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Abstract
Dry powder inhalation formulations have become increasingly popular for local and systemic delivery of small molecules and 
biotherapeutics. Powder formulations provide distinct advantages over liquid formulations such as elimination of cold chain 
due to room temperature stability, improved portability, and the potential for increasing patient adherence. To become a viable 
product, it is essential to develop formulations that are stable (physically, chemically and/or biologically) and inhalable over 
the shelf-life. Physical particulate properties such as particle size, morphology and density, as well as chemical properties can 
significantly impact aerosol performance of the powder. This review will cover these critical attributes that can be engineered 
to enhance the dispersibility of inhalation powder formulations. Challenges in particle engineering for biotherapeutics will 
be assessed, followed by formulation strategies for overcoming the hurdles. Finally, the review will discuss recent examples 
of successful dry powder biotherapeutic formulations for inhalation delivery that have been clinically assessed.
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Background

The lung has been considered as a promising drug delivery 
avenue in clinical practice for over a century. The pulmo-
nary route allows fast and effective delivery of drugs for 
local effect and systemic uptake. For optimal delivery of 
drugs, the dispersibility of the formulation to form inhalable 
aerosols is critical. Great effort has been put into particle 
engineering for improving the aerosol performance of the 
dry powder inhalation (DPI) formulations. Particle engineer-
ing for inhalation delivery was explored in the early 1900s 
where ‘dry spray’ (a similar set up to what we now call 
‘spray dryer’) was first designed by Körting to produce small 
dry particles that can reach the alveoli when inhaled [1]. 
Similar atomiser device was patented to produce medicines 
in powdered form that are suitable for inhaled delivery to the 
lungs [2] and several dry powder inhalers have been patented 
in the early 1900s [3–5]. In the 1980s, the field of particle 

engineering for inhalation delivery was radically improved, 
primarily through the works by Gonda and colleagues, who 
explored particle engineering for improving the powder dis-
persibility [6, 7] and for preventing water-induced hygro-
scopic growth of aerosols in the respiratory tract during 
delivery [8]. For example, experimental anti-cancer drugs 
such as hexamethylmelamine was engineered as inhalable 
particles for intended treatment of lung cancer [9]. Around 
the same time, Hickey and colleagues used lauric and capric 
acids to prevent hygroscopic growth of disodium fluorescein 
formulations in the respiratory tract [10]. Particles that are 
particularly prone to water absorption at high relative humid-
ity environment can cause changes in their sizes, morphol-
ogy, solid phase (amorphous to crystalline), and potentially 
chemical degradation, which can all impact drug pharma-
cology. Over the past four decades, particle engineering has 
continued to be explored to enhance aerosol performance 
of DPI formulations. More recently, pulmonary delivery of 
biotherapeutics such as genes, peptides, proteins, virus, and 
cells has become increasingly popular in respiratory medi-
cine. DPI formulations of biotherapeutics require different 
formulation strategy as biologics are more labile and both 
biological and physical stabilities need to be considered in 
particle engineering.
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This review will cover particle engineering strategies 
for improving aerosol performance and lung deposition 
of DPI formulations. We will discuss the influence of 
physical properties of the formulations such as particle 
size and morphology, followed by chemical engineering 
of particles through co-formulation with excipients or 
active pharmaceutical ingredients (APIs). We will then 
discuss challenges and formulation strategies to consider 
in particle engineering for inhaled biotherapeutics, and 
recent examples of successful cases of DPI biotherapeutics 
formulations.

Engineering Physical Properties of Particles

Size

Particle size is one of the crucial factors that influences 
aerosol performance, thereby impacting lung deposition 
and retention in different airway regions. It is expressed as 
the geometric diameter which reflects physical diameter of 
the particle, or as aerodynamic diameter, Da . Da is the key 
parameter that determines the aerosol performance of the 
powder and is defined as diameter of a spherical particle 
with a unit density that settles at the same velocity as the 
particle of interest in air:

where Dg is the geometric diameter, χ the dynamic shape 
factor, ρ the particle density and �o the unit density (1 g/
cm3). Particles with a Da value between 1 and 5 µm are often 
quoted to be desirable for lung deposition and distribution 
[11–13]. Generally, when the powder has a larger median 
particle size, the fine particle fraction (FPF, the mass % of 
fine particles in the aerosol < 5 µm) is low (Fig. 1). Unless 
being inhaled at a very low air flow (e.g., 5 L/min), parti-
cles with Da  larger than 5 µm are likely to deposit in the 
oropharynx and upper respiratory tract, while those below 
0.5 µm tend to be exhaled out [12]. Although it is feasible to 
reduce the Da by reducing the Dg (see Eq. 1), particles with a 
small Dg exhibit poor flowability and aerosol properties due 
to strong inter-particulate forces in the powder [11, 14].The 
cohesion between fine particles can be somewhat overcome 
by increasing the air force (thus, the shear force in the tur-
bulence) through the inhaler device and the resulting impac-
tion force between powder and inhaler interior surface. For 
instance, spray dried powder formulation of disodium cro-
moglycate (DSCG) with a mass median diameter of 2.3 µm 
exhibited poor aerosol performance, but was improved with 
increased air flow of the powder inhaler from 30 L/min to 
120 L/min [15]. Similar phenomenon was observed for man-
nitol powders where the aerosol performance of the powder 

(1)Da = Dg
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Fig. 1  The relationship between fine particle fraction and mass median diameter of spray dried DSCG powders. Reprinted with permission from 
reference [15]. Copyright 2000 Elsevier.
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with a mass median diameter of 2.7 µm was improved by 
increasing the flow rate [16].

