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Simple Summary: Breast cancer is the most commonly diagnosed cancer in American women,
and metastasis accounts for the majority of breast cancer-related deaths. The common metastatic
sites for breast cancer includes the bones, lungs, brain, and liver. Breast cancer brain metastasis
(BCBM) patients have dismal prognoses, primarily due to the lack of understanding of the molecular
mechanisms driving breast cancer cell colonization to the brain. In breast cancer, truncated glioma-
associated oncogene homolog 1, tGLI1, promotes preferential metastasis to the brain through the
upregulation of the cancer stem cell subpopulation and the activation of astrocytes. Whether tGLI1
is an actionable therapeutic target for any cancer type has not yet been investigated. Herein, we
identified an FDA-approved antifungal, ketoconazole (KCZ), and its novel derivative, KCZ-7, to
antagonize tGLI1 transcriptional activity, suppress cancer stem cells, and inhibit BCBM, rendering
tGLI1, for the first time, as an actionable therapeutic target for the prevention and treatment of BCBM.

Abstract: The goal of this study is to identify pharmacological inhibitors that target a recently
identified novel mediator of breast cancer brain metastasis (BCBM), truncated glioma-associated
oncogene homolog 1 (tGLI1). Inhibitors of tGLI1 are not yet available. To identify compounds that
selectively kill tGLI1-expressing breast cancer, we screened 1527 compounds using two sets of isogenic
breast cancer and brain-tropic breast cancer cell lines engineered to stably express the control, GLI1,
or tGLI1 vector, and identified the FDA-approved antifungal ketoconazole (KCZ) to selectively target
tGLI1-positive breast cancer cells and breast cancer stem cells, but not tGLI1-negative breast cancer
and normal cells. KCZ’s effects are dependent on tGLI1. Two experimental mouse metastasis studies
have demonstrated that systemic KCZ administration prevented the preferential brain metastasis of
tGLI1-positive breast cancer and suppressed the progression of established tGLI1-positive BCBM
without liver toxicities. We further developed six KCZ derivatives, two of which (KCZ-5 and KCZ-7)
retained tGLI1-selectivity in vitro. KCZ-7 exhibited higher blood–brain barrier penetration than
KCZ/KCZ-5 and more effectively reduced the BCBM frequency. In contrast, itraconazole, another
FDA-approved antifungal, failed to suppress BCBM. The mechanistic studies suggest that KCZ and
KCZ-7 inhibit tGLI1’s ability to bind to DNA, activate its target stemness genes Nanog and OCT4, and
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promote tumor proliferation and angiogenesis. Our study establishes the rationale for using KCZ
and KCZ-7 for treating and preventing BCBM and identifies their mechanism of action.

Keywords: tGLI1; GLI1; ketoconazole; breast cancer; cancer stem cells; brain metastasis

1. Introduction

Despite improvements in early detection and targeted therapies, breast cancer remains
the second leading cause of cancer-related deaths in women [1] and second most common
cancer to metastasize to the brain [2]. Increasing numbers of breast cancer patients are at risk
of developing breast cancer brain metastases (BCBM). Brain metastases frequently occur in
metastatic breast cancer patients, with approximately 10–16% of patients developing symp-
tomatic brain metastases and another 10% of patients noted to have asymptomatic brain
involvement in post-mortem autopsies [2,3]. Breast cancer patients with brain metastases
are expected to have a median survival time range of 4–6 months [4,5]. This dismal progno-
sis is primarily due to the inadequate understanding of the molecular pathways required
for the growth of brain metastases, precluding the development of effective treatments.
Patients with HER2-enriched or triple-negative breast cancers (TNBC) account for 30–50%
of all invasive breast cancers and are associated with higher incidences of brain metastases
compared to other breast cancer subtypes. The first-line therapy for BCBM is radiation
therapy; however, recurrence is common. Most systemic therapies have limited penetrance
across the blood–brain barrier (BBB) [6]. Furthermore, metastatic HER2-enriched tumors
that initially respond to trastuzumab frequently acquire resistance [7], while the treatment
options for metastatic TNBC remain limited, underscoring the need to establish novel
actionable targets.

Truncated glioma-associated oncogene homolog 1 (tGLI1) is an alternative splice
variant of the zinc finger oncogenic transcription factor GLI1 [8]. This isoform arises from
an in-frame deletion of 41 amino acids corresponding to the entirety of exon III and part
of exon IV. In addition to retaining all GLI1 functional domains and acting as a terminal
effector of the SHH-PTCH1-SMO signaling axis, tGLI1 has gained the ability to activate
the expression of at least ten genes leading to tumor growth, angiogenesis, migration,
invasion, and stemness [8–15]. In stark contrast to GLI1, tGLI1 expression is tumor-specific:
tGLI1 is frequently expressed in glioblastomas, primary and metastatic breast carcinomas,
and breast cancer cell lines, but is undetectable in normal mammary, brain, and other
tissues [8–11,16]. Furthermore, other groups independently confirmed the roles of tGLI1
in breast cancer angiogenesis [15] and gliomas [17], and reported the role of tGLI1 in
invasive hepatoma [18]. Most recently, we reported that tGLI1 is highly expressed in
BCBM samples, and tGLI1-expressing breast cancer has an increased ability to undergo
preferential metastasis to the brain, in part through promoting breast cancer stem cells
(CSCs) and activating astrocytes in the brain microenvironment [13].

Given its tumor-specific expression and ability to promote BCBM, tGLI1 is an ideal
therapeutic target to treat BCBM. In this study, we sought to identify tGLI1 inhibitors
that could be developed further to treat tGLI1-positive BCBM. Using a dose-escalating
chemical screening approach, we found that ketoconazole (KCZ), an FDA-approved im-
idazole antifungal, specifically killed tGLI1-expressing cells without concomitant effects
on GLI1-expressing cells. KCZ was particularly efficacious against the tGLI1-positive
breast CSC subpopulation, without affecting normal cells. Using experimental breast can-
cer metastasis mouse models, we found KCZ to effectively penetrate the BBB following
systemic administration, to inhibit the progression of established tGLI1-positive BCBM,
and to prevent circulating tGLI1-positive cancer cells from undergoing BCBM. Next, we
modified the chemical moieties of KCZ to create six novel derivatives, and found that two
(KCZ-5 and KCZ-7) retained tGLI1 selectivity in vitro, while KCZ-7 showed increased BBB
penetration compared to KCZ and KCZ-5 and in vivo efficacy against tGLI1-driven BCBM.
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In contrast, another antifungal, and known smoothened (SMO) inhibitor [19], itraconazole
(ITZ), did not inhibit BCBM in vivo. Furthermore, mechanistic studies suggest that KCZ
and KCZ-7 inhibit tGLI1-positive breast cancer by reducing tGLI1 DNA binding, leading
to reduced promoter occupancy and promoter transactivation and the downregulation of
the tGLI1-mediated stemness genes Nanog and OCT4. Collectively, these data delineate
tGLI1 as an actionable target for the treatment of breast cancer brain metastases, meriting
further investigation and providing the rationale for repurposing KCZ for the prevention
and treatment of BCBM.

