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Abstract: Different practical applications have emerged in the last few years, requiring periodic
and detailed inspections to verify possible structural changes. Inspections using Unmanned Aerial
Vehicles (UAVs) should minimize flight time due to battery time restrictions and identify the terrain’s
topographic features. In this sense, Coverage Path Planning (CPP) aims at finding the best path to
coverage of a determined area respecting the operation’s restrictions. Photometric information from
the terrain is used to create routes or even refine paths already created. Therefore, this research’s
main contribution is developing a methodology that uses a metaheuristic algorithm based on point
cloud data to inspect slope and dams structures. The technique was applied in a simulated and real
scenario to verify its effectiveness. The results showed an increasing 3D reconstructions’ quality
observing optimizing photometric and mission time criteria.

Keywords: 3D inspection; coverage path planning; point cloud analysis; optimization; UAV

1. Introduction

Over the last few years, different practical applications emerged requiring periodic
inspections to verify possible structural changes, guaranteeing safety through preventive
assessment. For instance, large structures, such as dams and slopes, need constant mon-
itoring, and due to the size of these structures, manual inspections are time-consuming
and may present risks to humans. In this context, Unmanned Aerial Vehicles (UAVs) arose
as a prominent solution to automate this process in a cost-effectively way. In addition,
UAVs have positioned at the forefront of different application fields, such as infrastructure
inspection [1,2], search and rescue [3,4], delivery [5,6], among others. In the scenario of
large structures’ inspections, the UAV may help decrease the mission’s complexity, such as
data gathering and geometry land specifications due to its maneuvering flexibility, high
versatility, and the possibility of attaching new technologies into it [2].

Inspections on large structures with UAVs should minimize flight time due to battery
time restrictions and identify the terrain’s topographic features. In this sense, Coverage Path
Planning (CPP) aims at finding the best path to coverage of a determined area respecting
the operation’s restrictions [7]. Thus, the development of several algorithms allowed the
application in these kinds of processes [8–10]. For example, there are several applications,
such as underwater inspection [11] and aerospace [12] tasks.

Note that the accurate 3D models are the desired result for inspections. However, some
issues remain unsolved from a computational geometry perspective. Path planning refers
to finding an optimal route of a moving object from an initial to a final point [13]. Several
works have been proposed in the last few years to improve this technique and apply it in the
robotics context. In [14], the authors developed a cell decomposition algorithm for robots
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with contact sensors for covering unknown environments in an online manner. The work
of [15] proposed a hybrid methodology for mobile robots on an autonomous mission
involving an offline approach that uses the Direct-DRRT* algorithm and the Artificial
Potential Fields (APF) algorithm for the online planner. In [16], the authors used a bat
algorithm for solving the mobile robots’ global localization problem.

Robots need to perceive the world to work in unstructured environments. In this sense,
with the advent of low-cost 3D sensing hardware and in cloud processing, 3D perception
in robotics has gained more attraction [17]. Therefore, dense point cloud generation has
faced a great advance in the last few years thanks to the rapid development of technologies
and algorithms. For instance, Ref. [18] developed an improved delineation method using
high-density LiDAR. In [19], the authors worked with image-based 3D reconstruction.
They presented a quantitative comparison of several multi-view stereo reconstruction
algorithms. The work of [20] proposed an optimization-based algorithm for planar patches
extraction from noisy point-cloud data.

3D objects can provide information for creating routes or even for refining previously
created paths. It is possible to determine many properties of 3D data objects. However,
point cloud data are very unorganized, noisy, and sparse, demanding processing stages
to use this information [21]. In addition, in some situations, the foreground is very mixed
with the background due to sensor limitations to precisely acquire 3D data. In this sense,
point cloud learning has increasing attention with applications in many domains, such
as computer vision, autonomous driving, and robotics. The representation of 3D data
is generally in different formats, including depth images, point clouds, and meshes. As
a commonly used format, point cloud representation preserves the original geometric
information in 3D space, representing the environment without discretization [21]. 3D
point cloud data are applied for two major applications, including 3D model reconstruction
and geometry quality inspection, to represent structures in search of deformations or
models [22]. One of the objectives for using point clouds is the temporal comparison
looking for deformations in structures in reconstructions performed in different periods.
In order to compare two structures, both reconstructions must have points of interest
in common [23].