The actual in vivo dose depends on not just Da , but the 
inspiratory flow and the complex geometry of the human 
upper respiratory tract (URT) which is distinctly different 
from the USP induction port. It has, thus, been advocated 
that instead of Da alone, the impaction parameter (which 
is the product of the air flow and square of Da ) is a bet-
ter predictor for lung deposition [17]. Moreover, Da has 
conventionally been measured by cascade impaction with 
an uncoated metal USP induction port and air drawn in a 
square-wave profile, none of these mimic the human sub-
ject using a DPI nor captures the inter-subject variation in 
airway geometry or breathing pattern. Depending on the air 
flow, while aerosol particles of 5 µm can be captured in the 
human URT, they may escape the simple geometry of the 
USP induction port and, thus, mistaken as being inhalable. 
For these reasons, using 5 µm as a predictor for in vivo depo-
sition has caused overestimation of lung dose while 3 µm 
was shown to provide a better in vitro-in vivo correlation 
[18, 19]. A useful and compliant approach for increasing the 
drug delivery to the lungs it to hold breath for 10–20 s after 
aerosol inhalation [20].

Morphology

Particle shape is another property that can directly influence 
the aerodynamic diameter. It determines the particle packing 
in an agglomerate as well as the specific surface area and 
friction, which all influence powder flowability and empty-
ing from a powder inhaler. The strength of the agglomerate 
(σ) is given by:

where ϕ is the packing fraction, W the non-equilibrium 
value of the work of adhesion, and D the physical diameter 
of the particle [21]. Hence, the agglomerate strength will be 
higher if the packing fraction (i.e., the volume taken by num-
ber of particles in a given volume) is high or the particles are 

(2)� = 15.6�4W

D

packed more closely in an agglomerate. Particle morphology 
can also influence the aerodynamic diameter through the 
shape factor and density, where a large χ and small ρ would 
reduce the Da of a particle (from Eq. 1).

Elongated particles

Elongated particles have a larger χ value than spherical 
particles with the same volume or mass, which leads to a 
smaller Da . The aerodynamic diameter of elongated particles 
is dependent on the width instead of its length [7]. Conse-
quently, large needle-like particles that are > 10 µm in length 
but has a smaller width can still deposit in the lungs upon 
inhaled delivery. This aerodynamic advantage of elongated 
particles has been exploited in studies by Gonda and Chan to 
produce anti-asthmatic drugs cromoglycic acid [6] and nedo-
cromil [22]. Cromoglycic acid with respective length and 
width values of 5 µm and 0.3 µm (Fig. 2) had superior aero-
sol performance and the mass median aerodynamic diameter 
(MMAD, i.e., the diameter which divides the population of 
particles by mass into 50% that are larger and 50% that are 
smaller than the specified value) was 0.7 µm [6]. Similarly, 
although the physical diameter of nedocromil was large 
(Fig. 2), the MMAD value was 0.9 µm [22]. Elongated par-
ticles could also have superior fluidisation and deaggrega-
tion properties as the contact area between the particles may 
be low depending on the packing. However, if the elongated 
particles become packed with their long axis tightly aligned 
like bricks rather than disoriented, the powder dispersibility 
could be compromised.

These favourable physical and aerodynamic properties 
of elongated particles have been further applied to inhaled 
biologics and antibiotics. Steroid KSR-592 was produced as 
elongated particles to improve respirable lung dose of the 
drug [23]. The needle-like crystal form of KSR-592 with 
dimensions of 1.8 µm in width × 41 µm in length had a FPF 
of 39%, while the platelike crystal form exhibited FPF value 
of only 5%. Needle-shaped antibiotic rifapentine was devel-
oped for inhalation delivery for intended treatment of tuber-
culosis infection [24]. The produced rifapentine powder had 

Fig. 2  Scanning electron micro-
graph of cromoglycic acid (left) 
and nedocromil (right) particles. 
Reprinted with permission from 
references [6, 22]. Copyright 
1989 & 1995 Elsevier.
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a FPF value of 83% with MMAD of 1.7 µm, reflecting supe-
rior aerosol performance of elongated particles. Elongated 
particles have also been shown to display minimal device-
dependent dispersibility profiles. While spherical particles 
exhibited varying aerosol performance when dispersed by 
the Aeroliser and the Handihaler (FPF of 51% and 37%, 
respectively), the FPF values of elongated rifampicin was 
around 60% regardless of the device type or flow rate [25].