2. Materials and Methods
2.1. Cell Lines and Reagents

The human breast cancer cell lines MCF7, MCF10A, BT-20, and SKBR3 were purchased
from ATCC (Manassas, VA, USA) and cultured as specified by ATCC. The HMLEs, a kind
gift from the Weinberg laboratory, were cultured in MEBMTM Mammary Epithelial Basal
Medium (Lonza CC-3151) (Basel, Switzerland) supplemented with MEGMTM Mammary
Epithelial SingleQuotsTM (Lonza CC-436), 10% fetal bovine serum (FBS, Corning 35-10-CV)
(Corning, NY, USA), and 1% penicillin–streptomycin solution (P/S, Corning 30-002-CI). The
MDA-MB-231 and brain-metastatic MDA-MB-231BRM cell lines were from the Massagué
laboratory and cultured in DMEM supplemented with 10% FBS and 1% P/S [20]. The
isogenic MDA-MB-231 and MDA-MB-231BRM cell lines stably expressing the control
vector, GLI1-, or tGLI1-expression vectors were established in our previous study [13]. The
brain-metastatic variant of SKBR3 (SKBRM), derived from parental SKBR3 cells through
three rounds of in vivo selection, was a kind gift from Drs. Fei Xing and Kounosuke
Watabe [21]. The E6/E7/hTERT immortalized human astrocyte cell line, UC1, was a
kind gift from Dr. Russell Pieper (University of California-San Francisco). The HBMECs
were from Angio-Proteomie and were cultured in EBM™ Basal Medium (Lonza CC-3121)
supplemented with EGMTM Endothelial Cell Growth Medium SingleQuotsTM (CC-4133)
with 10% FBS and 1% P/S. The HepG2 hepatocellular carcinoma cells were purchased
from Sigma-Aldrich (85011430) (St. Louis, MO, USA) and cultured according to ATCC
recommendations. All cell lines were authenticated using standard methods and routinely
tested for mycoplasma contamination. If mycoplasma contamination was detected, the
cells were treated with BM-Cyclin (Sigma-Aldrich 10-799-050-001) and tested again prior
to use. Here, pCMV-Tag2b, pCMV-Tag2b-GLI1, and pCMV-Tag2b-tGLI1 plasmids were
also generated in our laboratory [8]. The Nanog (HG13138-UT) and OCT4 (HG13137-UT)
overexpression plasmids were purchased from Sino Biological (Beijing, China). The GLI1
and tGLI1 isogenic cell lines containing an RFP reporter were previously developed in our
laboratory [8,9]. The drug libraries (L1200, L1300, L1400), KCZ (S1353), and ITZ (S2476)
were purchased from Selleck Chemicals (Houston, TX, USA). The KCZ derivatives were
synthesized by BioDuro (Beijing, China). See the supplementary materials for details of the
synthesis of KCZ derivatives and the remaining methods (Supplementary Methods).

2.2. Cell-Based Chemical Screens

The isogenic MDA-MB-231 and MDA-MB-231BRM cell lines stably expressing the
control vector, GLI1-, or tGLI1-expression vectors we established in our previous study [13];
MCF10A, HepG2, or immortalized human astrocytes were cultured in their respective
culture media. The cells were harvested during the exponential growth phase, seeded
at 2 − 4 × 103 cells per well in 96-well white bottom plates (Greiner Bio-One 655083)
(Kremsmünster, Austria), and incubated at 37 ◦C in 5% CO2 for 24 h. The cells were
subsequently treated with the test compound or vehicle control for 48 h. The final concen-
tration of DMSO (vehicle) was 1% for all treatments. Viability was determined using the
CellTiter-Blue® Cell Viability Assay (Promega G8080) (Madison, WI, USA) according to the
manufacturer’s instructions.
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2.3. Mammosphere Assay

The adherent cells were harvested and seeded at a density of 1 − 4 × 103 cells per well
in 24-well ultra-low attachment plates (Corning 3473) with Dulbecco’s modified Eagle’s
medium/F12 (Gibco 11320033) (Waltham, MA, USA) containing 2% B27 (Gibco 17504044),
20 ng/mL recombinant EGF (Millipore Sigma PHG0311) (Burlington, MA, USA), 4 µg/mL
insulin (Millipore Sigma 12585014), and 100 ng/mL recombinant Sonic Hedgehog protein
(SHH, Millipore Sigma GF174). Beginning 24 h after seeding, the mammospheres were
treated with the vehicle (1% DMSO), KCZ, or KCZ derivatives. The mammospheres were
cultured for 7–14 days and supplemented with 100 µL of fresh treatment prepared in
mammosphere medium every 48 h. The number of spheres with a diameter of at least
100 µm was counted under 5× objective.

2.4. Selective Knockdown of tGLI1 Using Antisense Oligonucleotides (AS-ON)

The control or tGLI1-specific locked nucleic acid (LNA) AS-ONs were custom designed
and purchased from Qiagen (Hilden, Germany). The sequence for the negative control
LNA AS-ON was /56-FAM/*A*A*C*A*C*G*T*C*T*A*T*A*C*G*C. The BLAST analysis
did not show binding of the control to any gene. The sequence for the tGLI1-targeting
AS-ON was /56-FAM/+C+A+A+CT*T*G*A*C*T*T*C*+T+G+TC. Here, phosphorothioated
bases are indicated by *, whereas LNA bases are labeled by +. The knockdown of tGLI1
was conducted as described previously [11,13]. Briefly, BT-20 cells were transfected for
48 h with 100 nM control or tGLI1 AS-ON using Lipofectamine 2000 (Invitrogen 11668027)
(Waltham, MA, USA). The cells were subsequently harvested for the quantitative PCR or
seeded for mammosphere assays.

2.5. Quantitative RT-PCR

The RNeasy Mini Kit (Qiagen 74104) was used to the isolate total RNA and the
cDNA was produced from 1 µg of total RNA using the Superscript III First-Strand cDNA
synthesis system (Invitrogen 18080044). The quantitative PCR was carried out as previously
described [11,12], using the primers described in Supplementary Table S1.

2.6. Animal Studies

Female nude mice of 6–7 weeks of age (Charles River, Wilmington, MA, USA) were
housed in a pathogen-free facility at the Animal Research Program at Wake Forest School
of Medicine (WFSM) under a 12/12 h light/dark cycle and fed irradiated rodent chow ad
libitum. The animal handling procedures were approved by the WFSM Institutional Ani-
mal Care and Use Committee (IACUC). In the tumor prevention model, the mice received
a single 100 µL intraperitoneal treatment of either the vehicle or 50 mg/kg KCZ dissolved
in 100% polyethylene glycol 300 (PEG-300, Sigma 202371) 24 h prior to the intracardiac
inoculation with 2 × 105 exponentially growing SKBRM-tGLI1 cells in 100 µL ice-cold
PBS. Successful inoculations were confirmed via the visualization of brain bioluminescent
signals within 60 min following inoculation; otherwise, the mice were immediately sac-
rificed. The tumor progression was monitored with biweekly bioluminescent imaging
(BLI), in which xenograft-bearing mice were intraperitoneally injected with 100 mg/kg
d-luciferin (Perkin Elmer 122799) (Waltham, MA, USA) and imaged using the IVIS Lu-
mina LT Series III imager (Perkin Elmer). The treatments were administered three times
per week until study termination. The tumor burden was analyzed by quantifying the
BLI signal in each region-of-interest measured in total flux (p/s) with the Living Image
software version 4.7.2 (Perkin Elmer). For the tumor treatment model, the mice were in-
tracardially inoculated with 2 × 105 exponentially growing SKBRM-GLI1 or SKBRM-tGLI1
cells. The successfully inoculated mice were randomized into vehicle or drug treatment
groups (50 mg/kg KCZ-5, KCZ-7, or KCZ dissolved in PEG-300; 50 mg/kg ITZ dissolved in
10% N,N-Dimethylacetamide (DMAc, Sigma ARK2190) and 90% PEG-300), with treatment
beginning 13 days after inoculation. The tumor growth was monitored as described for the
tumor prevention model.
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2.7. Production of tGLI1 Recombinant Protein

