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Abstract: DNA methyltransferases (MTases) can be regarded as biomarkers, as demonstrated by
many studies on genetic diseases. Many researchers have developed biosensors to detect the activity
of DNA MTases, and nucleic acid amplification, which need other probe assistance, is often used to
improve the sensitivity of DNA MTases. However, there is no integrated probe that incorporates
substrates and template and primer for detecting DNA MTases activity. Herein, we first designed
a padlock probe (PP) to detect DNA MTases, which combines target detection with rolling circle
amplification (RCA) without purification or other probe assistance. As the substrate of MTase, the
PP was methylated and defended against HpaII, lambda exonuclease, and ExoI cleavage, as well
as digestion, by adding MTase and the undestroyed PP started RCA. Thus, the fluorescent signal
was capable of being rapidly detected after adding SYBRTM Gold to the RCA products. This method
has a detection limit of approximately 0.0404 U/mL, and the linear range was 0.5–110 U/mL for
M.SssI. Moreover, complex biological environment assays present prospects for possible application
in intricacy environments. In addition, the designed detection system can also screen drugs or
inhibitors for MTases.

Keywords: DNA methyltransferases; padlock probe; rolling circle amplification; fluorescence

1. Introduction

DNA methylation is an important epigenetic process that is strongly involved in gene
expressions, chromatin structures, and tumors [1]. Abnormal DNA methylation can cause
malignant proliferation [2], tumor metastasis [3], and changes in overall gene expression
patterns [4,5]. Studies have shown that abnormal DNA methylation levels can be used
as markers for lung and colon cancer. DNA methylation is a process by which the fifth
carbon atom of cytosine covalently binds to a methyl group under the catalysis of MTases
to form 5-methylcytosine in humans and other mammals. MTases [6] play an important
part in the DNA methylation process because of its ability to transfer methyl groups to
some bases accurately. Thus, DNA methylation levels are primarily regulated by DNA
methyltransferase. It has been shown that DNA MTase is dysregulated in many cancer
cells. Therefore, detection of DNA methyltransferase activity is of great significance for the
diagnosis and prognosis of related diseases caused by its abnormal activity.

In view of this, many methods have been developed to detect DNA MTase activity,
such as colorimetric methods with double-stranded DNA (dsDNA) probes [7], electro-
chemistry with dsDNA probes and hairpin probes [8–10], fluorescence using dsDNA
probes [11–13], hairpin probes and dumbbell probes [14–16], chemiluminescent immunoas-
says with dsDNA probes [17] and dumbbell probes [17–20], and surface-enhanced Raman
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scattering (SERS) using dsDNA probes [21] and hairpin probes [22]. In addition, these
probes usually combine with other nucleotide probes to amplify signals, such as hybridiza-
tion chain reaction (HCR) [23,24], strand displacement amplification(SDA) [25], and rolling
circle amplification (RCA) [18], to detect DNA MTase activity precisely. However, other
DNA-sequence-assisted nucleic acid amplification methods increase the complexity of
experimental protocol design and experimental cost.

In this paper, we designed a PP integrating the function of substrate and amplification
to realize the sensitive detection of DNA MTases without the involvement of purification
and extra nucleic acid sequences. PP has the following characteristics: (1) it is not only a
substrate of MTases, but also a primer for RCA, and does not need any additional auxiliary
probes; (2) it does not need to be purified after cyclization. While using MTase, PP with
the sequence of 5′-CCGG-3′ was methylated while avoiding endonuclease HpaII, lambda
exonuclease, and exonuclease I digestion; thus, the padlock probe remained undamaged to
complete RCA. The fluorescence was detected by subsequently adding SYBRTM Gold. In
contrast, PP is a target of the endonuclease HpaII, lambda exonuclease, and exonuclease I
without MTase, thus producing single nucleotides. Then, we could detect the activity of
DNA MTase by observing the fluorescence signal in the system. Our probe can not only act
as an enzyme substrate but also spontaneously perform RCA, so it can accurately detect
MTase activity. Moreover, the results from detection in complex biological environments
and screening of MTase inhibitors show that this protocol is a sensitive and reliable MTase
detection strategy. It also provides new possibilities for clinical detection of cancer.