Porous Particles

Porous particles have a low particle density (< 0.5 g/cm3) 
and a large surface area (> 50  m2/g), which leads to a low 
aerodynamic diameter. These particles have lower inter-
particulate cohesive force (i.e., van der Waals force) due to 
reduced contact area between the particles and/or reduced 
particle mass per unit volume of packing. As a result, porous 
particles exhibit less particle agglomeration and enhanced 
lung delivery efficiency than solid spherical particles. One 
of the pioneering studies has shown that large porous parti-
cles with geometric diameter of > 8 µm and particle density 
of < 0.1 g/cm3 exhibited an in vitro respirable fraction of 
57% [26]. These porous particles could be delivered deep 
into the lungs of rats and escape clearance by macrophages 
owing to its large geometric diameter. Moreover, insulin 
encapsulated in porous particles exhibited higher bioavail-
ability upon inhaled delivery to rats and suppressed systemic 
glucose levels for an extended period of time as compared to 
smaller non-porous particles (< 5 µm). Another advantage of 
porous particles is that lung delivery is largely independent 
of the peak inspiratory flow rate of patients, which entails 
reduced dosing variability [27, 28]. All of these traits make 
porous particles a desirable strategy for delivering inhala-
tion drugs to the deep lung for treating pulmonary infec-
tions caused by bacteria and virus, pulmonary diseases (e.g., 
cystic fibrosis), and systemic delivery (e.g., insulin). In fact, 
porous particles have been exploited to enhance lung dose 
of antibiotics (e.g., rifampicin, tobramycin, ciprofloxacin), 
anti-inflammatory drugs (e.g., meloxicam, budesonide), 
herbs (e.g., curcumin), and biologics (e.g., genes, proteins) 
[27, 29–35].

Historically notable examples of porous particles are the 
AIR® and PulmoSphere™ technologies developed for DPI 
formulation in the late 1990s. For the Air technology, the 
drug of interest was spray dried with lung surfactant (dipal-
mitoylphosphatidylcholine, DPPC), albumin and disaccha-
rides, which are GRAS (generally regarded as safe)-type 
excipients [36]. Due to its surface activity and low solu-
bility in the water-based solvent system, DPPC localises at 
the particle surface during drying. The resulting particles 
have hydrophobic outer surface which can reduce the capil-
lary forces between the particles, thereby further improving 
the aerosolisation properties of the powder [37]. Moreover, 

powders with high DPPC content can exhibit sustained 
release of hydrophilic drugs [38]. The AIR Insulin System 
contains porous particles with a geometric diameter above 
5 µm and low particle density (< 0.4 g/cc). AIR Insulin 
exhibited comparable efficacy as the standard subcutane-
ously injected insulin in clinical studies [39], which may 
appeal to diabetes patients. Other drugs such as salbutamol 
sulfate [38] and levodopa [40] have also been designed using 
the AIR System for treating bronchoconstriction and Parkin-
son’s disease, respectively. PulmoSphere™ technology uses 
a pore forming agent (e.g., perfluorocyte bromide), surface 
modifier and lung surfactant (distearoylphosphatidylcholine, 
DSPC) to produce porous particles. Drugs can be incorpo-
rated with PulmoSphere as solution-, suspension-, and car-
rier-based systems. Particles produced using PulmoSphere 
technology are often smaller (1–5 µm in geometric diameter) 
and have a foam-like morphology as compared to the AIR 
System [41]. Drugs such as ciprofloxacin, tobramycin, bude-
sonide, and indacaterol have been successfully incorporated 
in PulmoSphere particles [27, 31, 32, 42]. Due to the large 
size and a low drug mass-to-volume ratio of these porous 
particles, the total mass of the powder that can be loaded 
into a capsule is smaller than for powders with denser par-
ticles. Hence, for drugs requiring a high lung dose such as 
antibiotics, multiple capsules and inhalations may be needed 
to achieve a sufficient dose. Moreover, large porous particles 
take up larger storage volumes, which challenges the practi-
cality of large-scale manufacture and storage, limiting their 
industrialised use.

Spiky Particles

Spiky particles have a spherical core with conical protru-
sions on the surface, which leads to larger geometric diam-
eter but lower particle density. Similar to porous particles, 
spiky particles have shown to exhibit better flowability 
and aerosolisation as compared to particles with spherical 
particles with similar volumes and equivalent geometric 
diameters [43]. Conical protrusions on the particle surface 
increase the distance between interacting particles, thereby 
minimising inter-particulate cohesive forces and particle 
aggregation. When particles with similar size range but dif-
ferent morphology (sphere, plate, cube and elongated) was 
aerosolised, higher emitted dose and FPF were observed for 
spiky, pollen-like particles [44].

Other Morphologies

Development of particle replication in non-wetting templates 
(PRINT) technology has taken the morphological particle 
engineering to a newer level. Using a mold, particles with 
various shapes can be produced with precision with high 
batch to batch reproducibility and dose uniformity [45]. 
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This technology has been utilised to produce pollen-like 
triangular shaped particles containing immunoglobulin 
G and lactose, cylindrical particles containing BSA and 
lysozyme, and torus particles containing itraconazole (anti-
fungal drug), zanamivir (influenza drug), DNase, or siRNA 
[46, 47]. Cylindrical particles containing proteins BSA 
and lysozymes (geometric diameter of 1 µm) had MMAD 
of < 2 µm and FPF of 79% and 85%, respectively [47]. A DPI 
formulation of treprostinil produced by PRINT technology 
is currently under clinical investigation for the treatment of 
pulmonary arterial hypertension [48].