The full-length tGLI1 coding sequence was cloned into a modified pET28 expression
vector (pLM303-tGLI1) containing an N-terminal maltose-binding protein (MBP) tag and an
intervening rhinovirus 3C protease cleavage site. The expression construct was transformed
into BL21(DE3)-competent E. coli (Sigma CMC0014) and grown in Luria–Bertani (LB)
medium at 37 ◦C with shaking to an OD600 = 0.6. The cultures were induced with 0.3 mM
isopropyl-β-D-thiogalactoside (IPTG) and allowed to express protein at 16 ◦C overnight.
The harvested bacteria were resuspended in bacterial resuspension buffer (50 mM Tris
pH 7.5, 300 mM NaCl, 1 mM MgCl2, 0.1 mM EDTA, 10% glycerol) and cOmplete protease
inhibitor cocktail (Roche, Penzberg, Germany), then lysed using an Avestin Emulsiflex-C5
cell homogenizer. The cell debris was cleared via centrifugation at 10,000 rpm at 4 ◦C for
30 min, and the cleared lysate was passed over amylose high-flow resin (New England
Biolabs, Ipswich, MA, USA) and washed with at least 3 column volumes of amylose column
buffer (ACB) (50 mM Tris pH 7.5, 250 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 2 mM DTT,
10% glycerol). The bound MBP-tGLI1 protein was eluted with ACB plus 20 mM maltose.
The desired fractions were pooled and dialyzed overnight against the heparin column
buffer (HCB) (50 mM Tris pH 7.5, 100 mM NaCl, 2 mM MgCl2, 0.1 mM EDTA, 2 mM DTT,
5% glycerol) containing HRV 3C PreScission Protease (GE Biosciences, Chicago, IL, USA) to
cleave the MBP tag. The tGLI1 recombinant protein was separated from the cleaved MBP
using a Heparin HiTrap (GE Healthcare Life Sciences, Chicago IL, USA) and eluted using a
linear gradient of HCB plus 2 M NaCl. The fractions containing tGLI1 were pooled and
spin-concentrated using a Vivaspin 20 instrument (Vivaproducts VS2002) (Littleton, MA,
USA), then the aliquots were frozen on dry ice and stored at −80 ◦C until use.

2.8. Electrophoretic Mobility Shift Assay

Approximately 600 ng of recombinant STAT3 (Creative Biomart, STAT3-29823TH)
(Shirley, NY, USA), GLI1 (Creative Biomart, GLI1-312H), or N-tGLI1 protein was mixed
with 5X binding buffer (50 mM Tris pH 7.5, 50 mM NaCl, 200 mM KCl, 5 mM MgCl2,
10 mM EDTA, 5 mM DTT, 250 µg/mL BSA, 25% glycerol), 50 ng/µL poly dI·dC (Sigma
P4929), and 5 pmol 6FAM-labeled dsDNA oligo (Integrated DNA Technologies, Coralville,
IA, USA) in a total reaction volume of 20 µL. The oligos were ordered as the dsDNA
from IDT with the sequences /56-FAM/CGAAGAGACCACCCAGGTAGCT and /56-
FAM/AGCTACCTGGGTGGTCTCTTCG; the GLI1 consensus binding sequence is under-
lined. The binding reactions were incubated on ice for 20 min before electrophoresis on
6% (19:1) acrylamide–bisacrylamide TBE gels using a 0.5× TBE + 2.5% glycerol running
buffer at 80 V. For the drug disruption studies, the binding buffer, protein, and treatment
solutions were combined and incubated for 30 min on ice or at room temperature for GLI1
or N-tGLI1, respectively. The final treatment concentrations were 1% DMSO, 100 µM KCZ,
or 100 µM KCZ-7. After the addition of the dsDNA oligo and poly dI·dC, the reactions
were incubated for an additional 30 min before electrophoresis. The gels were imaged
using the fluorescein module on a ChemiDoc MP system (BioRad, Hercules, CA, USA).

2.9. Chromatin Immunoprecipitation

The SKBRM cells in the exponential growth phase were transfected with GLI1 or
tGLI1 expression plasmid and a GLI1 binding site-driven luciferase construct 8 × 3′GLI1
generously provided by Dr. Hiroshi Sasaki (Osaka University) [22]. After 24 h, the cells were
treated with 1% DMSO, KCZ, or KCZ-7 for 20 h. The cells were stimulated with 100 ng/mL
SHH for 4 h prior to crosslinking with 1% formaldehyde. The excess formaldehyde
was quenched with 0.125 M glycine and the ChIP assay was carried out as described
previously using the ChIP assay kit from EMD Millipore (Cat No. 17-371) [11]. The GLI1
and tGLI1 cell lysates were immunoprecipitated using a GLI1 antibody (Cell Signaling
Technology/CST 2643) (Danvers, MA, USA) that recognizes both GLI1 and tGLI1 and
has been successfully used for ChIP [23]. The normal mouse IgG served as the negative
immunoprecipitation control and the input chromatin was used as the loading control for
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the quantitative RT-PCR. The primers used for the detection of the GLI1-binding site were
5′-GAGTCAGTGAGCGAGGAAG-3′ and 5′-GCCGGGCCTTTCTTTATGT-3′.

2.10. Western Blotting

The immunoblotting was performed as previously described [11,13,24]. The antibodies
included GLI1 (CST; 2643, 1:1000), a custom-made tGLI1-specific antibody (Yenzyme,
1:1000), OCT4 (CST 2750 and CST 4286, 1:1000), Nanog (CST 4903, 1:1000), androgen
receptor (CST 5153, 1:1000), α-Tubulin (Sigma T6074, 1:5000), β-actin (CST 3700, 1:5000),
and Vinculin (CST 13901, 1:5000). The densitometry was performed using ImageJ v1.53c
(NIH, Bethesda, MD, USA).

2.11. Promoter Reporter Assay

The SKBR3 cells in the exponential growth phase were transfected with Vector, GLI1,
or tGLI1 expression plasmid; 8 × 3′GLI1-luciferase reporter; and Renilla luciferase (pRL-
TK) to control for the transfection efficiency for firefly luciferase using XtremeGene HP
(Roche). After 24 h, the cells were treated with the vehicle (1% DMSO) or increasing doses
of KCZ or KCZ-7 for 20 h. The cells were stimulated with 100 ng/mL SHH for 4 h before
the cell lysates were harvested and the luciferase activity was measured using a Firefly
and Renilla luciferase kit (Biotium 30081) (Fremont, CA, USA) on a SpectraMax iD3 plate
reader (Molecular Devices, San Jose, CA, USA). The total transfection and drug treatment
times were 48 and 24 h, respectively. The relative promoter activity was determined by
normalizing the luciferase activity to the Renilla control.

2.12. Statistical Analysis

The data were analyzed and graphed using Prism 9.1 (GraphPad, San Diego, CA,
USA). The descriptive statistics are presented as means ± SEM. The repeated-measures
ANOVAs with post hoc Bonferroni or Dunnett’s multiple comparison test were performed
using Prism 9.1 and used to analyze differential drug effects in the chemical screen, colony
formation, mammosphere formation, and gene expression assays. The Student’s t-tests,
one-way ANOVAs with Dunnett’s or Tukey’s multiple comparison tests, and nonlinear
regression analyses were also performed using Prism.

