costs of sequencing, whole-genome resequencing of
large numbers of pine individuals is still not feasible. RNA
sequencing (RNA-seq), in which the expressed part of genome
is sequenced, represents a powerful alternative to whole-genome
sequencing, allowing the genotyping of thousands of loci for
non-model species with large genomes (Schlötterer et al., 2014;
Hoban et al., 2016; Jones and Good, 2016; Oney-Birol et al.,
2018). The draft genome of Pinus taeda (Wegrzyn et al., 2014;
Zimin et al., 2014) may be used as a reference genome, and assist
a reference-based RNA-seq approach to genotype expressed gene
regions for population genomic studies.
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In this study, we aim to discover the genetic variation related
to adaptation to high elevation environments in P. yunnanensis,
by comparing the survival of populations from common garden
experiments in high and low elevations. Hundreds of thousands
of single nucleotide polymorphisms (SNPs) from expressed
regions including 8,595 genes were captured using RNA-Seq.
Genetic diversity and population structure were resolved. SNPs,
genes and pathways related to adaptation to high elevation
environments were identified based on FST outlier analyses.
MATERIALS AND METHODS

Sampling and Transcriptome Sequencing
In the spring of 2011, two P. yunnanensis common gardens were
established at a high altitude site in Linzhi (LZ, 2,950 m.a.s.l.),
Tibet and a low elevation site in Kunming (KM, 1,890 m.a.s.l.)
(Figure 1), Yunnan, China. The LZ site (29°40′N, 94°20′E) is the
native habitat for Pinus densata, a close relative of P.
yunnanensis, and represents a high elevation environment
characterized by cold and strong UV, with mean coldest-
month temperature of –3.1°C, mean warmest temperature of
14.5°C, mean annual temperature of 6.5°C, average annual
precipitation of 785 mm, and 185 frost-free days. While, the
KM site (25°04′N, 102°46′E) is located in the central distribution
of P. yunnanensis and characterized by mild, moist, and low
seasonality climate, with mean coldest-month temperature of
8.1°C, mean warmest temperature of 20.2°C, mean annual
temperature of 15°C, average annual precipitation of 1,035 mm
and 334 frost-free days. Bulked seeds from 7 natural populations
(LJ, YL, BS, GS, YX, ZD, KM) were collected to represent P.
yunnanensis’ wide range of natural genetic variation (Table 1).
The two common gardens were established with random block
designs, with 50 or 60 seeds of each population in each block and
four or five blocks for each site (LZ and KM). Survival rate
(measured at 2017) and seedling height (measured at 2016) of
each population were measured in the 6-7th year. In the high
elevation site (LZ), all surviving trees (only five individuals)
originated from the KM population were sampled (KM(LZ)).
Additionally, we randomly selected 49 individuals representing 5
BS(KM), 4 GS(KM), 10 LJ(KM), 10 YL(KM), 5 YX(KM), 5 ZD(KM), and
10 KM(KM) as representatives of the low elevation site (KM)
(Tables 1 and S1).