Other recent literature methods include techniques, such as [24,25] that apply GA
to obtain shortest path solutions in 3D space. In [26], a GA is used to find viable paths
considering radio signal intensity. However, these methods do not include any optimization
in terms of image and inspection quality. Other similar methods have also been developed
in the last few years for deployed 3D environments, such as Rapidly-exploring Random
Tree [27] and Visibility Graph [28]. Still, none of these focused on the specific application
shown here. A comprehensive review of similar methods can be found in [29].

Therefore, this research’s main contribution is developing an optimization-based point
cloud methodology for application in inspection tasks of large and complex structures,
such as slope and dams, which require periodic inspections to verify structural changes.
The technique was applied in a simulated and real scenario to show its effectiveness.
The other contributions of this research work can be summarized as follows:

• Coverage Path Planning algorithm that optimizes photometric characteristics such as
intersection, intersection and incidence angle and UAV flight time using metaheuristics;

• Path change algorithm to increase the quality of points of interest for coupling
3D reconstructions;

The rest of this article is organized as follows. Section 2 shows the proposed
optimization-based point cloud methodology and the necessary mathematical foundations
for developing it in a real environment. Section 3 presents the results and discussions.
The final concluding remarks and ideas for future works are in Section 4.

2. Proposed Framework

CPP is the task of determining a path that passes through all points of a determined
area. Choset et al. [30] proposed the classification of coverage algorithms in two types:
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online and offline. The Offline algorithms depend only on stationary information, and the
environment is known. On the other hand, online algorithms do not assume complete
prior knowledge of the environment to be covered. In addition, they use real-time sensor
measurements to scan the target space.

In large structures, such as slopes and hydroelectric dams, UAV missions require
extensive pilot experience to cover the large area. In addition, the missions’ repeatability
is affected, preventing reconstructions at different times from being compared. Another
aspect is the waste of the UAV energy since, in a manual flight, the flight time and the
images’ overlay depend only on the operator’s skill. It is possible to generate a mission
with optimized aspects concerning the aircraft and the obtained images using information
from a previously performed 3D reconstruction. Thus, this research lists the challenges of
working with these structures and the missions’ generation. The methods can be divided
into the structure’s analysis to be delivered, data filtering, metaheuristic optimization, and
dynamic objectives identification.

Figure 1 presents the framework diagram. Initially, the structures’ data can be im-
ported in the formats of a point cloud, mesh, or structure representing the surface. The data
must then be filtered to identify the surface shape, remove outlier, and reduce the opti-
mization algorithm’s points. The optimization algorithm will create a waypoint mission
that meets the mission time and photometry criteria. This mission will be sent to the UAV
to start the flight. During the route, each waypoint identifies the Point of Interest (POI).
In case this point is identified, the framework realizes a local mini-mission, increasing the
image data of that region, and then, the UAV goes to the next waypoint. In a negative case,
the aircraft will move to the next waypoint. Differently, if the waypoint is the last of the
horizontal movement, the UAV checks if it is the global mission’s end. If not, the mission is
optimized again to lessen the impacts of local missions and any flight delays. If it is the
endpoint, the mission will end, making the UAV returning to the takeoff location. At each
waypoint within the horizontal transfer, the framework performs a POI identification.

Figure 1. Framework diagram.