3. Results
3.1. KCZ Selectively Inhibits Breast Cancer Cells Expressing tGLI1 and Displays Increased
Potency against the CSC Population

To identify potential tGLI1 inhibitors, we conducted a cell-based chemical screen
including 1527 compounds (1504 different compounds after excluding overlapping com-
pounds among different libraries) from three commercial libraries (Selleck Chemicals) using
isogenic TNBC MDA-MB-231 and MDA-MB-231BRM lines engineered to express an empty
vector, GLI1-, or tGLI1 expression vector (Figure 1a). In the initial screen, the viability
was assessed using the CellTiter-Blue® Viability Assay and tGLI1-selective compounds
were defined as having reduced viability by 20% at 5 µM in the tGLI1-expressing cells
compared to the other two lines. The results (Supplementary Table S2) showed 10 com-
pounds with tGLI1 selectivity for MDA-MB-231 and 10 compounds with tGLI1 selectivity
for MDA-MB-231BRM. KCZ was the only tGLI1-selective compound for both lines. Con-
sequently, KCZ was further tested in a dose-escalating screen that included an expanded
dose curve spanning 1 nM to 10 µM to reduce the rate of false positives (Type I error).
Using this approach, we found that KCZ selectively inhibited tGLI1-expressing, but not the
control vector or GLI1-expressing, MDA-MB-231 (EC50 = 354.3 pM) and MDA-MB-231BRM
(EC50 = 377.9 pM) cell lines (Figure 1b).
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Figure 1. KCZ selectively inhibits breast cancer cells expressing tGLI1 with increased potency against
the CSC population. (a) Confirmation of MDA-MB-231 and MDA-MB-231BRM cell lines stably
expressing control vector, GLI1-, or tGLI1-expression vectors using RT-qPCR and a Western blot
analysis. Schematic summarizing the first phase of the tGLI1 inhibitor screen that flagged KCZ as a
potential tGLI1 inhibitor. MDA-MB-231 and MDA-MB-231BRM cell lines stably expressing the control
vector, GLI1-, or tGLI1 expression vectors were seeded in 96-well plates and treated with the test
compound. (b) KCZ’s effects were confirmed by a dose-escalating screen to confirm tGLI1 selectivity.
Asterisks denote results of intra cell line post hoc Dunnett’s multiple comparison test against vehicle
treatment. (c) Colony formation assay in which MDA-MB-231 and MDA-MB-231BRM cells stably
expressing either an empty vector, GLI1, or tGLI1 were seeded at a low density (250 cells/well) and
treated for 10 days. Asterisks denote results of post hoc Dunnett’s multiple comparison test against
vehicle treatment. (d) The tGLI1 protein expression in normal brain and breast microenvironmental
cells using a Western blot analysis. The positive control is represented by the breast cancer cell line
MDA-MB-231 stably overexpressing tGLI1. Ketoconazole activity against normal brain and breast
microenvironmental cells. Note: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; two-way (b,c) or
one-way (d) ANOVA with post hoc Bonferroni’s or Dunnett’s multiple comparison test, respectively.
The uncropped blots are shown in page 1 of supplementary materials File S1.
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Given tGLI1’s role in promoting breast CSCs [13]—a small population of cells thought
to be responsible for cancer progression, metastasis, and recurrence—we wanted to deter-
mine whether KCZ could target this subpopulation. Since MDA-MB-231 and MDA-MB-
231BRM cells are unable to reliably form mammospheres, which are commonly used to
model the breast CSC population [25], a colony formation assay was performed instead.
Briefly, the cells were seeded at a low density and treated with the vehicle or KCZ for
10 days, after which the colonies were counted following Crystal Violet staining. The
treatment with KCZ significantly reduced the colony formation of tGLI1-expressing MDA-
MB-231 (EC50 = 118.7 pM) and MDA-MB-231BRM (EC50 = 417.4 pM) relative to both the
vector and GLI1-expressing cells, suggesting that KCZ targets the CSC subpopulation
(Figure 1c). In contrast, the colony formation of the vector and GLI1-expressing cell lines
was unaffected by the KCZ treatment (Figure 1c). Given the pronounced effect of KCZ
on the tGLI1-positive brain metastatic breast CSC subpopulation, we then assessed the
effect of KCZ on normal cells residing in brain and breast microenvironments. Interestingly,
KCZ did not significantly affect the growth of any of the four cell lines tested, which
is attributed to the lack of endogenous tGLI1 protein expression (Figure 1d). KCZ only
induced significant toxicity at the 10 µM dose in immortalized human astrocytes (Figure 1d,
top left), while a normal human brain endothelial cell line (HBMEC; Figure 1d, bottom
left) and two immortalized human mammary epithelial cell lines (HMLE and MCF10A:
Figure 1d, top right; Figure 1d, bottom right, respectively) were unaffected by KCZ. These
findings suggest that KCZ selectively inhibits tGLI1-expressing breast cancer cells and does
not significantly impact GLI1-expressing breast cancer cells or normal cells found in the
brain and breast microenvironments.

3.2. tGLI1 Expression Is Required for the KCZ-Induced Suppression of Breast CSCs

To further investigate the ability of KCZ to inhibit the breast CSC subpopulation,
we performed mammosphere formation assays. In agreement with the colony forma-
tion assay (Figure 1c), KCZ significantly reduced the mammosphere formation of HER2-
enriched tGLI1-expressing brain metastatic SKBR3 (SKBRM) cells (EC50 = 15.06 pM)
without concomitant effects on the vector control (EC50 = 461.1 nM) or GLI1-expressing
(EC50 = 573.2 nM) mammosphere formation (Figure 2a). We have previously shown that
tGLI1 expression is induced under mammosphere-forming conditions compared to the
standard monolayer culture [13]. Given this, we wanted to compare the ability of KCZ to
inhibit the CSC subpopulation compared to the total cell population. BT-20 and MCF7 cells
were concurrently grown as either monolayer (ML) or mammospheres (MS) and treated
with KCZ. KCZ significantly suppressed mammosphere formation, but not monolayer
viability, in both the BT-20 (EC50 = 68.17 pM) and MCF7 (EC50 = 122.6 pM) cells, suggesting
that KCZ effectively targets the breast CSC subpopulation expressing endogenous levels of
tGLI1 (Figure 2b). The qPCR analysis confirmed that tGLI1 expression was significantly
enriched in mammospheres compared to the monolayer in both BT-20 and MCF7 cell
lines (Figure 2c). Next, we investigated whether tGLI1 knockdown would abolish the
KCZ-sensitivity of CSCs. Briefly, BT-20 cells were transfected with either a non-targeting
locked nucleic acid (LNA) anti-sense oligonucleotide (AS-ON) or a tGLI1 targeting AS-ON
before seeding in mammosphere-forming conditions. Phosphorothioated and LNA bases
of the oligonucleotide precluded the nuclease-mediated degradation. The transfection
with the tGLI1 AS-ON specifically reduced tGLI1, but not GLI1, mRNA expression and re-
duced tGLI1 protein expression, confirming the specificity (Figure 2d,e). While transfection
with the non-targeting AS-ON did not significantly affect the BT-20 mammosphere forma-
tion, the tGLI1 knockdown significantly reduced the average number of mammospheres
(Figure 2f), confirming the previous results that tGLI1 promotes mammosphere forma-
tion [13]. Importantly, the tGLI1 knockdown abolished KCZ’s effects on mammosphere
formation, demonstrating the requirement of tGLI1 in the KCZ-mediated suppression of
CSCs (Figure 2f). Collectively, these results demonstrate that tGLI1 is required for the
ability of KCZ to inhibit the breast CSC subpopulation.
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Figure 2. The tGLI1 expression is required for the KCZ-induced suppression of breast CSCs. (a)
Mammosphere formation of SKBRM stable cell lines after 7 days of treatment (left). Representative
images of mammospheres at day 7 (right). Scale bar represents 200 µm. (b) KCZ activity against
parental breast CSCs expressing endogenous tGLI1 and the total cell population. Parental BT-20 (left)
and MCF7 (right) were grown concurrently as mammospheres (MS, orange) or monolayers (ML,
black) and treated with KCZ (top). ML viability was determined by CellTiter-Blue® Viability assay
while the number of spheres was used to assess the CSC subpopulation. Representative images of
BT-20 or MCF-7 mammospheres after KCZ treatment (bottom). Scale bar represents 100 µm. (c) GLI1
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and tGLI1 expression in BT-20 (left) and MCF7 (right) MS relative to the ML. (d) GLI1 and tGLI1
mRNA expression in BT-20 cells transfected with a tGLI1 antisense oligonucleotide (AS-ON) as
indicated by qPCR. (e) The tGLI1 protein expression in BT-20 cells transfected with a tGLI1 ASON, as
indicated by Western blotting. (f) The tGLI1-knockdown attenuates the KCZ-mediated inhibition
of BT-20 mammosphere formation. Note: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001;
two-way ANOVAs with post hoc Bonferroni’s multiple comparison test (a,b,f) and two-tailed Stu-
dent’s t-test (c,d) were used to calculate p-values. The uncropped blots are shown in page 1 of
supplementary materials File S1.