Fresh needles from current year branches of all 54 sampled
individual trees were collected for RNA-seq in June 2017, and
immediately placed in liquid nitrogen and stored at –80°C until
further use. Total RNAs were extracted using RNAprep pure
Plant Kit (Tiangen, Beijing, China) according to the
manufacturer’s protocols. NanoDrop 2000 Spectrophotometers
and Agilent 2100 Bioanalyzer were used to evaluate RNA
concentration and integrity. NEBNext Ultra RNA Library Prep
Kit (New England BioLabs) was used for cDNA library
construction. Briefly, the mRNA purification was performed
with magnetic oligo (dT) beads using a Dynabeads mRNA
Purification Kit (Invitrogen). The mRNA fragmentation was
implemented using RNA fragmentation Kit (Ambion, Austin,
February 2020 | Volume 10 | Article 1405
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TX, USA). Random hexamer primers and reverse transcriptase
(Invitrogen) were used to synthesize the first-strand cDNA.
Subsequently, DNA polymerase I (New England BioLabs) and
RNaseH (Invitrogen) were used to synthesize the second-strand
cDNA. Adapter was ligated to the double strand cDNA
fragments with a single ‘A’ addition after end repair.
Approximately 450 bp cDNA fragments were selected using
Ampure XP beads (Beckman). The selected cDNA fragments
were PCR amplified to complete library preparation. The
concentration and fragment size of the cDNA library were
assayed using Real-Time PCR system and Agilent 2100
Bioanalyzer, respectively. The library was sequenced on an
Illumina HiSeq X Ten sequencing platform to generate 150 bp
paired end raw reads.
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Sequence Quality Control and Mapping
Raw reads were filtered and trimmed using Trimmomatic (Bolger
et al., 2014) to remove adapter sequences and low-quality bases
(Phred quality <20) from either the start or the end of the reads.
After trimming, reads shorter than 36 bases were completely
discarded. FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used to assess the quality of the raw and
clean sequence data. Clean reads from each sample were mapped
to the P. taeda reference genome v1.01 (Wegrzyn et al., 2014;
Zimin et al., 2014) using STAR (Dobin et al., 2013). Single
nucleotide polymorphism (SNP) calling was first performed
using SAMtools (Li et al., 2009) and BCFtools (Li et al., 2009)
with default settings. Based on the distribution of SNPs gained
in the first calling, a reduced reference genome consisting of
all 57,783 scaffolds with at least 1 SNP with missing rate <90%
was created to decrease the computational load in the following
steps. Reduced sequence alignment (in BAM format) files
where only conveying reads mapped to the reduced reference
genome were generated for SNP calling using the Genome
Analysis Tool Kit (GATK v3.7-0) (DePristo et al., 2011). The
command, “AddOrReplaceReadGroups” from GATK was used
for adding of read group information and further sorting. PCR
duplicates were removed using “MarkDuplicates” from Picard
(http://broadinstitute.github.io/picard/). A GATK command,
“SplitNCigarReads”, was used to split reads spanning splice
junctions, and reassign mapping qualities to all good
alignments. To minimize the mis-alignment of bases around
insertions and/or deletions (indels), local realignment around
TABLE 1 | Geographic origin and sample size of the sampled Pinus yunnanensis
populations for RNA-seq.

Population Population
code

Longitude
(E)

Latitude
(N)

Altitude
(m)

Sample
size

Lijiang (LJ) LJ(KM) 100°13′ 26°53′ 2,493 10
Yiliang (YL) YL(KM) 103°10′ 24°43′ 1,846 10
Baoshan (BS) BS(KM) 99°08′ 24°28′ 1,897 5
Gongshan (GS) GS(KM) 98°49′ 25°58′ 1,616 4
Yuxi (YX) YX(KM) 102°09′ 24°15′ 1,849 5
Zhongdian (ZD) ZD(KM) 99°32′ 28°09′ 3,048 5
Kunming (KM) KM(KM) 102°37′ 24°58′ 2,242 10

KM(LZ) 5
FIGURE 1 | Geographic origins of the sampled populations and locations of the two common garden experiments. Green coloring illustrates the potential
distribution of P. yunnanensis as suggested by Mao and Wang (2011).
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indels was performed using RealignerTargetCreator and
IndelRealigner from GATK. The final BAM files were produced
from the local realignment for further analysis.

Variant Calling and Filtering
SNP calling was performed with “HaplotypeCaller” from GATK to
produce a genomic variant call format (gVCF) file for each sample,
and “GenotypeGVCFs” from GATK was then used to perform the
multi-sample genotyping, which produced a raw set of joint SNPs
and indels. Several filtering steps were used to minimize the number
of false positive SNPs and to retain high-quality SNPs: (1) we kept
only biallelic SNPs with at least 5 bp away from any indels; (2)
GATK hard filtering was applied to remove SNPs with a criteria of
RMSMappingQuality (MQ) < 40.0, QualByDepth (QD) < 2.0,
FisherStrand (FS) > 30.0, StrandOddsRatio (SOR) > 4.0,
MappingQualityRankSumTest (MQRankSum) < –12.5 and
ReadPosRankSumTest (ReadPosRankSum) < –8.0; (3) SNPs with
genotype quality (GQ) < 20 and depth (DP) < 10 in a single
individual were treated as missing data, and we removed those SNPs
with missing rate > 20%; and (4) SNPs with minor allele frequency
(MAF) < 5% were removed. The remaining 103,608 SNPs were
used in downstream analysis.