According to [31], 3D reconstructions can be broadly categorized into three categories:
(i) voxel-based representations; (ii) point-based representations; and (iii) mesh representa-
tions. Voxel representations are a straightforward generalization of pixels to the 3D case.
However, the cost of memory in this representation grows cubically with resolution. In this
way, alternative representations are point clouds and meshes. They use appropriate func-
tions to decrease losses without dramatically increasing the cost of memory. However, the
point clouds do not have the mesh connectivity structure, and, therefore, this representation
needs additional processing steps to extract the geometry from the 3D model [32].
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The framework proposed in this article requires the surface’s shape, which can be in
any of these categories. The reconstructions must conform to the UAV’s coordinate system,
with emphasis on the ECEF and GPS. ECEF, which is an acronym for earth-centered, earth-
fixed, is a geographic and Cartesian coordinate system. It represents positions as X, Y, and
Z coordinates. The point (0, 0, 0) is defined as the center of mass of Earth [33]. The GPS is
a satellite-based radio navigation system representing the terrestrial globe’s position by
latitude, longitude, and height relative to an ellipsoidal Earth model [34]. Both position
models’ representation can be converted to each other using nonlinear optimization [35].
With the reconstructions in the proper format, it is necessary to filter the points to carry out
missions appropriate to these structures.

2.1. Data Filtering

The data of the 3D reconstructions are saved in formats unique to these structures,
highlighting the Wavefront (.obj), Polygon File Format (.ply), or COLLADA (.dae). These
formats present the data, with their peculiarities, in the following form: x position, y posi-
tion, z position, normal vector [nx, ny, nz], and color [r,g,b] of each point. The positions are
the representation—in our case, in ECEF or GPS, of the position of the point.

Note the necessity of these points to be filtered to create a mission with this data
as a reference, removing outliers and decreasing the optimization algorithms’ points.
Some algorithms for this task are the Convex Hull and Concave Hull. The convex hull of
geometric objects is the smallest convex set that contains the objects. There are algorithms
for points in the literature in two, three, and even Euclidean spaces of higher dimension [36].
The concave hull is an algorithm that finds a concave object that surrounds all points, using
methods such as Alpha Shapes or K-nearest neighbor algorithms [37]. Figure 2 shows
both algorithms at points in a reconstruction, looking at only one height of the entire
reconstruction. The points are green, with the blue line formed by the convex hull and the
concave hull’s red line. Although the concave hull has better results in representing the
surface, the algorithm’s computational time is higher than the convex hull.

Figure 2. Comparison between Convave Hull and Convex Hull algorithms.

2.2. Optimization Process

After analyzing the filters’ points, we have a surface layer that presents the surface
information. In this step, the optimization of path planning begins. For photometric
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issues, the framework considers the intersection among images: the intersection angle and
incidence angle. For 3D reconstructions, the number of overlapping photos is an essential
factor for these points’ accuracy [38]. Figure 3 illustrates the variables considered in the
problem model. The rectangle formed by DistVert and DistHor forms the Field of View
(FOV) of the UAV camera. These dimensions, as seen in Equations (1) and (2), depend
on the distance from the UAV to the surface (DS) and the horizontal and vertical opening
angles of the camera (respectively θhor and θvert):

tan(
θhor

2
) =

Disthor
2DS

(1)

tan(
θvert

2
) =

Distvert

2DS
(2)

Figure 3. Problem variables.

The mission carried out by the aircraft has the format of horizontal transfers at different
heights, and the images will be taken after a Dmin shift. These displacements create a region
of intersection among the photos, as highlighted in color blue in Figure 4. Equation (3)
represents the percentage of coverage calculation in relation to DistHor. The Dmin distance
was designed to capture images with the UAV hovering to prevent the image from losing
quality. Suppose the camera can capture a moving image without loss of quality. In that
case, the parameter Dmin will be used to reconstruct the surface shape that will be inspected.
It is not necessarily part of the optimization. The image can be captured at a shorter possible
distance, and, in Equation (7), the Timeshot, which is the downtime for image capture, can
be zero:

Coveragehor = (1− Dmin
Disthor

) ∗ 100 (3)
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Figure 4. Horizontal coverage.

The differences among the missions’ heights also generate a vertical intersection
between the photos. The vertical offset (Dvert) depends on the height of the surface, defined
by the difference between the maximum height (hmax) and minimum height (hmin), and
the number of vertical waypoints (NVert) that have been defined for the mission. Figure 5
illustrates the vertical intersection between photos. Equation (4) shows the calculation of
vertical displacement, while Equation (5) presents the vertical coverage:

Dvert =
|hmax − hmin|
(NVert + 1)

(4)

Coveragevert = (1− Dvert

Distvert
) ∗ 100 (5)

Figure 5. Vertical coverage.

