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Abstract: Cyborg insect control methods can be divided into invasive methods and noninvasive
methods. Compared to invasive methods, noninvasive methods are much easier to implement, but
they are sensitive to complex and highly uncertain environments, for which classical control methods
often have low control accuracy. In this paper, we present a noninvasive approach for cyborg moths
stimulated by noninvasive ultraviolet (UV) rays. We propose a fuzzy deep learning method for cyborg
moth flight control, which consists of a Behavior Learner and a Control Learner. The Behavior Learner
is further divided into three hierarchies for learning the species’ common behaviors, group-specific
behaviors, and individual-specific behaviors step by step to produce the expected flight parameters.
The Control Learner learns how to set UV ray stimulation to make a moth exhibit the expected flight
behaviors. Both the Control Learner and Behavior Learner (including its sub-learners) are constructed
using a Pythagorean fuzzy denoising autoencoder model. Experimental results demonstrate that the
proposed approach achieves significant performance advantages over the state-of-the-art approaches
and obtains a high control success rate of over 83% for flight parameter control.

Keywords: intelligent cyborgs; cyborg moth; deep learning; fuzzy systems; flight control

1. Introduction

Cyborg insects, i.e., insect–computer hybrid robots that combine living insects and
miniature machines, have numerous potential applications including search and rescue,
target detection and surveillance, network fault location and maintenance, animal popu-
lation control in agriculture, and endangered species protection, to name just a few [1–4].
This new field introduces the possibility, beyond traditional bio-inspiration, of the merging
of natural and artificial worlds in synergistic systems [5]. The study of cyborg insects, in its
modern form, started with the pioneering work of Holzer and Shimoyama [6], who built
a line-tracing electronic backpack that obtains input from two photosensors and uses an
on-board algorithm to control cockroaches (Periplaneta Americana) via electric stimulation
to walk along a black line. The locomotion control of cockroaches has also been realized
by stimulation of ganglia [7], antennae, and cerci [8,9]. Recently, more studies have been
devoted to flying cyborg insects such as beetles [10–13], moths [14–16], locusts [17,18],
and bees [19,20], which are mainly achieved by electrical stimulation of nervous systems,
especially the efferent nerves related to the flying muscles [21].

All the above studies develop cyborg insects based on invasive stimulation methods,
which require delicate microsurgery skills to accurately place electronics in insect tissues,
where the resultant injury has the potential to affect flight performance [14]. Another im-
portant consideration is the public acceptance of cyborg insects, in particular, perceptions
of whether insects experience pain during implantation surgeries and stimulations [22].
Therefore, noninvasive stimulation represents the best path for developing highly effi-
cient systems as well as encouraging public acceptance from an ethical point of view [5].
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However, current studies on noninvasive cyborg insects are still few. Zheng et al. [23]
proposed a noninvasive method that uses an online light-emitting diode (LED) display
system to present visual stimulus within ultra-low latency to induce bumblebee flight
behaviors, which employs reinforcement learning coupled with sequential K-means clus-
tering to generate an optimal control sequence. In [24], Zheng et al. modeled tethered
bumblebee fight control as a finite and deterministic Markov decision process, and they
employed Sarsa with a transformed reward function to learn the optimal control policy.
The results demonstrated that the noninvasive methods can also ensure satisfactory control
performance while avoiding implantation to insect tissues and reducing physical injury.
Nevertheless, compared to implanted methods, noninvasive methods not only have higher
sensitivity to noise and lower control accuracy but also require more extensive experimental
data for training. Consequently, there are few reports of cyborg insects with noninvasive
stimulation outside of the laboratory with highly controlled conditions.

To address the above difficulties, this paper proposes a fuzzy deep learning approach
to the flight control of moths Fusarium camelliae stimulated by ultraviolet (UV) rays. The
control model consists of a Behavior Learner and a Control Learner. The Behavior Learner is
further divided into three hierarchies: (1) the lower hierarchy of layers for learning the
species’ common behaviors in response to external stimuli; (2) the middle hierarchy of
layers for learning the specific behaviors of different groups of moths, where the grouping
is performed by a fuzzy clustering layer; and (3) the upper hierarchy of layers for learning
the specific behaviors of each individual moth. The Control Learner learns how to set UV
ray stimulation to make a moth exhibit the expected flight behaviors. The Control Learner
and the sub-learners of the Behavior Learner are all constructed using a fuzzy deep learning
model. Experimental results demonstrate that the proposed approach achieves significant
performance advantages over other popular methods. The main contributions of this paper
are as follows:

• We present a noninvasive cyborg moth design approach based on fuzzy deep learning
for flight control;

• We propose a novel hierarchical fuzzy deep learning model that effectively learns
the species common behaviors, group-specific behaviors, and individual-specific
behaviors to achieve a high control success rate.

• We propose a new fuzzy clustering method based on Pythagorean-type fuzzy sets for
moth grouping.