2. Materials and Methods
2.1. Reagents

In this study, oligonucleotides were synthesized by Sangon Biotechnology Co., Ltd.
(Shanghai, China) and HPLC-purified. All synthesized oligonucleotides are listed in
Table S1. Lambda exonuclease, T4 DNA ligase, exonuclease I, Phi29 DNA polymerase,
HpaII restriction endonuclease, M.SssI were acquired from New England Biolabs (Beijing,
China), and r Taq DNA Polymerase and T4 PNK were obtained from Takara Biotechnology
(Dalian, China) Co., Ltd., and 5-Azacytidine (5-Aza) and 5-fluorouracil were purchased
from Sigma–Aldrich. Agarose, 40% polyacrylamide (29:1), and nucleic acid dye Gel Red
(10,000×) were purchased from Beyotime Biotechnology (Shanghai, China). SYBRTM Gold
was obtained from Life TechnologiesTM (Eugene, OR, USA).

2.2. Apparatus

Fluorescence spectra were recorded by using a microplate reader (Tecan Infinite
M1000 Pro, Männedorf, Switzerland). Polyacrylamide and agarose gels were imaged by a
Molecular Imager Pharos FXTM Plus system (Bio-Rad, Hercules, CA, USA). All the prepared
buffers were diluted using ultrapure water, which was acquired from a Millipore water
purification system (Milli-Q, Millipore, Burlington, MA, USA).

2.3. MTase Activity Detection Procedures

In this work, the detection system included five steps. First, for PP ligation, 30 µL
of unconnected PP DNA, including 10 µL of 10 µM PPs, 10 µL of 10 µM PPc, and 10 µL
of ultrapure water, was heated to 95 ◦C for 5 min, followed by annealing for 1 h prior to
ligation. Subsequently, unconnected PP was ligated using 2 U of T4 DNA ligase at room
temperature overnight in 100 µL 1× T4 DNA ligase buffer. The mixture was heated for
10 min at 65 ◦C to inactivate T4 DNA ligase. Second, PP was incubated at 37 ◦C for 1.5 h
with various concentrations of M.SssI MTase in 40 µL 1× CutSmart buffer, including 4 µL
of 1600 µM S-adenosyl methionine (SAM), 4 µL of CutSmart buffer (10×), and different
volumes of ultrapure water. The mixture was then heated for 20 min at 65 ◦C to inactivate
the M.SssI. Third, unmethylated PP was cleaved at 37 ◦C for 1 h by adding 2 µL of lambda
exonuclease and 1 µL of HpaII restriction endonuclease in 50 µL of 1× CutSmart buffer.
Fourth, the DNA fragment was digested at 37 ◦C for 1 h with 0.3 µL of exonuclease I in
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60 µL of 1× ExoI buffer and subsequently heated at 80 ◦C for 20 min. Finally, 6 µL of ExoI
digestant mixture was added to 50 µL of 1× rolling circle amplification reaction buffer
containing 0.25 µL of Phi29 DNA polymerase (10 U/µL), 4 µL of dNTPs (25 mM), 0.25 µL
of BSA (20 mg/mL), 5 µL of RCA buffer (10×), and 34.5 µL of ultrapure water, followed by
incubation at 37 ◦C for 40 min and heating at 65 ◦C for 20 min.

2.4. Activity Detection of M.SssI with SYBRTM Gold

After RCA, the reaction solution was mixed with 1 µL of SYBRTM Gold (100×) and
49 µL of ultrapure water to a final volume of 100 µL. Then, the mixture was subjected to
fluorescence measurements.

2.5. Gel Electrophoresis

Agarose gel electrophoresis was used to verify the feasibility of the method. RCA
products were loaded for electrophoresis on 1% agarose gel, which was prepared by heating
a mixture of agarose (0.25 g), 25 mL of 1×TBE solution, and adding nucleic acid dye, and
ran at 140 V for 0.5 h in 1× TBE buffer (89 mM Tris-Borate, 2 mM EDTA, pH 8.3) after
RCA. Then, the gel was imaged by using a Molecular Imager Pharos FXTM Plus system
(Bio-Rad, Hercules, CA, USA). Polyacrylamide gel electrophoresis was performed to verify
the cyclization and digestion progress. The methylation [20] and digestion products were
loaded onto 12% native-PAGE gels and incubated for 1 h at 150 V in 1× TBE buffer, stained
with SYBRTM Gold for 20 min, and then imaged. The composition of 12% native-PAGE
included 3 mL of 40% polyacrylamide (29:1), 7 mL of 1× TBE, 10 µL of TEMED, and 100 µL
of 10% APS.