3.3. KCZ Reduces the Ability of tGLI1-Positive Circulating Breast Cancer Cells to Undergo
Colonization and Form Brain Metastases In Vivo

Given the previous evidence implicating tGLI1 in breast cancer metastasis brain-
tropism [13] and the heightened KCZ sensitivity of tGLI1-positive breast CSCs in vitro
(Figures 2 and 3), we next investigated whether KCZ could inhibit the ability of tGLI1-
positive circulating breast cancer cells to undergo BCBM in vivo by treating mice with the
vehicle or KCZ (50 mg/kg, ip) 24 h prior to the intracardiac implantation of SKBRM-tGLI1
cells, then continuing the KCZ treatment (50 mg/kg, ip, 3 times/week) through the end of
the study (Figure 3a). The KCZ treatment significantly impaired the development of brain,
but not bone, metastases compared to the control (Figure 3b,d). Additionally, the lung
metastasis size also significantly decreased with the KCZ treatment (Supplementary Figure
S1a,b). Ex vivo imaging of the resected samples showed that KCZ reduced the frequency
of brain and bone metastases by 45% and 11%, respectively (Figure 3c). Furthermore, the
KCZ treatment was well tolerated by the mice as the body weight showed no significant
differences compared to the vehicle throughout the study (Figure 3e). Together, the results
in Figure 3 show that KCZ reduces the ability of circulating tGLI1-positive breast cancer
cells to undergo colonization and form brain metastases in vivo.

3.4. KCZ Selectively Inhibits the Progression of Established tGLI1-Positive Breast Cancer Brain
Metastases In Vivo

Despite observing a significant reduction in brain metastasis size with KCZ treat-
ment in the previous BCBM prevention model (Figure 3), we could not conclude that
KCZ penetrates the BBB to inhibit established breast cancer brain metastases. To address
this, we conducted a second in vivo study in which the KCZ treatment (50 mg/kg, ip)
began upon the detection of brain metastases 13 days following intracardiac inoculation
with either GLI1-expressing or tGLI1-expressing SKBRM cell lines (Figure 4a). The ex
vivo bioluminescent analysis revealed a significant reduction in tGLI1, not GLI1, brain
metastasis size with KCZ treatment (Figure 4b). Furthermore, the untreated tGLI1 brain
metastases were significantly larger than untreated GLI1 metastases (Figure 4b), confirming
the previous results demonstrating tGLI1’s role in promoting the aggressiveness of breast
cancer brain metastases [13]. The lung metastasis size was not significantly affected by
the KCZ treatment in either group (Supplementary Figure S2a,b). The KCZ treatment
reduced the frequency of detected SKBRM-tGLI1 brain metastases by 38% but did not
affect the SKBRM-GLI1 group (Figure 4c). Neither the bone nor lung metastasis frequency
was reduced with the KCZ treatment (Supplementary Figure S2c,d). Concordant with the
BCBM prevention study (Figure 3), the bone metastasis size was not significantly reduced
by the KCZ treatment (Figure 4d). The KCZ treatment was also well tolerated in this study
(Figure 4e). There was no significant increase in serum alanine transaminase (ALT) activity,
a marker of acute liver damage, with the KCZ treatment in mice with either GLI1- or tGLI1-
expressing metastases (Figure 4f). Of note, the measured ALT activity was well below the
published threshold values (109 ± 18 U/L) using thioacetamide, which is commonly used
to induce acute liver damage [26]. Taken together, these data demonstrate KCZ’s selectivity
and efficacy against the progression of established tGLI1-positive brain metastases in vivo.
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Figure 3. KCZ reduces the ability of the tGLI1-positive circulating breast cancer cells to undergo
colonization and form brain metastases in vivo. (a) Schema for the intracardiac brain metastasis
prevention model. Isogenic luciferase-expressing SKBRM-tGLI1 cells were injected into the left
ventricle of female nude mice and the tumor growth was assessed biweekly via bioluminescent
imaging. The mice received a single intraperitoneal treatment of 100 µL PEG-300 or 50 mg/kg KCZ
24 h prior to inoculation and continued to receive treatment 3 times per week (N = 9 per group).
(b) Ex vivo brain and bone bioluminescence. (c) Incidence rates of brain and bone metastases in
each treatment group at study endpoint. (d) Representative bioluminescent images of ex vivo brain
and bone metastases. (e) Average weight of mice treated with vehicle or KCZ. Note: **, p < 0.01;
two-tailed Student’s t-test (b) and an exact binomial test (c) were used to calculate p-values.
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Figure 4. KCZ selectively reduces the progression of tGLI1-positive breast cancer brain metastases
in vivo. (a) Schema for intracardiac brain metastasis treatment model. Isogenic luciferase-expressing
GLI1 or tGLI1 SKBRM cells were injected into the left ventricle of female nude mice and tumor growth
was assessed biweekly via bioluminescent imaging. Mice received 3 treatments per week of 100 µL
PEG-300 or 50 mg/kg KCZ beginning 13 days post-inoculation (N = 9–10 per group). (b) Ex vivo
brain bioluminescence at study endpoint (top). Representative ex vivo brain bioluminescence images
(bottom). (c) Brain metastasis incidence at study endpoint. (d) Ex vivo bone bioluminescence at study
endpoint (top). Representative ex vivo bone bioluminescence images (bottom). (e) Average weight of
mice in each group. (f) Serum alanine transaminase (ALT) activity. Striped region represents range of
ALT activity in athymic mice following thioacetamide-induced acute liver injury. Note: *, p < 0.05;
**, p < 0.01; two-way ANOVA with post hoc Bonferroni’s multiple comparison test (b,d,f) was used
to calculate p-values.
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3.5. Novel KCZ Derivative KCZ-7 Retains tGLI1 Selectivity and In Vivo Efficacy While Readily
Permeating the BBB