• The proposed approach can be easily extended for behavior learning of other cyborg
animals and, therefore, contributes to the development of biobots.

In the rest of this paper, Section 2 presents the fuzzy deep learning model, Sections 3 and 4
describe the Behavior Learner and Control Learner in detail, respectively, Section 5 presents
the experimental results, and Section 6 concludes with a discussion.

2. Overview of the Model for Cyborg Flight Control
2.1. Model Architecture

In our study, a cyborg moth is equipped with a wireless backpack chip, which has four
micro UV LED lamps, including a UVA radiation lamp and a UVB radiation lamp in each
of the left and right sides, as illustrated in Figure 1. The cyborg is designed to use UV ray
stimulation to control the flight of the moth in a three-dimensional (3D) space. The control
model outputs seven flight parameters, including the horizontal deflection angle θh, the
horizontal angular velocity vh, the vertical deflection angle θv, the vertical angular velocity
vv, and the accelerations in the x-, y-, and z-axes, denoted by ax, ay, and az, respectively.
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Left UVA lamp

Left UVB lamp

Right UVA lamp

Right UVB lamp

Figure 1. Illustration of a cyborg moth equipped with a backpack chip.

The proposed control model consists of a Behavior Learner and a Control Learner. As
shown in Figure 2, the Behavior Learner is used to learn, under a given environment,
how UV ray stimulation will affect the flight behaviors of moths. The Control Learner is
used to learn, in order to make a moth to exhibit specific flight behaviors, which UV ray
stimulation should be performed. The output stimuli of the Control Learner are input to the
Behavior Learner to generate expected flight parameters or input to real cyborgs to generate
actual flight parameters, whose differences from the required flight parameters are used as
feedback to tune the Control Learner.

Common layers

Group-
specific layers

UV ray stimuli ambient conditions

Fuzzy c-means clustering

Individual-specific layers

Expected flight parameter values

Flight memory

Behaviour Learner

Control
Learner

Actual flight parameter values

Required flight parameter values

Error Error

Group information

Figure 2. The framework of the fuzzy deep learning model for cyborg control. The Control Learner and
the three sub-learners of the Behavior Learner are all constructed using the proposed PFDDAE model.

The inputs to the Behavior Learner have the following three parts:

• The UV ray stimulation, which is described by 32 variables, i.e., the light intensities,
exposure durations, pattern moving velocities (in the x-, y-, and z-axes), and pattern
moving distances (in the x-, y-, and z-axes) of the four lamps.

• The ambient conditions, which are described by 34 variables, i.e., temperature, hu-
midity, atmospheric pressure, oxygen concentration, carbon dioxide concentration,
horizontal and vertical wind speeds, and the light duration, intensity, and illuminance
of nine different wavelengths/colors (UVA, UVB, UVC, violet, indigo, blue, yellow,
green, orange) to which the insect is sensitive (note that our study assumes that the



Micromachines 2022, 13, 611 4 of 18

ambient wind speed does not exceed 1.5 m/s; if the wind is too strong, then it is
impossible to control the flight path of a moth).

• The previous flight parameter values of the moth, including seven values at the
previous time step, and seven values accumulated over the previous three time steps
using a memory neural network [25,26]. In this study, we set the interval between two
time steps to 200 ms.

Therefore, the Behavior Learner takes 80 input variables to predict seven output flight
parameter values. To address the complexity, instability, and uncertainty of moth flight
behaviors, we divide the learner into three hierarchies from bottom to top: (1) the lower
hierarchy of common layers, (2) the middle hierarchy of group-specific layers, and (3) the
upper hierarchy of individual-specific layers.

The Control Learner takes inputs including (1) the user-specified (required) flight
parameter values, (2) the ambient conditions, (3) the previous flight parameter values of
the moth, and (4) the grouping information about the moth to output the UV ray stimulus
values that are expected to make the moth perform the required flight behaviors (specified
by the required flight parameter values).

The Behavior Learner aims to minimize the difference between the model output values
and the actual flight parameter values of the cyborg moths. The Control Learner aims to
minimize the difference between the required flight parameter values and the actual flight
parameter values of the moths (or the output parameter values of the Behavior Learner) under
the output stimuli of the Control Learner. We propose a Pythagorean fuzzy deep denoising
autoencoder (PFDDAE) model to implement both the Behavior Learner and Control Learner.

2.2. Pythagorean Fuzzy Deep Denoising Autoencoder

In our approach, both the Behavior Learner and Control Learner use a denoising autoen-
coder (DAE) [27] as the basic building block. DAE is an autoencoder (AE) variant [28]
that consists of an encoder and a decoder. The encoder transforms a D-dimensional input
vector x ∈ [0, 1]D into a hidden representation y ∈ [0, 1]D

′
through an affine mapping:

f (x) = s(Wx + b) (1)

where s is an activation function (typically an exponential or sigmoid function), W is a
D′×D weight matrix, and b is a D′-dimensional bias vector (typically, we have D′<D).