The intersection angle is defined as the angle that surrounds all images taken from
that point. When the intersection angle increases, the correspondences may become
discontinuous. Note that large intersection angles make image matching difficult, whereas
small ones result in low intersection precision [39]. Thus, for better accuracy, it is given
that the intersection angle should be close to 90º [38]. The incidence angle is defined as
the angle between the image normal and the surface normal. As can be noticed, when
it is closer to 0 degrees, the quality of the images is better and thus also the accuracy
of the points [38]. Figure 6 shows the angles of incidence and intersection. The blue
region represents the intersection region, where the 4 UAVs that can capture the same
point are identified. The incidence angle is identified in red, between the UAV and the
surface normal.
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Figure 6. Intersection and incidence angles.

The objectives considered are to decrease the mission time and increase the intersection
area between the images, besides adjusting the angles. For these purposes, the variables
are Dmin, DS, and NVert. The time is computed considering the distance displaced by the
aircraft and its average speed, adding an image capture time at each waypoint, as shown
in Equation (7). The problem has multiple objectives, being described through the sum of
two factors: (i) Time, and (ii) Photometric fitness, as shown in Equation (6). Time fitness, as
shown in Equation (8), is a function that tends to decrease mission time, with a maximum
value of fitness equal to 10. The parameter velUAV is the average speed of the UAV during
the mission and NWaypoints is the total number of waypoints in the mission. DT is the
distance traveled in each horizontal transfer, calculated through the distances between
the points:

Fitness = GTime ∗ FitnessTime + GPhotometric ∗ FitnessPhotometric (6)

Many optimization problems involve several objectives that require simultaneous
optimization. The difficulty in solving multi-objective problems (MOPs) is that these
objectives are often contradictory to each other, which means that an improvement in one
of the objectives implies the degradation of one or more of the remaining objectives. In time
fitness and photometric fitness, the image objectives tend to create missions with closer
waypoints and a greater number of flight layers, increasing the total mission time. There
is no single ideal solution for such a situation instead of a set of optimal compensation
solutions known as Pareto optimal solutions, called Pareto-optimal Front [40]. Several
methods are present in the literature to explore the solutions present in the Pareto set.

A prominent example is the use of scalarization functions, a way of combining multiple
objectives into a scalar function, optimizing which will produce one solution to the original
MOP [41], this being the method used in Equation (6) to highlight the importance of
each of the objectives. Gain GTime and GPhotometric control the importance between the
time objective and the photometric objective. In the case studied, both values are unitary
so that both objectives are explored. Other areas of interest that can be highlighted are
Evolutionary Multi-objective Optimization (EMO) [42,43] and Multi-Criteria Decision
Making (MCDM) [44,45]:

Tmission =
DT ∗ NVert + (|hmax − hmin|)

velUAV
+ Tshot(NWaypoints) (7)

FitnessTime = (−(Tmission)
2/20) + 10 (8)

The photometric fitness goals are to increase coverage (i.e., horizontal and vertical)
and improve the characteristics of the intersection and incidence angles. This objective is
represented by a sum of the coverages’ fitness multiplied by the intersection angle gain,
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as shown in Equation (9). Coverage fitness, as shown in Equation (10), tends to increase
coverage, with a maximum value of 5 used for horizontal and vertical coverage. The choice
for double maximum value in time fitness highlights this objective concerning photometric,
being closely linked to mission security. The values 10 and 5 were chosen empirically:

FitnessPhotometric = GIntersection ∗ (FitnessCoverage−Hor + FitnessCoverage−Vert) (9)

FitnessCoverage = ((−(Coverage% − 100)2/1000) + 10)/2 (10)

The incidence angle can be calculated from three ranges and points from the point
cloud. Figure 7 shows the three tracks with different heights. The yellow region is the
surface with the points highlighted in green, blue, and purple as the captured points.
The incidence angle must be the same as the red angle. In this way, the incidence angle will
always be close to 0 degrees, added to the camera’s gimbal angle.