Given the experimental evidence demonstrating the ability of KCZ to selectively
inhibit the progression of tGLI1-positive BCBM in vivo and the potential hepatotoxicity
associated with KCZ use in humans [27], we sought to determine if alterations of the
chemical moieties of KCZ could increase the BBB penetration and reduce the liver damage
while retaining the tGLI1 selectivity. To this end, we designed six novel KCZ derivatives by
performing single moiety substitutions (Supplementary Figure S3a). Viability assays using
HepG2 hepatocellular carcinoma cells to model the liver metabolism, human mammary
epithelial cells, and human astrocytes were performed to evaluate the off-target toxicity.
KCZ-4, KCZ-6, and KCZ-10 elicited low-dose toxicity in HepG2 cells, while no compound
induced significant toxicity in either human mammary epithelial cells or human astrocytes
(Supplementary Figure S4b–d). The tGLI1 selectivity of each derivative was assessed
using the SKBRM mammosphere and cell viability assay. Of the six novel derivatives,
KCZ-5 and KCZ-7 demonstrated tGLI1 selectivity and potency rates similar to KCZ in the
SKBRM mammosphere assay (Figure 5a, Supplementary Figure S5). We then compared the
bioavailability and BBB penetrance of these derivatives to the parent compound in tumor-
naïve mice. The mass spectrometry analysis showed that the concentration of KCZ-7 was
significantly higher than those of KCZ and KCZ-5 in the brain tissue of mice treated with a
single intraperitoneal 50 mg/kg dose, while its serum concentration was not significantly
different from that of KCZ (Figure 5b). Given the higher BBB penetrance of KCZ-7, we
next tested this compound in the BCBM tumor treatment mouse model (Figure 5c). The
treatment with KCZ-7 significantly reduced the size (Figure 5d) and detection frequency
(Figure 5e) of established SKBRM-tGLI1 brain metastases compared to the control treatment,
while the bone metastases (Figure 5f) and lung metastases (Supplementary Figure S6a,b)
were unaffected. The size of the KCZ-7-treated brain metastases trended toward being
significantly smaller compared to those treated with KCZ; however, this comparison did
not reach significance (p = 0.079) (Figure 5d). Both agents were well tolerated over the
course of the study (Figure 5g) and the serum ALT levels were not significantly increased
with treatment with either KCZ or KCZ-7 (Figure 5h). To confirm the effects of KCZ
and KCZ-7 on BCBM in vivo, we performed an immunohistochemistry (IHC) analysis of
resected brain samples. The SKBRM-tGLI1 BCBM treated with KCZ or KCZ-7 presented
with significantly reduced tGLI1 protein expression, proliferative index (Ki-67), VEGF-A
protein expression, and microvessel density (mCD31) levels (Figure 5i–m). Interestingly,
the FDA-approved antifungal itraconazole (ITZ), a broad-spectrum triazole developed by
Jansen Pharmaceutica that gradually replaced KCZ in the 1990s, did not significantly reduce
the size of tGLI1-positive brain, bone, or lung (Supplementary Figure S7a–d) metastases,
despite being a known SMO inhibitor [19]. ITZ also did not reduce the frequency of detected
brain metastases at the study endpoint (Supplementary Figure S7e). These treatments were
also well tolerated, as indicated by the lack of significant differences in body weight or
serum ALT activity (Supplementary Figure S7f,g). These data demonstrate that KCZ-7
retains its tGLI1 selectivity and in vivo efficacy and displays enhanced BBB permeability.
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Figure 5. The novel KCZ derivative KCZ-7 retains its tGLI1 selectivity and in vivo efficacy while
readily permeating the BBB. (a) The structures of KCZ, KCZ-5, and KCZ-7 (top). The effect of
treatment with KCZ-5 (left) or KCZ-7 (right) on mammosphere formation of SKBRM cell lines. As-
terisks denote comparison to intra-cell line vehicle treatment. (b) Concentrations of KCZ, KCZ-5,
and KCZ-7 measured in whole mouse brain homogenate or mouse serum. Mice received a single
intraperitoneal treatment of 50 mg/kg KCZ, KCZ-5, or KCZ-7. Matched whole blood and brain
samples were collected 20 min after treatment and analyzed using mass spectrometry (N = 3).
(c) Schema for intracardiac brain metastasis treatment model. (d) Ex vivo brain bioluminescence
at study endpoint (top) (N = 10 per group). Representative ex vivo brain bioluminescent images
(bottom). (e) Brain metastasis incidence rates at study endpoint. (f) Ex vivo bone bioluminescence
at study endpoint (top) (N = 10 per group). (g) Average weight of mice in each group. (h) Serum
alanine transaminase (ALT) activity. (i) Representative tGLI1, Ki-67, VEGF-A, and mCD31 expres-
sion levels as assessed by IHC in mice bearing SKBRM-tGLI1 brain metastases treated with vehicle,
50 mg/kg KCZ, or 50 mg/kg KCZ-7. (j–m) IHC quantification of tGLI1 expression (j), proliferative in-
dex (k), VEGF-A expression (l), and microvessel density (m) levels of SKBRM-tGLI1 brain metastases
(N = 4 per group). Scale bar represents 100 µm. NS, not significant; *, p < 0.05; **, p < 0.01;
***, p < 0.001; ****, p < 0.0001; two-way ANOVAs with post hoc Dunnett’s multiple comparison
test (a) or one-way ANOVA with post hoc Tukey’s multiple comparison test (b,d,f,h,i–m) were used
to calculate p-values.

3.6. KCZ and the Novel Derivative KCZ-7 Inhibit tGLI1’s DNA-Binding Activity, Leading to
Reduced Expression of tGLI1-Targeted Stemness Genes Nanog and OCT4