The decoder maps the hidden representation y back to a reconstructed vector x′ in the
input space with appropriately sized parameters WT and b′:

f ′(y) = s(WTy + b′) (2)

AE learning determines appropriate parameters θ = {W, b, b′} to minimize the
reconstruction error (e.g., the squared error) over the training set T :

min J(θ) =
1
|T | ∑

x∈T
L(x, x′) (3)

To improve the robustness to noise, DAE enhances the basic AE by corrupting any
initial input x into x̃ by means of a stochastic mapping x into qT (x̃|x) and then maps
the corrupted input x̃, as with the basic AE, to a hidden representation y from which we
reconstruct an x′ = f ′(y).

To capture the highly uncertain relationships between external stimuli and the species
behaviors, we further enhance DAE by expressing the model parameters as fuzzy numbers,
such that the model can effectively learn the fuzzy probability distribution over cross-layer
units [29]. In particular, we employ Pythagorean-type fuzzy numbers (PFN) characterized
by both a membership degree and a non-membership degree whose square sum is less than
or equal to 1 [30,31] so as to not only allow for a larger body of membership grades than
regular and intuitionistic fuzzy numbers but also enable each neuron to learn both how
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an input contributes to and how it does not contribute to the production of the output [32,33].
In this study, we use interval-valued PFN and use exp(·) as the activation function in
Equation (1), where the exponential operation on fuzzy numbers is defined as in [34,35].

Nevertheless, using fuzzy model parameters makes the problem with the objective
of minimizing Equation (3) a fuzzy optimization problem. Here, we utilize a centroid
method [29,36] to defuzzify the problem. Given a PFN β = P(µβ, νβ), its centroid point can
be calculated as

c(β) = (cµ(β), cν(β)) =

(∫ xµβ(x)dx∫
µβ(x)dx

,

∫
xνβ(x)dx∫
νβ(x)dx

)
(4)

Then, the distance between a crisp number α and a PFN β is calculated as

|α, β| =
√(

cµ(β)− α

2
)2

+ c2
ν(β) (5)

Accordingly, for a Pythagorean-type fuzzy DAE, the reconstruction error of a fuzzy
vector x̃′ from a crisp vector x (with the same dimension D) is calculated as

L(x, x̃′) =

√
∑D

d=1 |xd, x̃′d|2
D

(6)

which is used in the objective function (3).
As a deep DAE is constructed by stacking layers of DAE [37], we construct a PFDDAE

by stacking layers of Pythagorean-type fuzzy DAE, where each layer captures the hidden
representation of the layer below as inputs, so as to effectively learn higher-order abstract
representations from original input features.

Using fuzzy parameters can effectively improve the representation ability and ro-
bustness of the deep learning model [32,38], but it also increases the dimensionality of
the problem, for which traditional gradient-based algorithms easily become trapped in
local optima [39,40]. To improve the learning performance, we employ an evolutionary
algorithm, water wave optimization (WWO) [41], to train the PFDDAE by evolving a
population of solutions to explore the search space, making it more capable of jumping out
of local optima. The algorithm first randomly initializes a population of solutions, each of
which is a vector of network parameters and is evaluated by the reconstruction error of the
corresponding model instance. The algorithm then continually evolves the solutions using
WWO operators including propagation, refraction, and breaking [41]. The performance of
WWO in training deep neural networks has been demonstrated by comparison with other
state-of-the-art algorithms [42].

3. Behavior Leaner
3.1. Hierarchical Learning of Cyborg Flight Behaviors

To reduce the complexity of learning cyborg flight behaviors, we divide the Behavior
Learner into three hierarchies, which are all implemented with PFDDAE.

3.1.1. Learning the Species Common Behaviors

The lower hierarchy of layers is a PFDDAE for learning the common behaviors of
the species, using unsupervised pretraining layer-by-layer to minimize the reconstruction
error (3) of the PFDDAE.

3.1.2. Learning Group-Specific Behaviors

A moth often exhibits stress behaviors similar to some other moths under the same
environment. Grouping moths with similar behaviors and then learning group-specific
behaviors can significantly improve the efficiency of model learning. However, there
is no effective biological classification method for this purpose [43]. Here, we propose
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an improved fuzzy clustering method (described in the next subsection), which groups
all moths into c groups and calculates a membership degree uij of each jth moth to the
ith group.

The middle group-specific hierarchy consists of a set of PFDDAE instances, each for
learning the specific behaviors of a group of moths. Each group-specific learner takes the
topmost representation of the lower common hierarchy as inputs and uses unsupervised
pretraining to minimize the reconstruction error. However, here, the reconstruction error
is weighted by fuzzy memberships, and the objective function for pretraining the ith
group-specific learner is:

min J(i)(θ) =
1
|T | ∑

xj∈T
uijL(xj, x′j) (7)

Consequently, the larger the membership degree of a moth (input vector) xj to a group
is, the higher the contribution of its reconstruction error to the objective function.