Engineering Chemical Properties

Co‑Formulation with Excipients

Hydrophobic amino acids (e.g., leucine, methionine, tryp-
tophan) are commonly used excipients for improving the 
physical stability and powder dispersibility of spray dried 
powder formulations for inhalation. L-leucine has been the 
most popular choice due to its surface-active and hydropho-
bic properties that substantially enhance the aerosol perfor-
mance of spray dried powders by altering the surface mor-
phology and surface energy of the particles [49–54]. When 
increasing concentrations of L-leucine (2–40%, w/w) was 
used to spray dry hygroscopic DSCG powders, the aerosol 
performance showed an upward trend with greater particle 
deposition in the lower stages of the impactor [51]. Com-
pared with spray dried DSCG alone powder, those contain-
ing 2% (w/w) L-leucine exhibited significantly improved 
 FPFrecovered value (72% vs. 58%), but the effect plateaued at 

leucine concentrations beyond 10–20% (w/w). The X-ray 
photoelectron spectroscopy (XPS) confirmed that the maxi-
mum surface enrichment was reached in spray dried pow-
ders containing 10–20% (w/w) L-leucine (i.e., 30–50 molar 
percent) (Fig. 3) which may have led to no further changes 
in the surface energies, and/or cohesive forces of the parti-
cles. Higher leucine concentration generally leads to higher 
powder dispersibility even after exposure to high RH [51, 
55]. After 30 min exposure to 25°C/90% RH, spray dried 
trehalose formulation showed a significant reduction in the 
emitted dose (from > 90% down to < 70%) when dispersed 
at 60 L/min [55]. However, the presence of leucine (30%, 
w/w) substantially minimised the powder degradation and 
achieved 90% emitted dose even after 60 min of exposure to 
25°C/90% RH. In another study,, the aerosol performance of 
the pure DSCG spray dried powders was drastically reduced 
 (FPFrecovered of 2%) after one-day storage at 25°C/75% RH, 
which was caused by powder agglomeration resulting from 
strong capillary forces [51]. In contrast, DSCG powders 
containing 10–20% (w/w) L-leucine remained dispersible 
with no significant changes in the FPFs, demonstrating the 
protective role of L-leucine in preventing the deleterious 
effect of high RH on aerosol performance.

In another study, both L-leucine and L-isoleucine miti-
gated moisture-induced powder degradation and enhanced 
aerosol performance of spray dried trehalose powders 
[53]. The presence of L-leucine or L-isoleucine at 20–60% 
(w/w) improved the  FPFrecovered of the spray dried formula-
tions from 35% (trehalose only) to > 50%. During a 28-day 
storage at 25°C/50% RH, 40% (w/w) L-leucine was needed 
to prevent recrystallisation of amorphous trehalose, while 
only 20% (w/w) isoleucine was sufficient in protecting the 

Fig. 3  SEM images of co-spray 
dried colistin and rifapentine. 
Reprinted with permission from 
reference [67]. Copyright 2015 
American Chemical Society.
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powders. This may be due to greater surface enrichment of 
L-isoleucine than L-leucine when spray dried at 40–60% 
(w/w) which was confirmed by XPS data. Hydrophobic 
amino acids such as L-leucine and L-isoleucine provide 
moisture protection by forming a crystalline shell on the 
particle surface and a higher content of these amino acids 
often leads to greater protection [51, 53, 56]. Due to their 
hydrophobicity and surface activity, L-leucine and L-iso-
leucine become enriched on the particle surface during 
spray drying, followed by supersaturation and then precipi-
tation on the surface during drying. For L-leucine to act 
as a physical barrier to surrounding moisture, it must exist 
in the crystalline form that has low water uptake propen-
sity as compared with amorphous form, and reduce inter-
particulate interaction caused by water adsorption. Organic 
solvents can be considered for promoting L-leucine crys-
tallisation and enhancing surface coverage on the particle 
surface by modifying supersaturation level in drying droplets 
[57, 58]. Other hydrophobic amino acids such as trileucine, 
methionine, tryptophan and valine can also help alleviate 
the moisture-induced powder degradation [59–61]. More 
recently, hydrophobic D-amino acids such as D-methionine 
and D-tryptophan have been explored in spray dried cipro-
floxacin formulations for dual benefits of moisture protection 
and anti-biofilm effect [61].

Metal stearates have also been widely assessed for coat-
ing the inhalable particles through spray drying or dry 
coating for moisture protection and aerosol performance. 
Magnesium stearate is recognised as safe for inhalation 
and approved for DPI products such as Foradil Certihaler, 
Incruse Ellipta, and Seebri Breezhaler. This hydrophobic 
lubricant can help deagglomerate co-milled API-lactose-
magnesium stearate blends and improve aerosol perfor-
mance, whilst protecting the formulation from high RH of 
75% for 15 days [62]. Despite its excellent properties in DPI 
products, its use has been limited to dry coating [63–65] due 
to poor solubility in water and organic solvents. In com-
parison, sodium stearate has a relatively higher solubility in 
water and organic solvents and thus been co-spray dried with 
hygroscopic drugs to enhance aerosol performance. Com-
pared with spray dried DSCG powder, those containing 10% 
(w/w) sodium stearate exhibited higher FPF value (89% vs. 
68%) [66]. Although these hydrophobic excipients provide 
tremendous benefits in powder dispersibility, excessive use 
will likely impede dissolution of APIs and impact bioavail-
ability in the lungs.