Figure 7. Incidence angle calculation.

The intersection angle is the difference, in angles, of two previous and two posterior
positions of the UAV (Di fAng). A gain is added to the cover fitness to identify how far it is
from the 90-degree angle. Equation (11) shows the Gaussian function of the intersection
gain. The goal is a Gaussian that ranges from 60 to 120 degrees, with a unit value of
90 degrees:

GIntersection = e
−(Di fAng−90)2

450 (11)

This variable’s purpose is to create missions like those shown in Figure 8. The green
mission has Dmin = 1 m, DS = 3 m, NVert = 4, while the red mission has Dmin = 0.5 m,
DS = 1.5 m, NVert = 8. It is noticed that the mission in green is more distant from the surface
(DS greater), having less points of image capture because of greater Dmin. The number of
horizontal bands is also reduced by the smaller number of vertical waypoints.
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Figure 8. Mission example.

With this fitness configuration, the search for better parameters can use any meta-
heuristic algorithm. For instance, Genetic Algorithm (GA) [46], Particle Swarm Optimiza-
tion (PSO) [47], Bat Algorithm (BA) [48], Ant Colony (AC) [49], or other methods can be
used in the optimization.

Table 1 summarizes the constants with their equivalent units. NVert ∈ N and
NWaypoints ∈ N represent numerical values for the number of vertical waypoints and the
total of waypoints, respectively.

Table 1. Summary of constants.

Constant Explain Dimension

Dmin Horizontal Distance between two images m

DS Distance to Surface m

NVert Number of Vertical Waypoints

θhor Opening angle of the camera—Horizontal º

θvert Opening angle of the camera—Vertical º

Disthor Field of View—Horizontal m

DistVert Field of View—Vertical m

Coveragehor Intersection between two images—Horizontal %

CoverageVert Intersection between two images—Vertical %

Dvert Vertical displacement between two horizontal transfers. m

GTime Time Fitness Gain [0, 10]

GPhotometric Photometric Fitness Gain [0, 10]

hmax Maximum surface height m

hmin Minimum surface height m

DT Distance traveled in each horizontal transfer m

NWaypoints Total number of mission waypoints
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Table 1. Cont.

Constant Explain Dimension

velUAV Average UAV speed during the mission. m/s

Tmission Total mission time s

GIntersection Intersection Angle Gain [0, 1]

Di fAng Intersection angle º

Tshot Image capture time s

2.3. Dynamic Identification

For the coupling of 3D reconstructions and analysis of them, some landmarks must
have great prominence on the surface. These regions need closer flights to create a dense
cloud of top-quality points. If the entire mission uses this approach, the UAV’s flight time
will last a long time, and the possibility of covering large surfaces will be limited. Thus, a
mini local mission was thought of when an object of interest was identified. For identifying
objects, the most various algorithms can be used, some using OPENCV [50,51].

After the object is identified, it is necessary to create a local mini-mission. This mini-
mission consists of an approximation of one meter from the surface, using a camera or
proximity sensors. Nine points are made in a vertical mission, ranging from 0.5 m from the
UAV’s current height and 0.7 m in the horizontal direction. After completing the task, the
UAV returns to the waypoint and continues its mission. Figure 9 shows an example of the
local mini-mission when a blue object is identified on the surface.

Figure 9. Mini-mission.

Therefore, the flight plan is divided into several horizontal planes. At the end of
each horizontal plan, optimization is performed again, considering the remaining flight
time and the space to be surveyed. The remaining time is calculated using the maximum
mission time minus the time elapsed until the end of the horizontal plane. On the other
hand, the remaining area is the horizontal plane’s height below the drone to a height of
one meter from the ground. The objective of performing the optimization again is to allow
the algorithm to adapt to the dynamic identification missions and possible losses during
the flight.
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Algorithm 1 demonstrates the decision process of the presented methodology. DATA,
filtered_DATA, TMission, TMax are the surface data, the filtered data, the available mission
time, and the maximum mission time, respectively. The support variables MissionEnd
and HorizontalEnd represent whether the mission was completed globally or in horizontal
expeditions. The filters, Optimizer, and Identification_function functions represent the
filtering of the surface data, optimizing missions based on metaheuristics, and identifying
objects of interest.