Functional Annotation of Outlier SNPs
We built a local database based on released gene annotation for
P. taeda genome v1.01 using SnpEff (version 4.3T) (Cingolani
et al., 2012). Subsequently, functional annotation for each SNP
was predicted with putative functional effects defined in the
SnpEff. All SNPs were partitioned into 5'UTR, coding sequence
(CDS), intron, 3'UTR, splice site, and intergenic mutations.
Further we categorized SNPs within CDS as synonymous and
nonsynonymous categories. Plant transcription factors (TFs)
database, PlantTFDB 4.0 (http://planttfdb.cbi.pku.edu.cn/),
were used to retrieve TFs annotations.

Population Structure and Genetic Diversity
Principal component analysis (PCA) was performed using the R
package SNPRelate (version 1.16.0) (Zheng et al., 2012).
ADMIXTURE (version 1.3.0) (Alexander et al., 2009) was run to
infer the population structure, with the number of genetic clusters (K)
ranging from 2 to 5, and 10 replicates were run for each K. The most
likely K value was identified by minimizing the cross-validation error
evaluated in the 10-fold cross-validation procedure. To eliminate the
effect of linkage disequilibrium (LD), we thinned the SNP set to select
one SNP from each interval of 5 kb and run ADMIXTURE under
both all SNP (103,608) and thinned SNP (18,329) sets.

We calculated average pairwise estimates of the number of
nonsynonymous substitutions per nonsynonymous site (dN),
synonymous substitutions per synonymous site (dS), and their
ratio (dN/dS) for individual genes. Nucleotide diversity (p) was
calculated for each gene using VCFtools (Danecek et al., 2011).

Identification of Outlier SNPs
Based on the population structure obtained by PCA and
ADMIXTURE results, the population BS was excluded in
subsequent analyses given its different genetic composition. To
identify outlier SNPs associated with high vs. low elevation
Frontiers in Genetics | www.frontiersin.org 4
adaptation, we conducted population comparison (KM(LZ) vs.
KM(KM) and YL(KM)) between the high-elevation selected
population (KM(LZ)) in high elevation site (LZ) and the survival
populations from Kunming (KM) and Yiliang (YL) in the low
elevation site in KM (KM(KM) and YL(KM)). Here, populations
from KM and YL were in an identical genetic cluster, hereafter
named KM-YL(KM). In addition, a second comparison, KM(LZ) vs.
ALL(KM) which included 6 survival populations in Kunming site
excluding population BS, was performed with the aim of
providing more information for reference, regardless of the
impact of population structure which may potentially cause
false positives. Population differentiation (FST) values of each
SNP were calculated using VCFtools (Danecek et al., 2011).

Outlier SNPs were determined by combining FST scan with a
randomization procedure that involving repeated drawing of
random samples (100 times). First, SNPs with the top 1% FST
values were selected as putative outlier SNPs for each comparison.
Next, we removed the putative outlier SNPs that are likely to be false
positives found by chance when defining population comparisons
with randomization procedure. For each population comparison,
100 permutations were performed to produce 100 randomized
population comparisons by randomly re-sampling the same
number of individuals from the original sample set. Then,
putative outlier SNPs were also detected respectively for each
randomized population comparison. Finally, for each putative
outlier SNP from the real population comparison, we retained
only those with a recurrence rate less than 0.01 to generate the
final set of outlier SNPs.

Functional Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) annotation were implemented using an online
annotation server, KOBAS 3.0 (http://kobas.cbi.pku.edu.cn). GO and
KEGG enrichment analyses were performed using ClusterProfiler (Yu
et al., 2012). P values were corrected using Benjamini-Hochberg FDR
(false discovery rate). GO andKO termswith a corrected P value < 0.05
were treated to be significantly enriched.

Gene enrichment analysis permutations were performed to test
whether the enriched GO and kegg terms from outlier genes are
likely to be observed when choosing the same number of genes
randomly across the genome. For each population comparison, 100
permutations were performed by randomly resampling the same
number of genes as outlier genes. We then ran ClusterProfiler for
each permutation as described above and counted the number of
times the significant GO and kegg terms from the outlier genes also
showed up in the randomly selected genes.
RESULTS