Co‑Formulation with Active Pharmaceutical 
Ingredients

Two or more APIs can be co-formulated to exploit the ben-
efits of combination formulations. For example, the use 
of more hydrophobic drug can confer moisture protection 

and prevent loss of powder dispersibility when exposed to 
high RH. To achieve this, hydrophilic colistin has been co-
spray dried with hydrophobic drugs including rifapentine 
(Fig. 3) [67], rifampicin [68] and azithromycin [69], which 
protected the powders from moisture-induced degradation 
and remained highly dispersible even after storage or dis-
persion at 75% RH. Moreover, the combination formula-
tions displayed synergistic antibacterial effect. In another 
study, colistin was co-spray dried with ciprofloxacin, which 
is known to form amorphous and unstable particles once 
spray dried [70]. The presence of colistin positively influ-
enced the powder dispersibility and provided moisture pro-
tection. While ciprofloxacin only powder recrystallised at 
55% RH within 1 h, the co-formulation remained stable 
and dispersibility even after storage at 55% RH for 60 days. 
Similarly, amorphous and unstable spray dried kanamycin 
could remain stable and dispersible when co-spray dried 
with hydrophobic rifampicin even after one month storage 
at 53% RH [71]. While moisture protection resulting from 
surface enrichment of hydrophobic APIs can benefit physical 
properties of the co-formulation, excessive surface coverage 
may impact drug dissolution. In another study, antibiotics 
including azithromycin and tobramycin was co-spray dried 
with N-acetylcysteine which is a mucolytic agent recom-
mended for co-administration in treating cystic fibrosis 
patients [72]. The co-formulations showed high FPF values 
(67%-98%) and remained stable after six weeks of storage 
at 65°C (RH unreported) and, thus, expected to remain sta-
ble at room temperature by extrapolation. Importantly, the 
co-formulations exhibited synergistic inhibition of Pseu-
domonas aeruginosa biofilm formulation, which impels a 
strong drive for producing combination formulations con-
taining two or more APIs.

Challenges in Particle Engineering 
for Biotherapeutics

Compared to small molecules, biologics are more sensi-
tive to various stresses of powder production processes. For 
example, biologics are exposed to heat, mechanical shear, 
air–liquid interface, and drying stresses during spray drying 
that can cause degradation and loss of function. Similarly, 
the stresses of freezing, drying, mechanical shear, and con-
centration-induced osmotic shock during spray-freeze drying 
can impact the stability of biologics. As complex large mol-
ecules, biologics have more potential sites for degradation. 
It may undergo aggregation, deamidation, fragmentation, 
hydrolysis, deglycosylation, oxidation, and disulphide bond 
formation or breakage [73], which may compromise their 
therapeutic efficacy and raise potential safety concerns. In 
fact, molecular aggregation is the most common mechanism 
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of protein instability and it can reduce bioactivity and 
increase the risk of immunogenicity [74].

While milling is the most widely used method for produc-
ing DPI products, this approach may not suitable for some 
labile and fragile biologics that can easily become degraded 
[75]. For spray drying, commonly used formulation strate-
gies such as the use of organic solvents or high temperature 
for promoting formation of crystalline leucine shell and/or 
efficient drying of the particles should be avoided for bio-
therapeutics. For heat-sensitive biologics, spray-freeze dry-
ing is the preferred method of production. However, this 
method is less well-established in pharmaceutical industry 
compared to spray drying, altough scaling up is feasible [76, 
77].

Once the powder formulation of biologics is produced, 
they need to remain stable in solid state. Due to the common 
use of glassy excipients to stabilize biotherapeutical mol-
ecules (see Sect. 4 below), inhalable powder formulations 
of these molecules are often partially amorphous, hygro-
scopic and sensitive to moisture-induced powder degrada-
tion. As such, surrounding moisture and/or elevated storage 
temperature can render the formulation to potential powder 
recrystallisation, which can adversely impact the stability 
of the biologics as well as the dispersibility of the powder.

Once the powder is administered by a subject, biolog-
ics are subject to clearance in the airways via mucociliary 
clearance. The beating of cilia lining actively removes any 
insoluble particles or microorganisms out of the lungs and 
into the upper airways, which is eventually swallowed. 
Moreover, biologics can be cleared by alveolar macrophage 
uptake. Due to slower transport and absorption of larger 
proteins (> 40 kDa), they are more likely to be cleared by 
macrophages than smaller proteins and peptides (< 25 kDa) 
[78]. In addition, biologics can be degraded by endogenous 
enzymes in the lungs such as serine proteases, aminopepti-
dases, DNase, and RNase [79–81].