Next, we aimed to uncover the mechanism by which KCZ and KCZ-7 inhibit tGLI1-
positive breast cancer. First, we asked if KCZ or KCZ-7 inhibited tGLI1-positive breast
cancer through androgen receptor antagonism, since KCZ is known to inhibit the androgen
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receptor and has shown clinical efficacy as a second-line therapy for castration-resistant
prostate cancer [28]. The Western blots illustrated that the isogenic SKBRM cell lines used
in the in vivo and in vivo models did not express the androgen receptor to an appreciable
extent, precluding KCZ and KCZ-7 from inhibiting tGLI1-positive breast cancer through
androgen receptor antagonism (Supplementary Figure S8a). Second, we asked whether
KCZ reduced tGLI1 protein expression. Treatment with 1 µM KCZ or KCZ-7 for 24 h
did not reduce tGLI1 protein expression in isogenic SKBRM (Figure 6a) or MDA-MB-231
(Supplementary Figure S8b) cell lines. Next, we hypothesized that these compounds dis-
rupt tGLI1’s transcriptional activity to exhibit efficacy against tGLI1-positive breast cancer
cells. We began by expressing and purifying recombinant tGLI1 protein because it is not
commercially available. Despite only being 40 kDa, the recombinant protein was detected
by our custom-made tGLI1 antibody that recognizes the N-terminal junction region spe-
cific to tGLI1 (Figure 6b, left; Supplementary Figure S13) [12]. The sequencing by mass
spectrometry confirmed that this N-terminal tGLI1 (N-tGLI1) protein contains all 5 zinc
finger domains found in full-length GLI1 and tGLI1 (Supplementary Figure S9) [8]. The
electrophoretic mobility shit assays (EMSA) confirmed the ability of the N-tGLI1 protein
to bind the consensus GLI1/tGLI1-binding sequence (Figure 6b, right). The recombinant
GLI1 (commercially available) bound to the probe, as expected, whereas the recombinant
STAT3 (negative control) did not bind to the probe. Importantly, both KCZ and KCZ-7
selectively reduced the binding of N-tGLI1, but not GLI1, to the consensus GLI1/tGLI1-
binding sequence (Figure 6c), suggesting that KCZ and KCZ-7 reduce the tGLI1 activity
by reducing the tGLI1 DNA binding. To complement this finding, we performed chro-
matin immunoprecipitation (ChIP) using SKBRM cells and found that the KCZ and KCZ-7
treatments reduced the binding of tGLI1, but not GLI1, to the GLI1 promoter (Figure 6d).
Finally, we investigated whether KCZ or KCZ-7 could reduce the tGLI1-mediated gene
transcription, since tGLI1 transactivates gene promoters containing the GLI1 consensus
binding site to upregulate at least ten target genes not regulated by GLI1 [8–11,13]. The
luciferase assays demonstrated that the tGLI1-mediated transactivation of the GLI1-binding
site was more sensitive to the KCZ and KCZ-7 treatments compared to GLI1-mediated
promoter transactivation (Figure 6e,f). The gene expression analysis revealed that the
tGLI1-mediated stemness genes Nanog and OCT4 were significantly downregulated in
tGLI1-expressing SKBRM (Figure 6g,h; Supplementary Figure S10) and MDA-MB-231
(Supplementary Figure S11) cells following treatment with KCZ or KCZ-7. The Western
blot analysis confirmed the downregulation of Nanog and OCT4 protein expression fol-
lowing treatment with KCZ or KCZ-7 (Figure 6i, Supplementary Figure S8b). Moreover,
the overexpression of either Nanog or OCT4 rescued the SKBRM-tGLI1 mammospheres
from the KCZ and KCZ-7 treatments (Figure 6j,k; Supplementary Figure S12), indicating
that the downregulation of these stemness genes is critical for KCZ and KCZ-7’s effects
on tGLI1-positive breast CSCs and brain metastases. Together, the results in Figure 6
show that KCZ and KCZ-7 inhibit tGLI1’s DNA-binding activity, leading to the reduced
expression of the tGLI1-targeted stemness genes Nanog and OCT4, leading to reduced
mammosphere formation.
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Figure 6. KCZ and the novel derivative KCZ-7 inhibit tGLI1 transcriptional activity leading to
downregulation of validated tGLI1-mediated stemness genes Nanog and OCT4. (a) Representative
Western blots of GLI1 and tGLI1 expression in isogenic SKBRM cell lines following 24 h treatment
with vehicle, 1 µM KCZ, or 1 µM KCZ-7. The same membrane was probed to assess the loading
control. (b) Western blots of recombinant GLI1 and N-tGLI1 (left). A tGLI1-selective Ab was used
to detect tGLI1. Binding of recombinant GLI1 and N-tGLI1 to a dsDNA oligonucleotide containing
the consensus GLI1/tGLI1-binding site (right). STAT3 was used as a negative control. (c) The DNA-
binding ability of recombinant N-tGLI1, but not GLI1, is disrupted by KCZ or KCZ-7 treatment.
(d) Relative binding of GLI1 or tGLI1 to the GLI1-binding sites in SKBRM cells, as determined by
chromatin immunoprecipitation; qPCR was performed using primers spanning the GLI1 binding
site. (e,f) Inhibition of GLI1- and tGLI1-mediated promoter transactivation by KCZ (e) and KCZ-7
(f). SKBR3 cells were transiently transfected with 8 × 3′GLI1 luciferase reporter and vector, GLI1, or
tGLI1 plasmids, then treated with increasing doses of KCZ (e) or KCZ-7 (f) for 48 h and stimulated
with SHH ligand (100 ng/mL) for 4 h. Right: Relative luciferase activity normalized to vehicle
treatment. (g,h) Selective reduction of tGLI1-mediated stemness genes Nanog (g) and OCT4 (h)
mRNA as assessed by RT-qPCR in isogenic SKBRM cell lines treated with vehicle, 1 µM KCZ, or 1 µM
KCZ-7 for 24 h. (i) Nanog and OCT4 protein expression following treatment with vehicle, 1 µM KCZ,
or 1 µM KCZ-7 in isogenic SKBRM cell lines. The same membrane was probed to assess the loading
control. (j,k) Overexpression of Nanog (j) or OCT4 (k) rescues SKBRM-tGLI1 mammospheres from
KCZ and KCZ-7 treatment. Scale bars represent 200 µm. N-tGLI1, N-terminal tGLI1; *, p < 0.05;
**, p < 0.01; ***, p < 0.001; ****, p < 0.0001; two-way ANOVA with post hoc Dunnett’s (d–f) or
Bonferroni’s (g,h,j,k) multiple comparison test was used to calculate p-values. The uncropped blots
are shown in page 2 of supplementary materials File S1.
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4. Discussion

We previously published the discovery of the novel gain-of-function GLI1 transcription
factor, tGLI1, and its role in breast cancer progression and metastasis [8–13,24]. Importantly,
we also reported that tGLI1 promotes breast CSCs and breast cancer metastasis to the
brain [13]. Given tGLI1’s tumor-specific expression and potent metastasis-promoting effects,
tGLI1 is an ideal therapeutic target, and we endeavored to identify a tGLI1 inhibitor to treat
tGLI1-positive breast cancer. We made the following significant novel observations in this
study: (a) the systematic dose escalation screening revealed the KCZ, an FDA-approved
imidazole antifungal, selectively inhibits tGLI1-expressing, but not GLI1-expressing, breast
cancer cells with increased efficacy against the breast CSC subpopulation in vitro; (b) tGLI1
expression is required for KCZ-mediated breast CSC inhibition; (c) the systemic KCZ
treatment significantly inhibited the tGLI1-positive BCBM engraftment and progression;
(d) the novel KCZ derivative KCZ-7 retains tGLI1 selectivity in vitro while demonstrating
increased BBB penetrance; (e) KCZ and KCZ-7 inhibit tGLI1-positive BCBM, in part,
through reducing tGLI1 DNA binding, leading to the suppression of tGLI1-mediated
promoter transactivation and the downregulation of the tGLI1-mediated stemness genes
Nanog and OCT4; (f) in contrast, itraconazole, another FDA-approved antifungal, failed
to suppress BCBM. By reporting these findings, our study validates tGLI1 as a novel
actionable target for the treatment of breast cancer brain metastases.

Drug repurposing, in which previously developed drugs are applied to new indica-
tions, helps bypass the traditional drug development pipeline for areas of unmet clinical
need [29,30]. The anticancer potential of azole antifungal drugs has been considerably
investigated since KCZ was repurposed as a treatment option for hormone-dependent
prostate cancer due to its anti-steroidogenesis activity [28]. However, in clinical breast can-
cer trials, KCZ is typically used to prevent the clearance of the primary therapeutic through
CYP3A4 modulation [31]. Furthermore, the BBB penetrance of KCZ in the context of brain
metastases remains largely unknown. To this end, we initiated a window-of-opportunity
study in patients with BCBM and recurrent gliomas to determine if KCZ crosses the BBB
and alters tGLI1 signaling in humans (NCT03796273).