Growth and Survival Rate in High and Low
Elevation Common Gardens
At the high elevation site (Linzhi: LZ), the seedlings of all
populations suffered heavy mortality. In contrast, survival rates
were comparatively high and constant at the low elevation site
(Kunming: KM). By the third year, survival rates produced
February 2020 | Volume 10 | Article 1405
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exceedingly contrasting results with 7.6 vs. 78.2% for the Tibet
(LZ) and Kunming (KM) sites, respectively (Zhao et al., 2014). In
the seventh year (2017), only five individuals which originated
from population KM survived at the high-elevation site (LZ). As
natural populations can harbor a great deal of standing genetic
variation, these individuals may contain significant divergence in
allele frequency contributing to adaptation to high elevation
environments. Thus, these individuals were sampled as high
elevation selected (survival) population to detect genetic
variation related to adaptation to high elevation environments
in this study (these results concern the 6-7th year of the common
garden experiment).

In addition, significant differences of growth between
populations were observed between common garden sites,
suggesting adaptive divergence among P. yunnanensis natural
populations. In the low elevation site (KM), the local population
(KM, 249.7 ± 24.2 cm) and two exotic populations from farthest
Southwest (BS, 262.9 ± 30.4; GS, 251.5 ± 23.0) generally displayed
the fastest growth. The most south population (YX) showed the
slowest growth (183.2 ± 26.2), and the populations from the
Northwest (ZD, 215.3 ± 13.7; LJ, 221.6 ± 15.4) showed
intermediate seedling heights. YL, a population close to the local
population (KM), showed slower but medium growth performance
(190.1 ± 15.5) in comparison to the local population.

RNA-Seq and SNP Discovery
We have successfully constructed cDNA libraries for all the 54
sampled individuals. The RNA-seq yielded a total of 2,280
million clean reads, ranging from 30 to 60 million reads for
each individual with an average of 42 million reads. On average,
81.93% of the reads were uniquely aligned to the P. taeda
reference genome v1.01 (Table S1). After stringent quality-
filtering, we retained a total of 103,608 high quality SNPs
captured across the 54 individuals, which involve 8,595
annotated genes in the reference genome. Annotation of these
SNPs indicated the presence of 24,439 (23.59% of the total SNPs)
synonymous, 23,589 (22.77%) nonsynonymous variants, and
3,515 (3.39%) from 5′ UTR, 5,239 (5.06%) 3′ UTR, 8,089
(7.81%) intronic, 279 (0.27%) splice sites, and 38,458 (37.12%)
intergenic mutations (Table 2).

Population Structure
The population structure inferred using the full SNP set (103,608
SNPs) was identical to that from the pruned SNPs (18,329),
suggesting little impacts of LD in the ADMIXTURE analysis
(Figures 2B and S1). Cross-validation errors determined that the
most likely K value is 2 (Figure 2A). With K = 2, one western
marginal population (BS(KM)) was split from the other
populations. For K = 3, three northwestern populations (GS
(KM), ZD(KM), and LJ(KM)) further formed a northwest cluster and
the remaining 3 central populations (KM including KM(KM) and
KM(LZ), YL(KM), YX(KM)) formed another central cluster. Under
the K value of 4, population YX(KM) from the most south was
further separated from the central cluster. The high-elevation
selected populations KM(LZ) and KM(KM) and YL(KM) were in the
same genetic cluster under K = 2, 3 and 4.
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PCA provided further support to the patterns detected by
ADMIXTURE (Figure 2C). Along the first principal component
(PC1: accounting for 12.14% of total genetic variance), BS(KM) was
separated from the other populations, supporting the ADMIXTURE
finding at K = 2. PC2 was accounting for 4.18% of the total variance
and showing 3 population clusters, YX(KM), northwest (GS(KM), ZD
(KM), and LJ(KM)) and central (KM(KM), YL(KM), and KM(LZ)), which
were distinguished from each other. PCA revealed a continuous
genetic differentiation across the P. yunnanensis range, consistent
with the ADMIXTURE results at K = 4.