Formulations Strategies for Particle 
Engineering of Biotherapeutics

Formation of Amorphous Glassy Matrix

The use of suitable excipients is critical in formulation of 
inhalable dry powder biotherapeutics that are biologically 
stable and physically dispersible. The most widely utilised 
excipient is amorphous glass formers such as disaccha-
rides, polysaccharides, and polyols (e.g., lactose, trehalose, 
sucrose, maltodextrin) [73, 82–85]. Proteins and peptides are 
immobilised, and hence stabilised, inside amorphous glass 
matrix. In the glassy state, the local mobility of the mol-
ecule is suppressed, which in turn slows down the molecular 
dynamics of the biologics incorporated inside the matrix, 

thereby slowing down the degradation process in the pow-
ders [26, 27]. This helps to maintain the structural integrity 
of the biologics in solid state over the shelf life. Hydrogen 
bonding between disaccharide molecules in the matrix and 
the biologics can further help slow the degradation. In fact, 
the stability of protein in solid state can be improved by 
increasing the sugar-to-protein ratio until sugar interacts 
with all the accessible hydrogen bonding sites on the pro-
tein surface [86, 87]. It has been suggested that in general a 
sugar:protein weight ratio of 1:1 to 1:5 is needed for preserv-
ing the structural integrity of proteins [88]. In addition to 
disaccharides, other glass forming excipients such as man-
nitol and amorphous calcium carbonate have been used for 
stabilising proteins [89, 90]. Notably, although mannitol is 
known to form crystalline particles when spray dried due 
to its low glass transition temperature  (Tg), it formed amor-
phous particles in the presence of salmon calcitonin when 
the excipient content was ≤ 50% (w/w) [89]. Although lac-
tose is an amorphous glass former and a commonly used 
drug carrier, the use of this excipient in biologics has been 
limited due to its reducing nature that causes Maillard reac-
tion with amino groups of proteins [78].

The same strategy has been utilised for stabilising nucleic 
acids and virus particles (bacteriophage) in inhalable pow-
der formulations, where disaccharides (lactose, trehalose) 
or sugar alcohol (mannitol) are used for immobilising and 
stabling them in amorphous matrix whilst acting as the bulk-
ing agent [49, 91–94].

Tg Manipulation

Glassy materials are physically unstable and fine particles 
can quickly uptake surrounding moisture due to high surface 
area and high energy state. Subsequent recrystallisation is 
detrimental for the incorporated biologics as in the absence 
of amorphous matrix, they are no longer stabilised through 
immobilisation [95]. An amorphous glass is characterised by 
a  Tg at which the matrix transitions from the glassy state to 
a rubbery state. As amorphous sugars are prone to recrystal-
lisation at temperatures above  Tg [96, 97], excipients with a 
high Tg can be added to increase the  Tg of the co-formula-
tion (Fig. 4), thereby promoting the stability of biologics in 
solid state. High molecular polysaccharides often possess 
higher  Tg than smaller saccharides. Among disaccharides, 
trehalose is commonly used owing to its amorphous glass 
forming properties with a high  Tg value of 120°C, while 
most others range between 65 and 100°C [98]. The addi-
tion of polysaccharides such as Dextran 70 kDa to trehalose 
can increase the  Tg of the co-formulation and enhance the 
stability of proteins [99], which highlights the benefit of  Tg 
manipulation in stabilising biologics in solid state. More 
recently, a polysaccharide pullulan has also been utilised in 
stabilising biologics in solid state due to its high  Tg value 
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of 261°C [100]. Anti-Campylobacter bacteriophage spray 
dried with pullulan and trehalose produced fully amorphous 
powders with biological stability during storage. Water is 
an excellent plasticising agent that can reduce the  Tg of 
amorphous powders [101]. As  Tg increases with decreasing 
moisture content [102], the powders must have sufficiently 
low moisture content so that the amorphous matrix remains 
stable and immobile in the dried state. This may be a chal-
lenge for powder stored in a capsule which can exchange 
its moisture with the powder to potentially its  Tg. Gelatin 
capsules, in particular, should be used with caution as they 
require certain moisture content (13–16 wt.%) to maintain 
its integrity being not too soft or brittle. For this reason, 
hydroxypropyl methylcellulose capsules which have a lower 
moisture content (4–6 wt.%) are increasingly used for DPI 
powder [103]. In addition to  Tg, the molecular flexibility 
of sugars can impact their ability to stabilise proteins with 
more flexible sugars providing better protein stability [99] 
probably through enhanced molecular interactions.

Particle Surface Coating

When proteins are spray dried with excipients, the outer 
particle surface tends to be enriched with proteins that 
are surface-active, whereas small molecule excipients dif-
fused into the core of the particle [73]. Moreover, large 
molecular size of proteins and macromolecules lead to 
slower inward diffusion from the drying interface [104]. 
To avoid protein degradation via unfolding or aggrega-
tion at the air–water interface, surface-active excipients 
such as leucine, tri-leucine, and polysorbate can be uti-
lised [59, 84, 105–107]. These surface-active excipients 
can displace proteins at the interface to provide protection 
against protein degradation. In the same manner, surface-
active excipients can minimise protein adsorption with 

subsequent degradation at the ice-water interface dur-
ing spray-freeze drying [83, 108]. Moreover, the use of 
surface-active hydrophobic excipients such as leucine has 
additional advantage of powder dispersibility enhance-
ment as well as moisture protection (see Sect. 2.1) (Fig. 4). 
However, these hydrophobic excipients often exist in crys-
talline state in spray dried powders, which can lead to 
phase separation with the biologics, causing subsequent 
de-stabilisation and inactivation [109]. Hence, the hydro-
phobic excipients must exist in amorphous state, or sugars 
(see Sect. 4.1) that form amorphous matrix also need to be 
present in the final formulation.