Algorithm 1: Decision process of the proposed methodology.
DATA← Import structure data ;
Filtered_DATA = Filters(DATA);
T_Mission← T_Max
Mission_End← 0
while Mission_End = 0 do

Waypoints = Optimizer(Filtered_DATA,T_Mission);
i← 0 ;
Horizontal_End← 0;
while Horizontal_End = 0 do

Drone goes to the next waypoint;
i← i+1 ;
Point_of_Interest = Identification_function(Camera_image);
if Point_of_Interest = 1 then

Perform local mini mission;
end
if Waypoints[i] = Last of the Horizontal Mission then

Horizontal_End← 1;
T_Mission← T_Max− Elapsed time;
Filtered_DATA← Filtered_DATA−Heights already visited;

end
end
if Waypoints[i] = Last of the Global Mission then

MissionEnd ← 1
Return the drone to the takeoff point.

end
end

3. Results and Discussion

A manual flight was performed for 3D reconstruction on a slope located at the Federal
University of Juiz de Fora, Brazil, to test the proposed framework. The objective is to
perform a 3D reconstruction of this structure, as shown in Figure 10. The reconstruction
was based on 300 images. Two test environments were used to validate the framework, a
simulation environment in the Gazebo-ROS [52], and a real surface itself.

Figure 10. Reconstruction performed through the manual flight.
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Note in Figure 11 that a world was created in Gazebo-ROS with the presence of the
slope and UAV “Hector_Quadrotor” [53]. The model in the UAV Gazebo is in Figure 12.

Figure 11. Gazebo World.

Figure 12. Hector_Quadrotor Model in Gazebo-ROS.

The chosen metaheuristic optimization methods are the Genetic Algorithm and Bat
Algorithm. Fifty initial random populations were created and made available for each
algorithm with their respective number of individuals to compare each methodology.
The initial population was created using random values that vary according to Table 2.
A new set is created for each iteration of the metaheuristic. Still, the same population
is used in the GA and in the BA to prevent the initial population’s characteristics from
changing the algorithms’ performance.

Table 2. Parameters used to create the initial population.

Variable Range Representation

Dmin [0.1, 20] R

DS [1, 20] R

NVert [1, 10] N
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The version of the GA used is the version for real numbers was proposed by
Michalewicz et al. [54]. The mutation and recombination operators are non-uniform
mutation and arithmetic crossover, respectively. The selection method is the roulette wheel.
Other operators have been tested. These were the ones that obtained the best results.
The BA was used in its original version proposed by Yang [48].

The objective is to analyze each algorithm’s behavior while the variation in the num-
ber of individuals, considering average, maximum, and minimum values. The number
of epochs available is 100, where this is the stopping criterion. Figure 13 presents the
comparison in the following criteria:

1. Time to get the answer (TimeResult);
2. Time of mission (TimeMission);
3. Vertical coverage;
4. Horizontal coverage.

Regarding finding a solution, the BA presented a better response in all population
variations, with lower averages than the GA. In addition, the deviations were smaller, being
recommended to avoid wasting time during the flight. In the first result regarding the
mission time that the aircraft performs, the genetic algorithm presented better results with
a population of 5 and 10 individuals. However, with the increase in population, BA had an
average closer to that found by GA, but with fewer deviations. In the result of horizontal
coverage, the BA had a better result at all levels, with less variation.

Moreover, finally, regarding vertical coverage, the results were very close. Thus,
analyzing the data in Figure 13, the BA had a better performance than the GA. Note that
the bat algorithm with a population of 50 individuals was chosen to avoid large variations
in the results without affecting the increase in computational cost and time to acquire them.