Detection of Outlier Loci
Our FST procedure detected 321 outlier SNPs overlapping 131
genes for the comparison of KM(LZ) vs. KM-YL(KM), including 79
(24.61%) synonymous, 87 (27.10%) nonsynonymous, 3 (0.93%)
5′ UTR, 21 (6.54%) intronic, 22 (6.85%) 3′ UTR, 1 (0.31%) splice
site, and 108 (33.64%) intergenic mutations (Tables 2 and S2).
Additionally, 294 outlier SNPs for the comparison of KM(LZ)

vs. ALL(KM) were also identified regardless of the impact of
population structure which may cause false positives (Tables S5–
S7), with 87 overlaps with the comparison of KM(LZ) vs.KM-YL(KM)

(Figure 3; Tables S8–S10). The outlier SNP included higher
proportion of nonsynonymous mutations (27–33%) compared to
the genome average (22%) (Table 2). Compared to the whole
genomic background, these 131 genes with outlier SNPs between
KM(LZ) and KM-YL(KM) showed greater p across coding regions
(Wilcoxon rank sum test, P <0.05), and slightly higher but not
significant dN/dS values (Wilcoxon rank sum test; P > 0.05) with a
mean of 0.4751 and maximum of 2.7400, in the high-elevation
selected population KM(LZ) (Table 3).

Functional Annotation
Enrichment analysis of 131 outlier genes for the comparison of KM
(LZ) vs. KM-YL(KM) suggested that five “flavonoid biosynthesis
pathway” genes were significantly overrepresented (Figure 4;
Table S3). Of these five genes, three (gene ID: PITA_000032619-
RA, PITA_000091299-RA and PITA_000042245-RA) encoded
flavonoid 3-hydroxylase (F3'H) that catalyzes the formation of
dihydroquercetin from dihydrokaempferol or naringenin. One
gene (PITAhm_000428-RA) encoded anthocyanidin synthase
(ANS) which catalyzes the oxidation of Leucoanthocyanidins (e.g.,
leucocyanidin, leucopelargonidin) to colored but unstable
anthocyanidins (e.g., cyanidin and pelargonidin); and another
February 2020 | Volume 10 | Article 1405
TABLE 2 | The distribution of full SNPs and outlier SNPs across gene regions.

Class All SNPs
(103,608 SNPs)

Outliers

KM(LZ) vs.
KM-YL(KM)

(321 SNPs)

KM(LZ) vs.
ALL(KM)

(294 SNPs)

Overlap
(87 SNPs)

Synonymous 24,439 (23.59%) 79 (24.61%) 64 (21.77%) 24 (27.59%)
Nonsynonymous 23,589 (22.77%) 87 (27.10%) 89 (30.27%) 29 (33.33%)
Intronic 8,089 (7.81%) 21 (6.54%) 31 (10.54%) 9 (10.34%)
5′UTR 3,515 (3.39%) 3 (0.93%) 9 (3.06%) 1 (1.15%)
3′UTR 5,239 (5.06%) 22 (6.85%) 3 (1.02%) 1 (1.15%)
Intergenic 38,458 (37.12%) 108 (33.64%) 96 (32.65%) 22 (25.29%)
Splice site 279 (0.27%) 1 (0.31%) 2 (0.68%) 1 (1.15%)
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FIGURE 3 | Overlap between outlier SNPs from the two comparisons. The numbers in parentheses indicate the number of genes overlapping with outlier SNPs.
FIGURE 2 | Population structure of the sampled individuals based on full SNP dataset. (A) Plot of Cross-validation (CV) error, (B) Genetic assignments under K = 2
– 4 based on ADMIXTURE results, (C) Plot of the two principal components and the percentage of variance explained resulting from a principal component analysis.
Frontiers in Genetics | www.frontiersin.org February 2020 | Volume 10 | Article 14056
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one (1A_all_VO_L_2_T_4417/51331|m.1073.mrna2) encoded
anthocyanidin reductase (ANR) which converts anthocyanidins
to epi-flavan-3-ols (e.g., epicatechin, epigallocatechin) (Figure 4).
Two SNPs causing nonsynonymous amino changes (Table 4) were
found in two of the five above-mentioned genes (PITA_000032619-
RA and PITA_000042245-RA). Functional analysis of these 131
outlier genes showed that five outlier genes are involved in
functional categories associated with high elevation adaptation,
including DNA repair (gene ID: PITA_000002229-RA), response
to UV (PITA_000032619-RA and PITA_000042245-RA), response
to reactive oxygen species (ROS) (PITAhm_000683-RA), and
membrane lipid metabolic process (PITA_000060397-RA)
(Tables 4 and S4). In addition, 3 outlier genes were annotated as
TFs (1 bZIP, 1 NAC and 1 Trihelix). BZIP and NAC are known to
Frontiers in Genetics | www.frontiersin.org 7
be involved in the regulation of secondary metabolism, key
components of stress response in plants (Vom Endt et al., 2002)
(Table S2). Additionally, overlapping outlier genes between the two
comparisons were significantly overrepresented in flavonoid
biosynthesis pathway (gene IDs: PITA_000032619-RA,
PITA_000042245-RA and PITA_000091299-RA), and carbon
fixation in photosynthetic pathway (gene IDs: PITA_000042917-
RA and PITA_000092661-RA) (Table S9), which suggests energy
metabolism genes may contribute to adaptation to high
elevation environments.