2.6. Activity Detection of M.SssI in Human Healthy Serum and Selectivity of the Strategy

Various concentrations of M.SssI were added to 10% healthy human serum to detect
MTase activity using the detection system described above.

The selectivity assay was implemented using different target BSA, r Taq DNA Polymerase,
T4 PNK, and the next procedures for selectivity as described for MTase activity detection.

2.7. Evaluation of MTase Inhibitors

To evaluate the effect of inhibitors on other enzymes in the system, 5-Aza or 5-fluorouracil
was added to the system after the completion of methylation reaction, so that the reaction
system contained inhibitors 5-Aza or 5-fluorouracil in the subsequent enzymatic lysis
digestion process and RCA process. In so doing, the total effect of the two inhibitors on
other enzymes in the system could be evaluated in the system without adding inhibitors
to the control group. Subsequently, several concentrations of 5-Aza and 5-fluorouracil
were used during the methylation process to measure the restraint of inhibitors of MTase.
Various concentrations of 5-fluorouracil and 5-Aza were incubated with PP in 1× CutSmart
buffer at 37 ◦C for 30 min. Then, 160 µM SAM and 100 U/mL M.SssI were added to the
system, followed by incubation for 1.5 h at 37 ◦C; then, the next experiments were imple-
mented as described above. The relative activity (RA) of M.SssI was obtained according to
Equation (1).

RA = (Fi − F0)/(Ft − F0) (1)

where F0, Ft, and Fi are the fluorescence intensities without DNA MTase, with DNA MTase,
and with both DNA MTase and inhibitor, respectively. The IC50 value of the inhibitor was
obtained from the curve-fitting equation.

3. Results and Discussion
3.1. Scheme of M.SssI Activity Detection Using PP and RCA

PP is usually used to detect some nucleic sequences, such as microRNA [26,27],
methylated DNA sequences [28–31], and exosomes [32], but it has not been previously used
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to detect DNA MTase activity. To sensitively detect MTase, PP with RCA was designed as
illustrated in Scheme 1.
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Scheme 1. MTase activity detection by padlock probe with RCA.

First, we synthesized a PPc DNA strand with a 3-hydroxyl terminal and a 5-phosphate
terminal. On this chain, we designed the PPs complementary part, the methylation site,
the HpaII restriction site and 3-hydroxyl terminal, and a 5-hydroxyl terminal. Under the
action of T4 DNA ligase, PPc and PPs will form PP by connecting adjacent 5-phosphate
and 3-hydroxyl terminal after annealing. PP is methylated using M.SssI and then cleaved
specifically with HpaII. The unmethylated PP is cleaved and exposes 5′-phosphoric acid
terminal, to be recognized by Lambda exo. Subsequently, cleaved PP was digested by
Lambda exo into single chains to reduce background signal, because SYBRTM Gold can
bind all nucleic acids. Finally, single chains including PPc and PPs that did not form PP
will be digested into mononucleotide by ExoI to reduce background signal. The cleaved
nucleotides cannot carry on RCA after adding Phi29 DNA polymerase and generating
fluorescence following the addition of SYBRTM Gold. In contrast, PP is protected from
HpaII because the HpaII restriction site is methylated by M.SssI, while the complete PP
avoids exonuclease digestion. Finally, under the action of Phi29 DNA polymerase, the PP
can facilitate RCA and generate fluorescence following the addition of SYBRTM Gold.