Ideally, whenever uij >0, xj participates in the training of the ith group-specific learner.
However, in practice, to improve the computational efficiency, we set a lower limit uL and
only use Ti = {xj|uij >uL} as the training set for the ith group:

min J(i)(θ) =
1
|Ti| ∑

xj∈Ti

uijL(xj, x′j) (8)

3.1.3. Learning Individual-Specific Behaviors

For each individual moth, we use a PFDDAE to learn its specific behaviors and utilize
a multivariable linear regression (MLR) on the topmost individual-specific layer to produce
the output flight parameter values. However, an individual-specific learner takes the
outputs from multiple group-specific learners as its inputs. Let D′′ be the output dimension
of each group-specific learner; then, the input dimension of each individual-specific learner
is also D′′, and each input component x(j)

d of the jth individual-specific learner is calculated
from multiple group-specific learners as follows (1≤d≤D′′):

x(j)
d =

c

∑
i=1

uijy
′(i)
d (9)

where y′(i)d denotes the dth component of the output vector of the ith group-specific learner.
Consequently, the larger the membership degree uij is, the higher the contribution of the
output of the ith group-specific learner to the input of the jth individual-specific learner.
Similar to the training set selection for a group-specific learner, in practice, we can only use
the outputs from group-specific learners that satisfy uij >uL for training the jth individual-
specific learner.

After pretraining an individual-specific learner according to the objective function (3)
in an unsupervised manner, we train the learner in a supervised manner to minimize the
regression error on the training set of the individual moth. However, since different flight
parameters have different importance in determining the flight path, we use a weighted
loss to evaluate the regression error:

min J(j)
R (θ) =

1
|T |(j) ∑

x∈T (j)

√√√√ 7

∑
d=1

wd(y′′d − ŷ′′d )
2 (10)

where T (j) denotes the set of labeled samples for the jth moth, y′′d is the actual dth output
component, ŷ′′d is the expected dth output component, and wd is the weight importance
of the dth output component. According to the statistics of the occurrences of different
flight actions and contributions of different flight parameters to the actions (e.g., horizontal



Micromachines 2022, 13, 611 7 of 18

deflection occurs most frequently, and deflection angle is the most important parameter
to the horizontal deflection action), we set the weight of the horizontal deflection angle
to 0.24, the weight of the horizontal angular velocity to 0.2, the weight of the vertical
deflection angle to 0.2, the weight of the vertical angular velocity to 0.15, and the weights
of accelerations in the x-, y-, and z-axes to 0.07.

3.2. Pythagorean Fuzzy c-Means Clustering for Moth Grouping

We propose an improved fuzzy clustering method that uses moth shape information
together with the outputs of the topmost common layer under three typical environmental
settings combined with 12 typical UA ray stimulation settings to group moths.

As we know, fuzzy c-means clustering (FCM) [44] is a method for minimizing the
overall fuzzy-membership-weighted distance of the data points from cluster centroids:

min J(U, V) =
1
cn

c

∑
i=1

n

∑
j=1

um
ij d2

ij (11)

where n is the number of data points, c is the number of clusters, uij is the membership
degree of the jth data point to the ith cluster subject to ∑i uij =1, dij is the distance between
the jth data point and the ith cluster centroid, m is a control parameter larger than 1,
U = (uij)c×n is the weight matrix, and V=[v1, v2, . . . , vc] is the vector of cluster centroids.
Xu and Wu [45] extended the standard FCM to an intuitionistic FCM (IFCM) algorithm
based on some new definitions of distance measures between intuitionistic fuzzy sets,
which can capture more uncertainty information to improve clustering results.

We further improve the clustering method by using Pythagorean-type fuzzy sets
to represent clusters. To group D-dimensional PFN data points, each cluster centroid
is a D-dimensional PFN vector. The distance between two PFN β1 = P(µβ1 , νβ1) and
β2 = P(µβ2 , νβ2) is defined as follows [46]:

|β1, β2| =

√
(µ2

β1
−µ2

β2
)2 + (ν2

β1
−ν2

β2
)2 + (π2

β1
−π2

β2
)2

2
(12)

where πβ =
√

1−µ2
β−ν2

β is the hesitant degree of β.
For any data point xj and cluster centroid vi, we use the following distance measure

to replace dij in Equation (11):

‖xj, vi‖ =

√
∑D

d=1 |xjd, vid|2

D
(13)

Based on this new distance measure, we develop a Pythagorean FCM (PFCM) algo-
rithm to cluster Pythagorean fuzzy sets. The pseudocode of the algorithm is shown in
Algorithm 1 (where ε is a user-defined small positive value for controlling the stopping
condition).