Encapsulation In Micro and Nanoparticles

Polymeric nanoparticles comprising various polymers 
such as chitosan, phospholipid and amphiphilic polymers 
have also been exploited to encapsulate biologics to mini-
mise degradation at the air–liquid interface during drying 
[110–113]. These polymeric particles can also promote bio-
availability of the encapsulated biologics through improved 
transepithelial transport and reduced mucociliary clearance 
[112–114]. Moreover, encapsulation in polymeric or lipo-
somal formulations can assist with intracellular delivery of 
biologics such as genes and antimicrobial peptides, proteins 
and bacteriophages [115–118]. Prud’homme and colleagues 
have successfully used flash nanoprecipitation techniques 
to fabricate a number of nanoparticles of biologics includ-
ing some with encapsulation efficiency being close to 100% 
[119]. However, in general issues arising from the use of 
organic solvents in encapsulated particle production, rela-
tively low encapsulation efficiency, and further formula-
tion as highly dispersible inhalation powders are yet to be 
resolved.

Fig. 4  Risk mitigation strate-
gies to overcome instability of 
amorphous inhalation powders. 
Adapted from [137].
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Storage and Packaging

One of the key advantages of powder formulation over liq-
uid formulation is the room temperature storage stability 
which negates the need for cold chain storage. To achieve 
ambient stability, proteins need to be stored at a tempera-
ture ~ 50°C below the  Tg, which can significantly reduce 
the molecular mobility [101]. As discussed in Sect. 4.2, the 
presence of water in the environment can decrease the  Tg of 
the formulation through its plasticising effect and increase 
the local molecular mobility. Hence, not only the tempera-
ture but also the RH is critical in promoting the stability of 
biopharmaceutic powders. Similar principles also applied 
to spray dried powders of bacteriophage. To preserve the 
biological activity of this biologic, the formulation also 
required storage at ~ 46°C below the  Tg [120]. When the  Tg 
was manipulated through the plasticising effect of water, 
the bioactivity of bacteriophage reduced substantially. As 
such, powders can be sealed inside an aluminium pouch 
or blister packs at low or 0% RH (nitrogen or air gas) to 
eliminate moisture-induced changes to the  Tg, and hence 
improve the biological and physico-chemical stabilities of 
the biotherapeutic formulation (Fig. 5). Dry powder inhal-
ers with discrete drug containment such as aluminum blis-
ters should be utilised over those with a powder reservoir 

to reduce the risk of moisture-induced powder degradation. 
Capsule-based devices such as Aerolizer and Osmohaler are 
also suitable as individually wrapped capsules can be stored 
in moisture protected packages and loaded into the device 
and then inhaled as needed [73].

Recent Examples of Successful DPI 
Biotherapeutics Formulations

Since the development of inhaled insulin powder by Inhaled 
Therapeutics, significant research efforts have been invested 
on developing DPI formulations of biotherapeutics such as 
peptides, proteins, monoclonal antibodies, vaccines, and 
virus. This section will discuss the recent examples of such 
biotherapeutics that have been clinically evaluated in the 
last three years.

LTI‑03

LTI-03 is a caveolin-1-scaffolding-protein-derived peptide 
being developed by Lung Therapeutics for the treatment of 
idiopathic pulmonary fibrosis that is characterised by pro-
gressive destruction of the lung parenchyma due to exces-
sive formation of fibrosis. This peptide prevents excessive 

Fig. 5  Formulation and packag-
ing strategies for amorphous 
powders. Adapted from [137].
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fibroblast growth and expansion, thereby restoring the bal-
ance in the lung and promoting protection of healthy lung 
epithelial cells. Both liquid and powder formulations of LTI-
03 significantly reduced fibrosis and promoted epithelial cell 
survival in a dose-dependent manner in murine models of 
fibrosis [121]. LTI-03 powder formulation was prepared by 
air-jet milling without excipients and exhibited a MMAD 
value of 1.6 µm and FPF of 93% when dispersed through a 
Monodose RS01 high resistance dry powder inhaler [122, 
123]. Recently, the safety, tolerability and pharmacokinet-
ics of LTI-03 inhalation powder was assessed in healthy 
adult subjects (ClinicalTrials.gov No. NCT04233814). In 
this Phase 1a clinical trial, ascending doses of LTI-03 from 
2.5 mg to 10 mg were well-tolerated with no reports of seri-
ous adverse events or discontinuations [124]. As LTI-03 is 
expected to be efficacious at doses between 1 and 10 mg in 
humans according to the preclinical study, further Phase II 
and III investigations are anticipated in the near future.

