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Abstract
The outbreak of the novel severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) has challenged the healthcare 
community worldwide. The SARS-CoV-2 primarily affects the 
respiratory system; however, strong evidence suggests that 
SARS-CoV-2 can be neuroinvasive, resulting in several neu-
rological complications. It was previously assumed that 
some coronaviruses are involved in multiple sclerosis (MS) 
pathology via various mechanisms. The mechanisms in-
volved in coronavirus-induced central demyelination are 
complex and largely redundant. Molecular mimicry was pro-
posed to be one of the possible mechanisms. Disruption of 
the blood-brain barrier, dysregulation in several inflamma-
tory cytokines, and upregulation of matrix metalloprotein-
ases were also thought to induce central demyelinating pa-
thology. This raises a question about the possible role of 
SARS-CoV-2 as a novel risk factor for MS.

© 2022 S. Karger AG, Basel

Introduction

Severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) is a new coronavirus that was not known 
to humankind before, causing a life-threatening disease 
known as coronavirus disease-2019 (COVID-19) [1]. The 
etiology of multiple sclerosis (MS) remains a mystery, de-
spite ongoing research to uncover the cause of the disease 
for more than a hundred years. Both environmental and 
genetic factors play a role in the pathophysiology of MS [2]. 
It has previously been assumed that some coronaviruses 
are involved in MS pathology through various mecha-
nisms, including molecular mimicry between coronavirus-
es and myelin, disruption of the blood-brain barrier (BBB), 
regulation of matrix metalloproteinases (MMP), and in-
creased production of inflammatory cytokines [3, 4].

Accordingly, does this emerging virus have a role in 
initiating the immunopathogenic events in MS? To prove 
this hypothesis or not, we must first identify the common 
features between SARS-CoV-2 and other coronaviruses; 
second, explore the pathogenic mechanisms of MS caused 
by some ancient coronavirus described earlier; and third, 
can these mechanisms be applied to the emerging SARS-
CoV-2?
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SARS-CoV-2 versus Other Coronaviruses: Differences 
and Similarities

Coronaviruses are enveloped, crown-like viruses with 
a long single-stranded RNA genome. Seven coronavirus-
es are known to infect humans, namely, human corona-
virus (HCoV)-229E, HCoV-OC43, HCoV-NL63, HCoV-
HKU1, severe acute respiratory syndrome coronavirus-1 
(SARS-CoV-1), Middle East respiratory syndrome 
(MERS-CoV), and SARS-CoV-2 [1]. Among this family, 
the virus most structurally similar to SARS-CoV-2 is 
SARS-CoV-1. About 79.6% of the sequence identity was 
shared between SARS-CoV-1 and SARS-CoV-2 [5]. Some 
human coronaviruses are known to have a neuroinvasive 
potential: HCoV-229E, OC43, MERS-CoV, SARS-
CoV-1, and SARS-CoV-2 with variable degrees of neu-
rotropism between them [6].

Coronavirus entry into host cells begins by binding the 
spike protein (S) to cellular receptors. SARS-CoV-2 re-
sembles SARS-CoV-1 in the cellular receptors that bind 
to the S protein, specifically, angiotensin-converting en-
zyme 2 (ACE2), which differs from other coronaviruses 
[6]. In humans, ACE2 was abundantly expressed in many 
neurons, astrocytes, and oligodendrocytes in the middle 
temporal gyrus, posterior cingulate cortex, pons, medulla 
oblongata, striatum, and hypothalamus [7]. This may ex-
plain the neurotropism of SARS-CoV-1 and SARS-CoV-2 
[8]. However, it was found that the S protein of SARS-
CoV-2 has a higher affinity for ACE2 than that of SARS-
CoV-1 using high-resolution cryo-electron microscopy 
[9]. This may indicate the higher neurotropism of SARS-
CoV-2 compared with SARS-CoV-1.

Proposed Mechanisms of How SARS-CoV-2 May 
Initiate Immunopathogenic Pathway of MS

SARS-CoV-2-mediated neuroinvasion may occur 
through several routes, either through axonal transport 
via the olfactory nerve and olfactory bulb, blood-borne 
transport, infection via vascular endothelium, or disrup-
tion of BBB. Evidence is mounting that SARS-CoV-2 
may affect the gray and white matter of the brain, caus-
ing edema, demyelination, and neuronal degeneration 
[10].

The association between MS and other coronaviruses 
was previously studied. First, titers of HCoV-229E and 
OC43-specific antibodies were higher in the cerebrospi-
nal fluid (CSF) in MS patients compared to controls [11]. 
Second, coronavirus RNA was detected in the brain sam-

ples of MS patients [12]. The following mechanisms are 
proposed of how SARS-CoV-2 may initiate the immuno-
pathogenic pathway of MS.