The UAV’s average speed should be chosen to cover the entire surface, avoiding waste
to the equipment. A high speed makes the UAV reach the point faster and allows more
coverage. However, if the waypoints are close, it causes losses with the high deceleration
to capture the image. It may even be necessary for the drone to return to the position if it
exceeds the image to capture the waypoint’s position. Low speeds tend to be safer to allow
the mission to stop if there is a problem with the equipment, but the potential for surface
coverage is reduced. Speeds between 0.1 m/s and 3 m/s were tested. Our missions were
around 200 m long, speeds around 0.3 m/s were chosen so that, together with the aircraft’s
image capture and rotation, the total mission time was less than the maximum battery.

In order to verify the impact of the Gtime and GPhotometric gains on the proposed
objectives, we create some scenarios to simulate the ratio with the gains, Gtime

GPhotometric
, varying

between [0.1 and 10]. The simulation creates 50 populations for each ratio between the
gains, and the result presented is the average among the answers. Figure 14 shows the
result. When the ratio favors the photometric objective, the mission time goes to values
close to 150 min, requiring at least eight flights with 20 min (battery safety time). When
the relationship tends towards time, the mission manages to behave in a single flight,
approximately eight minutes. The main factor controlled by the relation is NVert, which
directly relates to vertical coverage. Missions with robust photometric criteria had NVert
varying between 9 and 15, while in missions with time as the main factor, NVert varied
between 3 and 4.
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Figure 13. Comparison between GA and BA and its impact comparing numbers of individuals in the
population with the time to find the results and objectives of the meta heuristics: time of mission,
horizontal, and vertical coverage.

1 
 

 
Figure 14. Comparison between GTime and GPhotometric and its impact in objectives of the meta
heuristics: time of mission, horizontal, and vertical coverage.
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Flights were performed with different distances to understand the impact of distance
to surface on reconstruction. There were five flights for each distance; the result is the
average. Table 3 shows the results for missions with and without the presence of local
missions. It is noticed that, for flights without local missions, the closer to the surface, the
more points were created in 3D reconstruction. However, missions with this short distance
and causing security problems with GPS errors significantly increase the mission time.
Thus, it was proposed to use local missions to increase density in some specific points.
Vegetation on the surface was chosen as a point of interest. In the reconstruction with three
meters of distance, the point density increase was around 51%, while, in the 5 m, it was
54%. The increase in time to perform the missions was 10% to 20% of the time spent.

Table 3. Comparison between the variation of DS and its impact on the amount of points of 3D
Reconstruction and the Mission Time.

DS [m] Number of Points Mission Time [s] Local Missions

1 133,702 508 No

3 62,438 238 No

5 59,465 179 No

3 94,323 270 Yes

5 91,696 213 Yes

The same study was carried out for the number of waypoints, for missions with a
distance of two meters from the surface of five meters high and a 60º camera opening.
Table 4 shows the results. Note that the greater number of waypoints increases the density
of points in 3D reconstruction, justifying the increase in vertical coverage being one factor
of the fitness function. However, the increase of NumW ay drastically increases the mission
time. The number of optimizations made at the end of each horizontal transfer generates
missions with much longer times without a significant density increase. The care that
should be taken is to avoid minimal transfers, as NumW ay is equal to 2, where the drop in
density was significant.

Table 4. Comparison between the variation of Num_WaY and its impact on the amount of points of
3D Reconstruction.

NVert Number of Points CoverageVert [%}

6 133,702 57.4

5 121,654 50.3

4 116,096 40.4

3 103,124 25.5

2 51,980 0.7

In relation to the parameter Dmin, we have the results presented in Table 5. The results
were made with DS = 2 m, NVert = 6 and horizontal opening of the camera of 100. The value
is strongly linked to the number of points in the 3D reconstruction. Note that the greater the
horizontal coverage, the greater is the density of points. Suppose the camera can capture
the image without stopping the UAV. It is recommended to increase the maximum number
of images possible since increasing the number of points with the capture stop increases
the mission time.
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Table 5. Comparison between the variation of Dmin and its impact on the amount of points of
3D Reconstruction.