CSJ117

CSJ117 is a neutralising antibody fragment that can help 
regulate asthmatic airway inflammation by targeting thymic 
stromal lymphopoietin (TSLP). The compound is being 
developed by Novartis Pharmaceuticals and is formulated 
as a PulmoSol™ engineered powder in capsules for aerosol 
delivery using a dry powder inhaler. PulmoSol technology 
has initially been developed for preparing spray dried insulin 
Exubera® by Nektar Therapeutics (previously Inhaled Ther-
apeutics) but has now been applied to CSJ117. A recently 
completed clinical trial (NCT04410523) has demonstrated 
that a daily dose of 4 mg administered over 12 weeks was 
generally safe and well tolerated by mild asthmatic subjects 
and reduced allergen-induced bronchoconstriction [125]. 
Anti-TSLP agents such as CSJ117 have been recognised as a 
promising new therapeutic class for the treatment of asthma.

PRS‑060 (Also Known as AZD1402)

PRS-060 is an inhaled dry powder formulation of an anti-
asthmatic anticalin protein engineered from endogenous 
lipocalin-1 that is under development by Pieris Australia and 
AstraZeneca for treating patients with moderate to severe 
asthma. In the recent Phase Ia clinical trial (NCT03921268), 
the safety and tolerability of PRS-060 administered by the 
Pastiape Monodose inhaler was assessed; formulation infor-
mation was not publicly available. Following promising 
safety data from the study, AstraZeneca is progressing into 
assessing the safety of the high dose (Phase Ib) as well as 
efficacy of the low and medium doses (Phase IIa) in asth-
matic patients [126].

Inhaled Vaccine

Another example worth mentioning is dry powder vaccines 
for inhalation. Inhaled delivery of vaccine against respira-
tory infections is a potentially powerful strategy that can 
induce both systemic and local immunity in the lungs. To 
date, dry powder measles vaccination is the only clinical trial 
conducted using a DPI vaccine formulation. Live-attenuated 
measles virus was spray dried with myo-inositol and other 
stabilising excipients such as gelatin, arginine, and histidine 
using a modified spray drying method (i.e., carbon dioxide 
assisted nebulisation with a Bubble Dryer®) [127, 128]. 
When administered through a Puffhaler® or a Solvent™, the 
inhaled drug was well tolerated in all subjects [129]. Many 
other vaccine candidates that are currently being tested in 
clinical trial entails protein subunit vaccines [130]. Hence, 
similar formulation strategies covered in Sect. 4 can poten-
tially be applied to produce vaccine powders for inhalation. 
Excipients such as inulin, mannitol, trehalose, dextran, leu-
cine, and trileucine have been utilised to produce inhalable 
vaccine powders [131–136], but no further clinical studies 
have been conducted to date.

Conclusion

With successful clinical translation of insulin inhalation 
dry powder products, a growing number of biotherapeutics 
are being developed as inhalable dry powders. To develop 
inhalation powders of biotherapeutics, various formula-
tion strategies have been utilised in achieving biological 
stability and structural integrity of biologics in solid state 
whilst exhibiting sound aerosol performance. Indeed, the 
formulation strategies described in this review have been 
implemented by numerous published studies in developing 
inhalable powder formulations of biologics such as genes, 
peptides, proteins, virus, bacteriophages, monoclonal anti-
bodies, and cells. Dry powder formulations of biologics 
heavily rely on the use of stabilising and/or bulking agents, 
and the limited number of approved excipients for inhala-
tion use poses a significant challenge to the development. 
However, as commonly utilised excipients such as trehalose, 
leucine and sucrose are generally regarded safe, the safety 
issue is anticipated to be low although safety study is still 
necessary. Nonetheless, high biologics loading in powder 
should be attained whenever feasible as high concentrations 
of excipients in the lungs can potentially cause unnecessary 
adverse effects. Identification and subsequent FDA approval 
of biocompatible excipients that help stabilise biologics and 
enhance aerosol performance will greatly help expedite the 
development process. Another aspect to consider is the 
potential safety concerns for proteins that become denatured 
or aggregated during manufacture, delivery and storage. To 
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avoid induction of immune responses by degraded proteins, 
physical as well as the biochemical stability needs to be 
monitored over the shelf-life of the formulation.

With the current COVID-19 outbreak, safe and effective 
vaccine is highly sought after, which has led to heightened 
interest in inhaled vaccine as it may provide non-invasive 
mucosal immunisation that trigger both local and systemic 
responses. The push for mRNA- and protein-based vaccine 
against pulmonary infections is expected to catalyse the 
pharmaceutical research in inhaled biotherapeutics. Yet, 
inhaled biotherapeutics are still at the early stages of devel-
opment as compared with small molecules. Consequently, 
most of the ongoing clinical trials focus on the use of liquid 
formulations of biotherapeutics (e.g., deoxyribo-nuclease I, 
alpha-1 antitrypsin, anti-human thymic stromal lymphopoi-
etin monoclonal antibody fragment) delivered by nebulised 
aerosols. Once the field of liquid formulation of biologics 
matures, powder formulations will naturally attract atten-
tion as the second-generation products. Currently, there is 
no single formulation strategy that can be applied to different 
types of biologics (let alone different proteins), necessitat-
ing systematic development process for individual biothera-
peutics by considering the stability of the molecule in the 
formulation and the lungs, the use of suitable excipients and 
device, patient population, and any biological barriers in the 
lungs. For powder formulations, there have been significant 
progress in engineering particles for inhalation over the past 
three decades to enable sufficient delivery of biologics by 
inhalation.
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