3.2. Feasibility of M.SssI Verification Using PP and RCA

To demonstrate the feasibility of this strategy, we designed fluorescent and gel elec-
trophoresis experiments. First, as shown in Figure 1A, an extremely weak fluorescence
signal was obtained without M.SssI. In contrast, the fluorescence intensity was significantly
stronger with M.SssI, which indicated that our probe can accurately identify whether M.SssI
exists. Second, native-PAGE was carried out (Figure 1B). In this experiment, Lane a con-
tained PPs DNA, Lane b contained PPc DNA, Lane c contained products of cyclizing PPs
and PPc incubating with T4 DNA ligase, Lane d contained PP that had been incubated with
endonucleases, exonucleases but not M.SssI, Lane e contained PP that had been incubated
with endonucleases, exonucleases, and M.SssI. The result was similar to Lane c because
methylated PP can be protected from digestion by endonucleases and exonucleases. The
native-PAGE proved that the experimental process was carried out smoothly according
to the scheme. To illustrate the products of RCA with or without M.SssI, agarose gel
electrophoresis was also implemented (Figure S1). There were more products of RCA with
M.SssI than without M.SssI, which yielded almost no products. In conclusion, fluorescence
and agarose gel electrophoresis, as well as polyacrylamide gel electrophoresis methods,
demonstrated the feasibility of this method.
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Figure 1. Feasibility of M.SssI detection with RCA. (A) Fluorescence emission spectra with or without
M.SssI following the addition of SYBRTM Gold. (B) Polyacrylamide gel electrophoresis supports
the feasibility of the strategy: (Lane M) 20 bp DNA marker; (Lane a) PPs; (Lane b) PPc; (Lane c)
PPs + PPc + T4 DNA ligase; (Lane d) PPs + PPc + T4 DNA ligase + HpaII + lambda exo + ExoI;
(Lane e) PPs + PPc + T4 DNA ligase + M.SssI + HpaII + lambda exo+ ExoI.

3.3. Optimization of the Experimental Conditions

To shorten the reaction time and obtain the best signal-to-noise ratio (SNR), we opti-
mized the reaction buffer and the enzymatic reaction time. The methylation and cleavage
reaction refer to three kinds of enzymes (M.SssI, HpaII, and lambda exo) and three different
buffers (1× NEBuffer 2, 1× lambda reaction buffer, 1× CutSmart buffer). The NEBuffer
2 with 1× concentration (1 mM DTT, 10 mM Tris-HCl, 10 mM MgCl2, 50 mM NaCl,
pH 7.9) was used for the methylation process. 1× CutSmart buffer (20 mM Tris-Ac,10 mM
Mg (OAc)2, 50 mM KAc, pH 7.9, 100 µg/mL BSA) was used for HpaII digestion. And
1× lambda reaction buffer (2.5 mM MgCl2, 50 µg/mL BSA, pH 9.4, 67 mM glycine-KOH)
was used for lambda exo digestion. The cleavage of HpaII was the key to the high SNR and
sensitivity in the experiment, and reaction buffer could greatly affect the enzyme activity.
To obtain the optimal reaction buffer, we researched the assay properties using CutSmart
buffer and different buffer mixtures (CutSmart buffer, CutSmart buffer+ NEBuffer 2, NEB-
uffer 2 + lambda reaction buffer + CutSmart buffer, lambda reaction buffer + CutSmart
buffer). As shown in Figure S2, CutSmart buffer obtained the highest F/F0 value. Thus,
CutSmart buffer was chosen for the following experiments. To obtain the best performance
of M.SssI assay, the methylation reaction time was determined. As shown in Figure S3, the
fluorescence intensity was enhanced as the reaction time and the fluorescence intensity
grew slowly over the reaction time of 1.5 h. In order to shorten the reaction time, 1.5 h was
selected. Therefore, methylation reaction time of 1.5 h was used in the following research.
The cleavage time of lambda exo and HpaII was optimized. As shown in Figure S4, the
fluorescence intensity value decreased with the reaction time, and subsequently reached a
plateau at 20 min. Therefore, cleavage time of 20 min is chosen in the following experiments.
Finally, the digestion time of ExoI was optimized. As shown in Figure S5, the F/F0 reached
its highest value at 1 h. Therefore, in the following experiments, the digestion time was
determined to be 1 h.