BBB Disruption and Cytokines Storm
In systemic infections such as those caused by SARS-

CoV-2, BBB can be subject to disruptive or non-disrup-
tive pathology. The disruptive pathology involves loss of 
tight junctions’ integrity, apoptosis of endothelial cells, 
and astrocyte damage. The non-disruptive pathology de-
velops through cellular and molecular mechanisms that 
increase the permeability of BBB [13]. Increased perme-
ability of the BBB allows pathological agents such as viral 
particles to enter the CNS, which may trigger disruption 
of end feet and astroglial death, creating a vicious cycle of 
further damage to the BBB [14]. T lymphocytes migrate 
into the CNS through the disrupted BBB and initiate cel-
lular events leading to inflammation and demyelination 
in the white matter [15].

Strong evidence suggested dysregulation of several 
inflammatory cytokines in patients with COVID-19 in-
fection. These cytokines include IL-1β, IL-2, IL-6, IL-10, 
IFN-γ, granulocyte colony-stimulating factor, granulo-
cyte-monocyte colony-stimulating factor, and tumor 
necrosis factor-α (TNF-α) [16]. Such dysregulated cyto-
kines may escalate vascular and BBB permeability and 
consequently exacerbate neuroinflammation in MS 
[17].

T-helper cell 17 (Th17)-mediated cytokine storm, 
which has a pivotal role in the pathogenesis of MS, was 
also evident in patients with COVID-19 infection [18]. 
Th17 cells contribute to the disruption of the BBB, and in 
cooperation with Th1, regulate the functions of astrocytes 
by downregulating neurotrophic factors and the upregu-
lating inflammatory cytokines [19, 20]. Th17 cells also 
inhibit oligodendrocyte maturation and survival [21].

In acute MS lesions, MMP-9 predominates, whereas 
MMP-2 predominates in chronic MS [22]. Interestingly, 
in vitro infection of human astrocytic and microglial cell 
lines with HCoV-OC43 resulted in upregulation of MMP-
2 and -9, suggesting a crucial role for coronavirus infec-
tion in upregulating MMP expression within the CNS. 
The mechanisms by which MMPs were upregulated were 
unknown. However, they were most likely thought to be 
upregulated by some inflammatory cytokines such as tu-
mor necrosis factor-α and IL-6 [23]. Similarly, damage to 
the CNS by SARS-CoV-2 may be mediated by MMPs, 
primarily through the upregulation of MMP-9 [24, 25].

Strong evidence suggests that sustained activation of 
the nuclear factor kappa-light-chain enhancer of activat-
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ed B cells (NF-κB) pathways is observed in MS. NF-κB is 
a transcription factor that promotes gene expression of 
many cytokines in inflammatory states and viral infec-
tion. NF-κB is reported to be elevated in a dose-depen-
dent matter in response to coronaviruses [26].

Molecular Mimicry
Molecular mimicry had been proposed to explain how 

a viral infection could initiate the immunopathogenic 
pathway leading to an autoimmune disease in genetically 
susceptible individuals. Sequences shared between coro-
navirus and myelin proteins, such as myelin basic protein 
(MBP) and proteolipid protein (PLP), have been identi-
fied [4]. Boucher et al. [27] identified coronavirus-myelin 
cross-reactive T-cell clone (TCC) in MS patients, involv-
ing two major myelin antigens (MBP and PLP) and two 
HCoV serotypes (HCoV-229E and OC43). Sharing ge-
nomic sequences between these serotypes and SARS-
CoV-2 [28] may suggest that the SARS-CoV-2 may play 
the same action.

It should be noted that the lack of data indicating that 
the SARS-CoV-1 may trigger MS, the virus that has the 
most similarity with the SARS-CoV-2, should not disap-
point our hypothesis that SARS-CoV-2 may trigger MS. 
First, to the best of our knowledge, no studies have em-
braced the idea of whether or not the SARS-CoV-1 might 
cause MS. Secondly, The SARS-CoV-1 outbreak was on a 
smaller scale compared to SARS-CoV-2. In addition, the 
outbreak of SARS-CoV-1 was mainly in countries whose 
populations do not have a high genetic predisposition for 
MS [29].

To our knowledge, 2 cases of clinically isolated syn-
drome were reported after SARS-CoV-2 infection. The 
viral genome of SARS-CoV-2 was detected in the CSF of 
the second case [30, 31]. We hope that this article will en-
courage a large, multicenter study of whether SARS-
CoV-2 infection may provoke a first demyelinating attack 
in genetically susceptible patients.

Conclusion

Taken together, all these proposed mechanisms 
strengthen the hypothesis that the SARS-CoV-2 may be a 
novel risk factor for MS, leaving the question to be an-
swered by future studies.
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