The performance of FCM clustering heavily depends on the quality of initial cluster
centers [47,48]. Instead of randomly selecting the initial cluster centers, we also employ
the WWO metaheuristic to search for optimal or high-quality initial cluster centers. Given
the number c of clusters, WWO first randomly initializes a population of solutions, each of
which represents a set V(0) of c initial cluster centroids and is evaluated by the objective
function (11) of the clustering results derived from V(0). The algorithm then continually
evolves the solutions until the stopping criterion is met.
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Algorithm 1: Pythagorean fuzzy c-means clustering algorithm.

1 Initialize a c×n matrix U and a set V(0) of c cluster centroids;
2 Let k=0;
3 while ‖V(k+1), V(k)‖ > ε do
4 for j = 1 to n do
5 if ∃i′ : 1≤ i′≤ c : ‖xj, vi′‖ = 0 then
6 for i = 1 to c do
7 if i = i′ then u(k)

ij ← 1;

8 ;

9 else u(k)
ij ← 0;

10 ;

11 else
12 for i = 1 to c do
13 u(k)

ij ←
1

c
∑

i′=1

( ‖xj ,vi‖
‖xj ,vi′ ‖

) 2
m−1

;

14 for i = 1 to c do

15 v(k)
i ←

{〈
βd,

∑n
j=1 u(k)

ij µ2
βd

∑n
j=1 u(k)

ij

,
∑n

j=1 u(k)
ij ν2

βd

∑n
j=1 u(k)

ij

〉
|1≤d≤D

}
;

16 k← k+1;

17 return (U, V);

4. Control Leaner

The Control Learner learns which UV ray stimulus values can produce the required
flight parameter values of a moth. It uses a PFDDAE to learn a high-order representation
of the control mechanism, and it utilizes an MLR on top of the PFDDAE to output the
recommended UV ray stimulus values. For a part of the training samples, we perform
the output UV ray stimulus on physical moths and compare the actual flight parameter
values exhibited by the moths with the required flight parameter values to evaluate the
loss. However, because such physical experiments are costly, for a majority of training
samples, we send the output UV ray stimulus to the Behavior Learner and compare the
flight parameter values output by the Behavior Learner with the required flight parameter
values to evaluate the loss. The two parts have different contributions to the final regression
error. Let Tc be the training set, Tp be the subset whose outputs are sent to physical moths
for comparison, and Tm be the subset whose outputs are sent to the Behavior Learner for
comparison. The regression error of the Control Learner is evaluated as

min Jc(θ) =

∑
x∈Tp

‖x, op
(
oc(x)

)
‖+wm ∑

x∈Tm

‖x, om
(
oc(x)

)
‖

|Tc|
(14)

where oc(x) is the Control Learner’s output stimulus vector according to input x, op
(
oc(x)

)
is the vector of flight parameter values of the physical moth under given stimuli oc(x),
om
(
oc(x)

)
is the Behavior Learner’s output flight parameter values under given stimuli oc(x),

and wm is a weight to emphasize the importance of physical verification. We set wm as
inversely proportional to the average regression error of the Behavior Learner as follows
(where each output component of the model is normalized into [0,1] in Equation (10)):

wm = 1−
∑j J(j)

R (θ)

|Tm|
(15)
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5. Experiments

We conduct experiments to test (1) the performance of PFDDAE pretraining; (2) the
performance of fuzzy clustering; (3) the performance of the PFDDAE-based Behavior
Learner; and (4) the performance of PFDDAE-based Control Learner. The data set con-
sists of 10,932 flight records of 36 moths, which were collected in a laboratory environment
under different ambient conditions. Each data tuple consists of input UV ray stimuli and
output flight parameters (as introduced in Section 2.1) for training the Behavior Learner;
after training the Behavior Learner, the flight parameters are used as inputs to the Control
Learner, and its output stimuli are input to the Behavior Learner or real cyborgs to produce
expected/actual flight parameters in order to minimize their differences from the input
flight parameters so as to train the Control Learner. The algorithms are executed on a work-
station with an i7-6500 2.5 GH CPU, 8 GB DDR4 RAM, and an NVIDIA Quadro M500M
card (Leadtek Research, Inc., Taiwan, China).

5.1. Experiments on Model Pretraining

We compare the following different algorithms, including gradient-based methods
and evolutionary algorithms, for PFDDAE unsupervised pretraining:

• The basic gradient-based layer-wise (GLW) algorithm [28].
• An adaptive gradient (AdaGrad) algorithm [49].
• A non-revisiting genetic algorithm with adaptive mutation (NrGA) [50].
• A comprehensive learning PSO (CLPSO) algorithm [51] where each solution learns

from different exemplars at different dimensions.
• A self-adaptive differential evolution (SaDE) algorithm [52], which adaptively chooses

more prospective evolution strategies among a set of candidate strategies.
• A biogeography-based optimization (BBO) algorithm [53], which evolves solutions

by continuously migrating features from high-fitness individuals to low-fitness ones
based on a biogeographical migration model.

• An improved BBO algorithm called ecogeography-based optimization (EBO) [54],
which defines two migration operators, namely global migration and local migration,
that are adaptively applied according to the maturity of the population.