To test whether the significant terms found within the outlier
genes could also be found by chance when sampling genes from
the genome, we performed enrichment permutations. None of
the significant GO and kegg terms from our outlier analysis for
the comparison of KM(LZ) vs. KM-YL(KM) reoccured during
our permutations. Thus, we find that the outlier genes differ from
the genomic background and that the significant terms are
unlikely to be observed by chance.
DISCUSSION

RNA sequencing allowed the identification of a large number of
P. yunnanensis SNPs, most of which are from expressed genes.
Based on all 103,608 high quality SNPs, a clear population
structure emerged with two distinct population clusters
comprising one southwestern corner population (BS) and all
TABLE 3 | Summary of population diversity statistics. p: nucleotide diversity
across coding region for individual gene; dN: mean number of pairwise
nonsynonymous substitutions per nonsynonymous site; dS: mean number of
pairwise synonymous substitutions per synonymous site. Outlier 1: outlier genes
between KM(LZ) and KM-YL(KM). Outlier 2: outlier genes between KM(LZ) and ALL

(KM), Overlap: overlap between outlier 1 and outlier 2.

Population Site class p dN dS dN/dS

KM(LZ) Whole genome 0.0018 0.0014 0.0047 0.3750
Outlier 1 0.0026 0.0017 0.0060 0.4751
Outlier 2 0.0027 0.0021 0.0064 0.4590
Overlap 0.0026 0.0019 0.0067 0.5962

KM-YL(KM) Whole genome 0.0018 0.0014 0.0047 0.4603
ALL(KM) Whole genome 0.0018 0.0014 0.0048 0.4971
FIGURE 4 | Outlier genes involved in the flavonoid biosynthetic pathway. Enzymes and intermediates are indicated in black. Enzymes in red are identified as targets
under divergent selection, with corresponding outlier gene ID in pink. End products are placed in the square. CHS, Chalcone synthase; CHI, chalcone isomerase;
F3H, fla-vanone 3-hydroxylase; F3′H, flavonoid-3′-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; LAR, leucoanthocyanidin reductase; ANS,
anthocyanidin synthase; ANR, anthocyanidin reductase; UFGT, UDP-glucose: flavonoid 3-O gluco-syltransferase.
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other populations, in which continuous genetic differentiation
was found. These results are in agreement with previous findings
that were based on combining mitochondrial and chloroplast
DNA markers (Wang et al., 2013).

FST outlier analysis, such as FST scan and BayeScan 2.1 (Foll
and Gaggiotti, 2008), is based on the assumption that
nonselective processes have the same effect on all loci, while
selection would only act on certain loci in the genome. Therefore,
loci with very high genetic differentiation (FST) are considered to
be under divergent selection (Vitti et al., 2013). However, FST
outlier analysis presents two main limitations; namely, the high
number of false positives produced by chance, and the lack of
power to detect true positives; both of them are clearly discussed
in the literature (De Mita et al., 2013; Lotterhos and Whitlock,
2014; Haasl and Payseur, 2016). Thus, it is expected that some of
these putative outlier SNPs may be false positives produced by
chance. Despite these caveats, FST outlier methods have been
used in a large number of studies and has brought emblematic
allele discoveries at genes involved in adaptation to different
environment conditions (Feulner et al., 2015; Wang et al., 2015;
Elgvin et al., 2017; Fustier et al., 2017). However, BayeScan has
been considered more conservative in identifying outlier SNPs
than other methods (Narum and Hess, 2011b; Cuervo-Alarcon
et al., 2018; Gros-Balthazard et al., 2019), and its power to detect
outliers depends largely on sample size and number of sampled
populations (Lotterhos and Whitlock, 2015; Ahrens et al., 2018).
Considering that, in this study, only two populations are
involved in each comparison, so, we solely used FST scan to
detect outlier SNPs. At present, there are two common strategies
to reduce false positives. One strategy is to construct prediction
with different algorithms, followed by assessing the consistency
of signals (Narum and Hess, 2011a; De Mita et al., 2013). The
other is to assess consistency of signals across biological
replicates (Kawecki and Ebert, 2004; Conte et al., 2012; Tiffin
and Ross-Ibarra, 2014). Additionally, in the present study, a
randomization procedure (Feulner et al., 2015; Attard et al.,
2018), that involved repeated drawing of random samples (100
times), was used to reduce false positives. Using top 1% FST
Frontiers in Genetics | www.frontiersin.org 8
outlier as a cutoff, we initially identified 980 putative outlier SNPs
in the comparison of KM(LZ) vs. KM-YL(KM). After introducing
additional FDR 0.01 by random sampling, we retained 321
outlier SNPs, suggesting that the FDR randomization
procedure is potentially effective in reducing the rate of
false positives.