Dmin Number of Points CoverageHor [%}

0.6 112,257 85

1.2 62,147 70

1.71 48,927 57.1

2 43,781 50

2.4 37,080 40

With the results presented in Tables 3–5, it is possible to note that, for the production
of an adequate mission, the UAV must make more horizontal transfers, as close as possible
to the surface. Besides, points of image capture close. However, this photometric objective
to 3D reconstruction increases the mission time, as the UAV will not cover the entire target
surface in one mission. In this way, metaheuristic algorithms balance these objectives,
enabling a 3D reconstruction with quality and adapting the whole surface’s mission time.
Another detail is the possibility of meeting the distance objective to the surface in some
critical locations of the task, increasing the quality of 3D reconstruction in POI to the
operator. In this way, the mission will have a greater distance on the surface in general and,
in small parts, will have an approach to the surface.

Table 6 shows the results of the mission in the Gazebo-ROS simulator. This mission
consisted of three horizontal missions, the first planned in Figure 15. After each transfer,
the next optimizations were performed, with the results of stages 2 and 3. It is noticed
that the distance to the Slope remained with small variation, and the same occurs with
the distance among the horizontal waypoints. The first stage chose a mission with three
vertical waypoints between 1 and 5 m (i.e., slope height). The second was 2 points between
1 and 3.5 m. Finally, the third was a mission at an altitude of 1.5 m. The total mission time
was 13 min, less than the 15 min planned for the task. The chosen speed was 0.3 m/s.
The aircraft traveled the entire course of the structure in less time than was available for it.
The images were taken with the UAV hovering for two seconds to capture images to avoid
deformations in the images. Initially, the flight was performed with 3D reconstruction in
a simulated environment to improve the mission’s safety, avoiding finding results that
did not meet the maximum flight time. After the simulation, the mission was relocated
to the real environment. Another feature that had to be implemented is the conversion of
distances to meters, as seen in Figure 15 for GPS, showed in Figure 16.

Table 6. Optimization in Gazebo-ROS.

Stage Dmin [m] DS [m] NVert
Mission Time

[Min]
Coverage Hor

[%]
Coverage Vert

[%]

1 1.04 1.71 3 10.59 82.38 47.82

2 0.89 1.96 2 7.40 86.80 49.97

3 1.37 2.05 1 4.60 80.66 46.38
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Figure 15. Initial Mission in Gazebo-ROS.

Figure 16 presents a mission test performed in a real Slope. The drone used was
a DJI Phantom 4 (Nanshan, Shenzhen, China). Figure 17 shows the 3D reconstruction
using 80 images. It is possible to conclude that the objective of an optimized autonomous
mission for 3D reconstructions has been achieved successfully. It is necessary to increase
the number of points at the end of the mission to improve performance, creating images
that will only be used in part for 3D Reconstruction.

Figure 16. Initial Mission in the real-world.
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Figure 17. Optimized 3D reconstruction.

4. Conclusions and Future Work

The proposed research work presented a framework for coverage path planning
optimization using a dense point cloud as information from the surface. The main idea is
to provide reliable information for periodic inspections in enormous structures to verify
possible changes. The data can be used to create routes or even to refine previously created
paths. The proposed technique was evaluated in simulation and real scenarios, generating
missions with time and photometric optimizations. The results showed good responses to
the problem, avoiding wasted energy from the UAV and a specialized operator’s need.

The methodology shows an increase in 3D reconstructions’ density, observing photo-
metric criteria, and equalizing it with the maximum mission time. Note that the objective
was achieved, since the increase in the number of vertical transfers and the capture points’
approach significantly increased the number of points in the same region of the 3D recon-
struction. Another aspect is the insertion of local approach missions, allowing a sweep in
larger areas and increasing density at specific points.

In terms of evaluation, this research opens the possibility of several future works. For
example, in addition to more photometric parameters, such as intersection angles among
the photos, incidence angles, and features, it will be researched to add the reconstruction’s
quality as a parameter of the optimization.
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