• The WWO algorithm [42].

On the data set, we tune the number of layers of each PFDDAE-based learner between
two and five, and we find that it is sufficiently good to use three layers for all sub-learners
of the Behavior Learner and use four layers for the Control Learner. We then tune the number
of neurons of each layer between the square root and one-half of that of the previous layer.
As a result, we set the model structure as follows:

• The three layers of the lower common learner have 80, 46, and 26 neurons, respectively;
• The three layers of each group-specific learner have 26, 15, and 9 neurons, respectively;
• The three layers of each individual-specific learner have 9, 6, and 7 neurons, respectively;
• The four layers of the Control Learner have 75, 49, 35, and 32 neurons, respectively.

To avoid overfitting, we conduct a five-fold cross-validation, i.e., the dataset is par-
titioned into five equal-sized pieces, and the validation is run five times, each using four
pieces as the training set and using the remaining piece as the test set. A validation runs
each algorithm 20 times with different random seeds. For the six evolutionary algorithms,
the stopping criterion is set to that the number of objective function evaluations reaches
100,000 to ensure a fair comparison.

Figure 3 presents the average reconstruction errors and standard deviations of the
comparative algorithms for pretraining the lower common learner of the Behavior Learner.
The basic GLW algorithm exhibits the worst performance. All seven evolutionary learning
algorithms achieve significant performance improvement over GLW, which demonstrates
that population-based evolutionary algorithms can efficiently explore the high-dimensional
solution space and therefore effectively overcome premature convergence. Nevertheless,
not all evolutionary algorithms can outperform AdaGrad, which is another gradient-based
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algorithm. This indicates that to achieve promising training performance, we need to
carefully design or adapt the evolutionary algorithms for this high-dimensional optimiza-
tion problem. Among all eight algorithms, the proposed WWO algorithm obtains the
lowest average reconstruction error, which evidences the efficiency of the nature-inspired
metaheuristic for this complex optimization problem.
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Figure 3. Average reconstruction errors and standard deviations of the comparative algorithms for
pretraining the lower common layers of the Behavior Learner.

Figure 4 presents the experimental results of the comparative algorithms for pretrain-
ing the middle group-specific learners. Similar to the experiments on the lower learner,
GLW exhibits the worst performance and WWO exhibits the best performance. However,
the performance advantages of WWO over the other evolutionary algorithms become
less significant, because the number of neurons of a group-specific learner is nearly one-
third that of the lower common learner, and hence, the problem dimension becomes
much smaller.
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Figure 4. Average reconstruction errors and standard deviations of the comparative algorithms for
pretraining the middle group-specific layers of the Behavior Learner.

Figure 5 presents the experimental results of the comparative algorithms for pretrain-
ing the upper individual-specific learners. The number of neurons of an individual-specific
learner is less than half that of a group-specific learner, and the problem dimension be-
comes even smaller. In this experimental section, except for the GLW that still exhibits the
worst performance, the performance differences among the other algorithms are not very
obvious. Consequently, for the Behavior Learner, we use WWO to pretrain the lower com-
mon layers and the middle group-specific layers, but employ AdaGrad to pretrain upper
individual-specific layers—although most of the evolutionary learning algorithms exhibit
slight performance advantages, AdaGrad consumes considerably fewer computational
resources, especially when the number of individual moths is large.
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Figure 5. Average reconstruction errors and standard deviations of the comparative algorithms for
pretraining the upper individual-specific layers of the Behavior Learner.

Figure 6 presents the experimental results of the comparative algorithms for pretrain-
ing the Control Learner. For this high-dimensional optimization problem, we observe that the
performances of some algorithms, including GLW, NrGA, and BBO, decrease significantly,
while SaDE, EBO, and WWO still achieve high learning performances, and WWO obtains
the lowest average reconstruction error among all the comparative algorithms. In general,
the experimental results on model pretraining show that the larger the problem dimension
is, the more significant the performance advantages of the well-designed evolutionary
learning algorithms (especially the proposed WWO) over the classical learning algorithms.
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Figure 6. Average reconstruction errors and standard deviations of the comparative algorithms for
pretraining the Control Learner.

5.2. Experiments on Fuzzy c-Means Clustering

We compare different clustering algorithms, including the basic FCM, IFCM, PFCM, and
PFCM enhanced by evolutionary algorithms including NrGA [50], CLPSO [51], SaDE [52],
BBO [53], EBO [54], and WWO [41]. After tuning the control parameters of the model on
the data set, we set the number of clusters to five (too many clusters would consume a lot
of computational resources, while fewer clusters cannot effectively discriminate individual
moths and appropriately define group behaviors) and set m = 2. We run each algorithm
20 times on the clustering problem.