Genetic differentiation between populations with different
geographic origins have been found in ADMIXTURE and PCA
analyses, and the observed differentiation between populations is
an important confounding factor for detecting outliers in the
comparison of KM(LZ) vs. ALL(KM). Considering that SNPs
differentiated between KM(LZ) and ALL(KM) but not between
KM(LZ) and KM-YL(KM) suggests they may be involved in
population differentiation rather than adaptation to high
elevation. Thus, we focused only on the results of the
comparison of KM(LZ) vs. KM-YL(KM). An limitation of our
study was the restricted number of samples surviving in the
highland. However, we consider this exceedingly high mortality
as evidence for maladaptation and thus we treat the results as
exploratory in nature and are indicative of genetic variation to
high elevation adaptation. Further functional evaluation may
provide clearer insights into the genetic responses of P.
yunnanensis to high elevation environments.

Natural population can harbor a great deal of standing genetic
variation. Selection may result in changes of allele frequency of
SNPs under selective pressures to rapidly maximize fitness in
harsh environment (Hoffmann and Sgrò, 2011). In the present
study, we found 321 outlier SNPs with significant divergence in
allele frequency between KM(LZ) and KM-YL(KM). Genes with
outlier SNPs showed significantly greater p than the genome
average across coding regions and slightly higher dN/dS values in
the high-elevation selected population KM(LZ). These outlier
SNPs consist of 79 (24.61%) synonymous, 87 (27.10%)
nonsynonymous, 3 (0.93%) 5′ UTR, 21 (6.54%) intronic, 22
(6.85%) 3′ UTR, 1 (0.31%) splice site, and 108 (33.64%)
intergenic mutations. Previous studies have shown
nonsynonymous, synonymous, and noncoding SNPs can show
signatures of selection. Of these outlier SNPs, nonsynonymous
TABLE 4 | Outlier SNPs from genes involved in flavonoid biosynthesis pathway and functional categories associated with high elevation adaptation for the comparison
of KM(LZ) vs. KM-YL(KM).

Scaffold Position Reference Alternate Effect Amino change Gene ID Arabidopsis gene ID

C32565270 146920 G A synonymous PITA_000032619-RA AT5G07990
C32565270 146923 C T synonymous PITA_000032619-RA AT5G07990
C32565270 146932 C T synonymous PITA_000032619-RA AT5G07990
C32565270 146998 C T synonymous PITA_000032619-RA AT5G07990
C32565270 147108 C T missense Gly -> Ser PITA_000032619-RA AT5G07990
C32565270 147466 G A synonymous PITA_000032619-RA AT5G07990
scaffold439451 6733 G A Upstream_2k PITA_000091299-RA AT5G07990
scaffold439451 6754 G C Upstream_2k PITA_000091299-RA AT5G07990
tscaffold8551 75504 C T missense Gly -> Arg PITA_000042245-RA AT5G07990
tscaffold2458 148044 C G intron PITAhm_000428-RA AT4G22880
tscaffold2325 32570 T C Upstream_2k 1A_all_VO_L_2_T_4417/51331|m.1073.mrna2 AT1G61720
scaffold440391 610444 G A synonymous PITA_000002229-RA AT4G12740
tscaffold1243 243167 G C intron PITAhm_000683-RA AT1G77120
tscaffold1243 243242 C T intron PITAhm_000683-RA AT1G77120
C32508606 49016 C G synonymous PITA_000060397-RA AT3G06460
C32508606 49484 C G 3_prime_UTR PITA_000060397-RA AT3G06460
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substitutions causing amino acid substitutions and protein
sequence changes have been usually considered to be the main
target of natural selection. However, synonymous SNPs may affect
mRNA alternative splicing, mRNA stability, translation kinetics, and
protein expression and function, as previously documented
(Chamary et al., 2006; Komar, 2007; Kirchner et al., 2017;
Bertalovitz et al., 2018). Likewise, SNPs in noncoding regions may
also be involved in the regulation of gene expression (Barrett et al.,
2012). Thus, noncoding and synonymous SNPs can display a
selection signal, either because they are linked to a selection site or
are directly selected by natural selection.