Other researchers have reported the anticancer activity of several azole antifungal
drugs, notably clotrimazole [32], KCZ [33,34], and ITZ [19,35], in several cancer cell lines.
However, with the exception of KCZ, no other azole antifungal was active in our tGLI1
selectivity cell-based chemical screen. Interestingly, ITZ inhibits the Hedgehog (Hh) signal-
ing pathway [19], of which tGLI1 is a terminal effector, by antagonizing SMO activity. The
lack of efficacy of ITZ in our in vivo studies (Supplementary Figure S7) suggests that tGLI1
can be activated by non-canonical pathways or through crosstalk with other oncogenic
pathways including TGF-β, epidermal growth factor receptor (EGFR), Notch, and Wnt/β-
catenin [36,37]. In patients with TNBC, the co-activation of the Hh and Wnt signaling
pathways is associated with an inferior prognosis and greater risk of tumor recurrence [38].
The transcriptome analysis of WNT3a-responsive TNBC cell lines revealed multiple Wnt
target genes that are involved in Hh pathway signaling [39]. Additional research by Maeda
et al. suggested that Wnt signaling via the downstream activation of β-catenin may increase
the transcriptional activity of GLI1 [40]. GSK3β, a negative regulator of the Wnt pathway,
is able to directly bind and phosphorylate SUFU, leading to the release of GLI1, suggesting
that GSK3β may act as a positive regulator of the Hh pathway [41]. The ability of the
Wnt pathway to promote GLI1, and potentially tGLI1, activation in combination with the
limited efficacy of SMO inhibitors in breast cancer clinical trials provides the rationale for
directly targeting tGLI1 as a potential therapeutic modality.

Our results from two mouse models of breast cancer metastasis indicate that KCZ and
the novel derivative KCZ-7 retain tGLI1 selectivity and antitumor efficacy in vivo. Despite
the apparent increase in BBB permeability of KCZ-7 compared to KCZ (Figure 5b), there
was not a significant increase in efficacy in vivo (Figure 5d). The addition of a toluene
moiety to the terminal acetyl group of KCZ to create KCZ-7 decreased the compound
polarity and likely increased the passive diffusion across the BBB [6,42]. However, this
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minor substitution was not sufficient to increase the efficacy against tGLI1-positive BCBM.
The drug concentration at the target site is not the sole factor that influences the therapeutic
efficacy in the central nervous system (CNS) [43]. Rather, the thermodynamics and kinetics
of drug target binding, e.g., the rates of drug target complex formation (kon), breakdown
(koff), and drug target residence times (1/koff), likely play dominant roles in determining
target engagement in this protected environment, given that the drug exposure in the CNS is
lower than in the systemic circulation. Therefore, the toluene moiety was likely insufficient
to significantly improve the drug target binding and further reduce the tGLI1 activity.

The crystal structures of the full-length GLI1 and tGLI1 proteins have not been solved
yet. Even though the recombinant N-tGLI1 protein used in these studies contained the
DNA binding domain (Figure 6b), the BL21(DE3) system was only capable of producing
the first ~40 kDa of the tGLI1 protein (Supplementary Figure S9). The full-length GLI1
structure has not been reported due to its large size, poor solubility, and high level of
disorder, which likely underlies the difficulty we experienced in attempting to purify
full-length tGLI1. Therefore, it is an important future task to synthesize the full-length
tGLI1 protein. It is an equally important task to resolve the structures of both proteins
to facilitate further development efforts. Solving the tGLI1 protein structure and the
identification of the core chemical structures required to inhibit tGLI1 activity will be
essential to enhancing the inhibitor selectivity, efficacy, blood–brain barrier penetrance, and
bioavailability. Furthermore, the creation and characterization of KCZ-7 provides evidence
that further investigation of the structure–activity relationship between azoles and tGLI1
antagonism is merited.

In this study, we demonstrated that KCZ and KCZ-7 inhibit tGLI1-positive breast
cancer through the antagonism of tGLI1 transcriptional activity. A previous Kaplan–Meier
analysis of Gene Expression Omnibus (GEO) datasets indicated that breast cancer patients
with high OCT4 expression, but not Nanog expression, had shortened brain-metastasis-free
survival times, pointing to the clinical utility of reducing OCT4 expression through tGLI1
inhibition to treat patients with BCBM [13]. Bae et al. recently demonstrated that KCZ
inhibits the proliferation and motility of MCF7 and MDA-MB-231 breast cancer cells via
the induction of G1-phase arrest, and also observed reduced invasiveness through the
inhibition of matrix metalloproteinase 9 (MMP9) in MDA-MB-231 but not MCF7 cells [34].
Interestingly, these results were observed irrespective of the tGLI1 status. It stands to
reason that given the more aggressive phenotype, MDA-MB-231 cells exhibit a higher
basal expression level of tGLI1 relative to MCF7 cells, which may, in part, explain the lack
of MMP9 inhibition in MCF7 cells treated with KCZ. We previously reported that tGLI1
modulates the invasion of glioblastomas and breast cancer through the upregulation of
heparanase [12] and MMP9 [9] expression, respectively. In light of the findings published
by Bae et al., it will be important to investigate the inhibition of breast cancer invasion and
cell cycle arrest by KCZ and KCZ-7 in the context of the tGLI1 status to fully characterize
the mechanism of these compounds.

5. Conclusions

In summary, our findings demonstrate that tGLI1 is an actionable target for the preven-
tion and treatment of breast cancer brain metastases. These results, in concert with previous
studies, strengthen the rationale to further investigate: (a) KCZ and other azole compounds
as candidate cancer therapeutics; (b) the non-canonical pathways leading to GLI1 and tGLI1
activation; (c) the structure–activity relationship between azole compounds and tGLI1
antagonism; and (d) additional mechanisms by which KCZ and related compounds inhibit
tGLI1-positive breast cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14174256/s1, Figure S1: KCZ treatment reduces the lung engraftment of tGLI1-positive
breast cancer cells. Figure S2: KCZ treatment does not reduce the progression of tGLI1-positive
breast cancer lung metastases in vivo. Figure S3: The chemical structures of novel KCZ derivatives.
Figure S4: Novel KCZ derivatives elicit little to no toxicity in HepG2, human mammary epithelial
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cells, and human astrocytes. Figure S5: Novel KCZ derivatives. Figure S6: KCZ-7 does not reduce
SKBRM-tGLI1 lung metastasis progression. Figure S7: ITZ does not reduce the progression of
SKBRM-tGLI1 metastases in vivo. Figure S8: KCZ and KCZ-7 treatment reduce the expression of
tGLI1-mediated stemness genes Nanog and OCT4 in MDA-MB-231 cells. Figure S9: The sequence of
the recombinant N-tGLI1 protein as determined by mass spectrometry. Figure S10: The expression
of validated tGLI1 target genes after treatment with KCZ or KCZ-7 in isogenic SKBRM cell lines.
Figure S11: The expression of validated tGLI1 target genes after treatment with KCZ or KCZ-7
in isogenic MDA-MB-231 cell lines. Figure S12: Nanog and OCT4 overexpression in transfected
SKBRM-tGLI1 cells. Figure S13: The pLM303-tGLI1 recombinant protein purification. Table S1:
RT-qPCR primers. Table S2: Drug screening results in isogenic MDA-MB-231 and MDA-MB-231BRM
lines. References [10–14,24] are cited in the Supplementary Materials.
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