Figure 7 presents the average J(U, V) value of the clustering results of each com-
parative algorithm. By using intuitionistic fuzzy sets that have more expression ability
than basic fuzzy sets, IFCM yields significantly higher clustering cohesion than the basic
FCM. Pythagorean fuzzy sets further enlarger the body of membership grades, and PFCM
exhibits higher clustering performance than IFCM.
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FCM, IFCM, and PFCM all exhibit large standard deviations, i.e., their clustering results
are quite unstable, because they use random cluster centroids. In comparison, evolutionary
algorithms significantly improve the performance of PFCM by evolutionary searching for
the optimal setting of cluster centroids. Among the six evolutionary algorithms, EBO obtains
the best average J(U, V) value and WWO ranks second, but the standard deviation of WWO
is much less than that of EBO. According to paired t-tests, there are no statistically significant
differences among SaDE, BBO, EBO, and WWO. We select WWO because of its relatively
high accuracy and robustness in clustering.

0.156 
0.139 0.136 

0.125 0.129 
0.120 0.123 

0.118 0.119 

0

0.04

0.08

0.12

0.16

0.2

FCM IFCM PFCM NrGA CLPSO SaDE BBO EBO WWO

J

Figure 7. Average J(U, V) values and standard deviations of the clustering results of the comparative
algorithms for moth grouping.

5.3. Experiments on Cyborg Flight Behavior Learning

After validating the performance of model pretraining and fuzzy clustering, we test
the performance of the entire Behavior Learner for cyborg flight parameter prediction. The
following models are implemented for comparison with the proposed PFDDAE model.

• A standard three-layer back-propagation artificial neural network (ANN). The num-
bers of neurons in the three layers are tuned to 80, 25, and 7, respectively.

• A basic self-adaptive neuro-fuzzy inference system (SANFIS) trained by an agglomer-
ative clustering algorithm and a recursive least-squares algorithm [55].

• An evolving interval type-2 neuro-fuzzy inference system (IT2FIS) trained by a
metacognitive sequential learning algorithm [56].

• A basic and integrated deep AE model (denoted by D-AE) [57], which employs
the basic AE without a denoising mechanism as the building block and does not
hierarchically divide the model into common learner, group-specific learners and
individual-specific learners. After fine-tuning, the number of layers of D-AE is set
to five, and the numbers of neurons in the three hidden layers are set to 48, 27, and
13, respectively.

• A basic and integrated deep DAE model (denoted by DDAE) [37], which uses the
same structure as D-AE but employs DAE as the building block.

• A basic hierarchical deep DAE (denoted by HDDAE) that uses three hierarchies as
described in Section 2 but does not employ fuzzy model parameters.

• A hierarchical fuzzy deep DAE (denoted by FDDAE) that uses three hierarchies
as described in Section 2 but employs regular fuzzy numbers to represent model
parameters [29].

• Three variants of the proposed model, which employs the k-means clustering (denoted
by PFDDAE-kc), basic FCM [44] (denoted by PFDDAE-fc), and IFCM [45] (denoted by
PFDDAE-ifc) instead of PFCM for moth grouping, respectively.

Figure 8 presents the box plots of the test results in terms of the objective function (10)
obtained by the comparative models on the data set. The ANN has the highest error rate
(46% on average) and instability, indicating that the shallow learning model is very inef-
fective for the complex flight parameter learning problem. The error rates of other models
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are much lower than that of ANN, which demonstrates that deep learning models can
significantly improve learning performance by using multiple layers to discover interme-
diate representations. The average error rates of SANFIS, IT2FIS, D-AE, and DDAE are
37.2%, 33.9%, 35.6%, and 33.7%, respectively. Paired t-test results show that DDAE has
significant performance improvement over SANFIS and D-AE, because inputs to the model
typically contain much noise, and the denoising mechanism of DAE can reduce the effect
of background noise. However, their error rates are still high and are unacceptable for
engineering applications.

By dividing the deep learning model into three hierarchies for gradually learning the
species’ common behaviors, group-specific behaviors, and individual-specific behaviors,
our hierarchical deep learning model can effectively divide and conquer the model com-
plexity and thus achieve significant performance improvement over not only the shallow
ANN but also the monolithic neuro-fuzzy inference models and deep DAE models.

HDDAE, FDDAE, and PFDDAE-fc use the same hierarchical structure and FCM clus-
tering method. According to paired t-tests, the results of FDDAE are significantly better
than those of HDDAE, and the results of PFDDAE-fc are significantly better than those
of FDDAE. This demonstrates that compared with using crisp model parameters, using
fuzzy parameters can effectively improve the model’s representation ability and robustness;
moreover, compared with using regular fuzzy parameters, using Pythagorean-type fuzzy
parameters can further improve the learning performance by enabling each neuron to learn
the contribution of input features to the output from both the positive and negative sides.