3.4. Sensitivity Detection of MTase and Selectivity of the Strategy

According to the conditions confirmed above, various concentrations of M.SssI were
added to the system to detect the sensitivity of the designed method. As the M.SssI
concentration increased within the range of 0.5 to 110 U/mL, the intensity of fluorescence
increased linearly (Figure 2A). The correlation between the fluorescence intensity and
MTase concentration is shown in Figure 2B, which exhibited a good linear correlation
within the scope of 0.5 to 110 U/mL (R2 = 0.996). The derived correlation equation is
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F = 348.19 [C] + 1426.04 (Figure 2C), in which F is the fluorescence intensity after adding
M.SssI, and [C] is the concentration of M.SssI. The limit of detection (LOD) was 0.0404 U/mL,
which follows some reported methods (Table S2) based on the correlation equation and
the LOD equation (3 σ/S). The recovery rates of M.SssI, which had concentrations of
0.5 U/mL, 50 U/mL, and 110 U/mL, were calculated in the reaction buffer, and the results
are listed in Table 1. The recovery rate ranged from 89.10–105.2%, and the RSD ranged
from 8.87–9.34%. The results indicate that this strategy is reliable and comparable to those
obtained in previous studies (Table S2). The obtained results also verified that the strategy
is stable.
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Figure 2. Sensitive and selectivity detection of MTase. (A) Fluorescence intensities after adding
various concentrations of M.SssI; (B) relationship between the fluorescence intensity and concentra-
tions of M.SssI; (C) correlation between the fluorescence intensity and MTase concentration in the
range of 0.5 to 110 U/mL; (D) selectivity of the strategy. The reaction was formed via the addition of
150 U/mL M.SssI MTase, 50 U/mL T4 PNK, 150 U/mL r Taq DNA polymerase, and 10 mg/mL BSA.

Table 1. Recovery studies of M.SssI in CutSmart buffer.

Sample Added (U/mL) Measured (U/mL) a Mean Recovery (%) b RSD (%) c

1 0.5 0.52 104.00 8.87
2 50 44.55 89.10 8.77
3 110 115.73 105.21 9.34

a Mean concentration of three replicates. b Mean recovery (%) = 100 × (C mean measured/C added). c Relative
standard deviation of three determinations.

To verify the selectivity of the scheme, as shown in Figure 2D, 150 U/mL M.SssI,
50 U/mL T4 PNK, 150 U/mL r Taq DNA polymerase, and 10 mg/mL BSA [33] were added
to the detection system. Fluorescence signals were observed after adding MTase as PP
could be protected by MTase and signals were weak without MTase, which demonstrated
the high specificity of the strategy.
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3.5. Detection of M.SssI Activity in 10% Human Serum

To assess the application of the designed method in a complex biological environ-
ment, various concentrations of M.SssI were added to 10% (v/v) healthy human serum.
As shown in Figure 3, as the M.SssI concentration increased, the fluorescence intensity
increased slightly (Figure 3A). The linear range of the calibration curve is 0.5 to 110 U/mL
(R2 = 0.984), which was in agreement with the linear equation obtained from the CutSmart
buffer. (Figure 3B), with an LOD of 0.0381 U/mL. The correlation equation was determined
to be F = 369.02 [C] + 1248.32, in which F is the fluorescence intensity with M.SssI and [C] is
the concentration of M.SssI in 10% human serum. The recovery rates of M.SssI, which had
concentrations of 10 U/mL, 50 U/mL, and 70 U/mL, were calculated in the 10% human
serum; the results are listed in Table 2. The recovery rate ranged from 96.09–103.50%, and
the RSD ranged from 4.06–6.33%. The results indicate that this strategy is reliable and
comparable to those obtained in previous studies (Table S2). The obtained results verified
that the strategy can be used stably in a complex biological environment.
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Figure 3. Detection of MTase in 10% human serum. (A) Fluorescence intensities with various
concentrations of M.SssI in 10% human serum; (B) relationship between the fluorescence intensity
and MTase concentration with the scope of 0.5 to 110 U/mL.

Table 2. Recovery studies of M.SssI in 10% human serum.

Sample Added (U/mL) Measured (U/mL) a Mean Recovery (%) b RSD (%) c

1 10 10.35 103.50 4.97
2 50 50.94 101.88 6.33
3 70 67.50 96.09 4.06

a Mean concentration of three replicates. b Mean recovery (%) = 100 × (C mean measured/C added). c Relative
standard deviation of three determinations.