The extremely intense UV radiation on the highland may
influence plant growth and developmental processes or cause
DNA and protein damage (Frohnmeyer and Staiger, 2003). Low
temperatures, a major feature of high elevation, can cause lipid
peroxidation and reduce fluidity of lipid membranes by causing
fatty acid unsaturation, altering lipid composition and ratio of
lipids to proteins in cell membrane (Wang et al., 2006). Both cold
stress and strong UV radiation result in the oxidative stress due
to generation of reactive oxygen species (ROS), such as hydrogen
peroxide, superoxide anion, and hydroxyl radical (Halliwell,
2007; Wang et al., 2010; Lidon and Ramalho, 2011). Previous
studies revealed that the DNA repair and radiation responses
pathways may contribute to highland adaptation of the
Crucihimalaya himalaica (Qiao et al., 2016; Zhang et al., 2019),
Tibetan highland barley (Zeng et al., 2015), Tibetan antelope (Ge
et al., 2013), Tibetan chicken (Zhang et al., 2016), and Tibetan
hot-spring snake (Li et al., 2018). In the present study, we found
that many outlier genes are involved in response to UV, DNA
repair, response to ROS, and membrane lipid metabolic process.
This may suggest P. yunnanensis adaptation to strong UV
radiation and low temperature environments on the highland.

The strong UV-absorbing characteristics of flavonoids have
been considered as a primary role to protect plant tissues from
high energetic UV. Moreover, many studies have provided new
evidence that UV light induces the synthesis of flavonoids (Ryan
et al., 2002; Berli et al., 2010; Stracke et al., 2010; Agati et al., 2011;
Kusano et al., 2011). These flavonoids can perform antioxidant
roles by suppressing and scavenging free radicals such as ROS
(Agati et al., 2012), as well as chelating metal ions such as iron,
copper, zinc, and aluminum that generate ROS via the Fenton
reaction (Williams et al., 2004). In addition, they are able to
prevent the peroxidation of lipids and the oxidative damage of
membrane lipids (Kumar and Pandey, 2012). The central
pathways for flavonoid biosynthesis are highly conserved and
well characterized (Holton and Cornish, 1995; Winkel-Shirley,
2001; Petrussa et al., 2013; Li et al., 2015). In the present study,
outlier genes from the comparison of KM(LZ) vs. KM-YL(KM) were
significantly enriched for flavonoid biosynthesis pathway with 5
outlier genes coding 3 key enzymes. And this pathway has been
shown to help withstand harsh environments in high elevations
(Zhang et al., 2003; Casati andWalbot, 2010; Agati et al., 2012). These
results suggest that flavonoid biosynthesis pathway may play a key
role in the adaptation of P. yunnanensis to high elevation
environments. Additional functional and physiological experiments
Frontiers in Genetics | www.frontiersin.org 9
are needed to verify the contributions of these genes to high elevation
adaptation (Pavlidis et al., 2012).
CONCLUSIONS

Weused RNA-seq and FST scan to identify genetic variation related to
high elevation adaptation in P. yunnanensis by contrasting a high-
elevation selected population and low-elevation population sampled
from highland and lowland common gardens. Our study provided a
genome-wide evaluation of nucleotide diversity in this species, and
identified variants and genes that could be involved in adaptation to
high elevation environment. Our results suggest that the flavonoid
biosynthesis pathway is likely an important selection target, which
may play a key role in the adaptation to high elevation environments
in P. yunnanensis. While these results are based on a small sample
size, thus we consider this work as exploratory in nature and further
research on high elevation adaptation is warranted.
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