Comparing the results of the last four PFDDAE models, we also observe that the
PFDDAE-fc model using the standard FCM clustering outperforms the PFDDAE-kc model
using k-means clustering, and using intuitionistic and Pythagorean fuzzy sets can generate
more valuable information for improving moth grouping and hence achieve better learning
performance. Our PFDDAE model achieves an average error rate of 19.3%, which is the
lowest among the 11 comparative models. The results demonstrate the performance advan-
tages of the proposed PFDDAE using PFN parameters combined with PFCM clustering in
learning cyborg behaviors.
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Figure 8. The performance (in terms of regression error) of the comparative models for cyborg flight
behavior learning.

5.4. Experiments on Cyborg Flight Control

Finally, we compare the performance of the PFDDAE-based Control Learner with other
models including a fuzzy proportional–integral–derivative (F-PID) controller optimized by
GA [58], ANN, an ANN with a filter (denoted by I-ANN) [59], a fuzzy nonlinear internal
model control (FNIMC) with a robustness filter [60], SANFIS [55], IT2FIS [56], D-AE [57],
DDAE [37], and FDDAE for cyborg flight control. The experiments use 20 moths and test
200 instructions for each moth. The performance is evaluated in two aspects. The first is
the mean value of the objective function (14) obtained by each algorithm. The second is the



Micromachines 2022, 13, 611 14 of 18

success rate (SR) of flight instructions produced by each algorithm in actual moth flight
control. We consider an instruction to be successful if, for each relevant flight parameter,
the deviation of the actual output value from the expected value is less than 15%.

Figure 9 presents the box plots of the test results in terms of the objective function (14)
and SR obtained by the comparative models. The traditional fuzzy PID and shallow ANN
obtain high average error rates (approximately 40%) and low success rates (approximately
50%), indicating that they are not suitable for this difficult control problem. Compared
to the simple ANN, ANN with a filter obtains a significantly lower error rate and higher
success rate, but its performance is still much worse than the adaptive neuro-fuzzy models
and deep learning models. The error rates of FNIMC, SANFIS, IT2FIS, and D-AE are
around 27–30%, and their success rates are approximately 70%. By equipping D-AE with
the denoising mechanism, DDAE decreases the average error rate to 25% and increases the
success rate to 77%, which again demonstrates the importance of denoising in this sensitive
control problem under complex environments. The error rates of FDDAE and PFDDAE are
approximately 22% and 20%, and their success rates are over 79% and 83%, respectively,
demonstrating that expressing model parameters with fuzzy numbers (in particular PFN)
effectively enhances the model’s representation ability and robustness to improve control
performance.
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Figure 9. The performance (in terms of regression error and success rate) of the comparative models
for cyborg flight control.

From the test results, we can also observe that for each model, the average error rate
is inversely proportional to the success rate, which demonstrates the reasonability and
practicability of the objective function of the control problem. In summary, the experiments
show that the proposed PFDDAE exhibits both the best behavior learning performance and
the best control performance among all comparative models, and its high success rate of
over 83% indicates that it is suitable for this difficult cyborg flight control problem.

6. Conclusions and Discussion

In this paper, we present a fuzzy deep learning approach to the flight control of
cyborg moths stimulated by UV rays. We propose a PFDDAE model to capture the highly
uncertain relationships between external stimuli and the species behaviors. The PFDDAE
model is employed for both the Behavior Learner for learning the flight behaviors of moths
and the Control Learner for learning which UV ray stimulation can cause moths to exhibit
required flight behaviors. To reduce complexity, the Behavior Learner is further divided into
three hierarchies for learning the species’ common behaviors, group-specific behaviors,
and individual-specific behaviors. The independent unsupervised pretraining of these
parts significantly simplifies the task of model learning. We also propose the PFCM
clustering method to group moths for learning group-specific behaviors. Experimental
results demonstrate the performance advantages of the proposed approach, which obtains
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the lowest average error rate of 19.3% among the 11 comparative models for training the
Behavior Learner, the lowest average error rate of 20% among the ten comparative models
for training the Control Learner, and a high control success rate of over 83% that can provide
sufficiently accurate control of the flight parameters of moths.

Cyborg insects have numerous potential applications. Our ongoing work includes
studying solution methods for optimally controlling a cyborg moth as well as a swarm
of moths to perform specific tasks such as path planning, surveillance and detection, and
search and rescue [61,62]. For such complex control optimization problems, nature-inspired
evolutionary algorithms are good alternatives to classical mathematical methods. We also
plan to extend our cyborg moth control learning model to other cyborg insects, for which
domain adaption and transfer learning methods [63] are expected to be useful.
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AE Autoencoder
ANN Artificial neural network
BBO Biogeography-based optimization
DAE Denoising autoencoder
DDAE Deep denoising autoencoder
EBO Ecogeography-based optimization
FCM Fuzzy c-means clustering
GLW Gradient-based layer-wise
IT2FIS Interval type-2 neuro-fuzzy inference system
LED Light-emitting diode
MLR Multivariable linear regression
PFDDAE Pythagorean fuzzy deep denoising autoencoder
PFN Pythagorean-type fuzzy number
PSO Particle swam optimization
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