3.6. Inhibitory Activity Assay of M.SssI Inhibitors

As an important epigenetic mechanism, DNA methylation has a large impact on gene
transcription and is related to many diseases [34–37]. DNA methylation is a dynamic
and reversible process. DNA demethylation leads to transcriptional activation and re-
expression of silenced genes, providing a new way of thinking about cancer. Therefore,
useful DNA MTase inhibitors that can restrain the activity of DNA MTase have received
increasing attention. We used the designed strategy to test the inhibitory effect of DNA
MTase inhibitors. The MTase inhibitor 5-Aza, which can be directly incorporated into
DNA and inhibit DNA methylation, and 5-fluorouracil (5-F) were used in this assay [38].
Different concentrations of 5-Aza and 5-F were added to the system, respectively. Before
the inhibition assay, an experiment was carried out to eliminate the probable impact of
the detection system (Figure S5), which revealed that inhibitors had lesser impact on
the system. After excluding the inhibitory effect of inhibitors on other enzymes in the
system, we evaluated the inhibitory effect of inhibitors on M.SssI activity. The results
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shown in Figure 4B reveal that the activity of M.SssI decreased as the dosages of 5-F and
5-Aza increased (Figure 4B) in a dose-dependent manner. The half-maximal inhibition
concentration (IC50) of 5-F was 8.84 µM, which has a good accordance with previous
methods (6.0± 0.2 µM) [39]. The IC50 was 4.91 µM of 5-Aza, which is consistent with those
obtained in previous studies (4.2 µM, 3.33 µM, 3.5 µM) [7,40,41]. These results prove that
the designed method can be used to screen DNA MTase inhibitors.
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with different concentrations of 5-F and 5-Aza. The concentration of M.SssI was 100 U/mL.

4. Conclusions

In summary, we designed a new single integrated padlock probe to detect DNA
MTases with amplification rather than dsDNA probe, hairpin DNA probe, or dumbbell
probes to detect the activity of DNA MTases. This proposed strategy is sensitive to a range
of 0.5 to 110 U/mL and an LOD of 0.0404 U/mL. This method also shows high specificity
to DNA MTase. This project has the following advantages: (1) the padlock probe not only
is a substrate for DNA MTases but also can initiate RCA without the help of other probes.
In other words, the padlock probe is integrated, which combines detection with RCA;
(2) this sensor does not involve the purification process because it does not need other
purified ring templates; (3) we used endonucleases and exonucleases to cleave the padlock
probe to avoid the nonspecific amplification of RCA. In addition, the padlock probe can be
utilized in screening MTase inhibitors and measuring them in complex biological samples.
Therefore, our method possesses wide potential for screening drugs, early tumor diagnosis,
and medical research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12080569/s1, Table S1: Oligonucleotides used in this study;
Table S2: Detection limits and real sample applications of some MTase detection methods; Figure S1:
Electrophoresis analysis of the products of RCA of the detection system with (Lane a) and with-
out (Lane b) M.SssI by RCA (Lane M) 15,000 bp DNA marker; Figure S2: Optimize the methy-
lation and cleavage buffers. (A) F is the fluorescence intensity with M.SssI and F0 is fluores-
cence intensity without M.SssI. (B) The fluorescence intensities of the sensing systems with or
without M.SssI. (a) CutSmart buffer (methylation process) + CutSmart buffer (cleavage process);
(b) NEBuffer2 (methylation process) + CutSmart buffer (cleavage process); (c) NEBuffer 2(methyla-
tion process) + CutSmart buffer + lambda reaction buffer (cleavage process); (d) CutSmart buffer
(methylation process) + lambda reaction buffer (cleavage process); Figure S3: Optimize the time of
methylation process; Figure S4: Optimize the time of cleavage of HpaII and lambda exo; Figure S5:
Optimize the time of digestion of ExoI; Figure S6: Eliminate the probable impact of detection system.
The concentration of M.SssI is 50 U/mL.

Author Contributions: Y.W.: Conceptualization, Data curation, Formal analysis, Visualization, Soft-
ware, Writing—original draft. Y.H.: Writing—Review and Editing. F.Z.: Writing—Review and

https://www.mdpi.com/article/10.3390/bios12080569/s1
https://www.mdpi.com/article/10.3390/bios12080569/s1


Biosensors 2022, 12, 569 9 of 10

Editing. T.F.: Writing—Review and Editing. F.L.: Supervision, Writing—Review and Editing, Project
administration, Funding acquisition. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Shenzhen fundamental Research Project of Science Technology
and Commission (JCYJ20180306174248782), Shenzhen Development and Reform Committee (No.
2019156), Department of Science and Technology of Guangdong Province (No. 2017B030314083), and
Shenzhen Bay Laboratory Open Funding (SZBL2019062801009).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jurkowska, R.Z.; Jurkowski, T.P.; Jeltsch, A. Structure and Function of Mammalian DNA Methyltransferases. Chembiochem 2011,

12, 206–222. [CrossRef]
2. Novak, P.; Jensen, T.J.; Garbe, J.C.; Stampfer, M.R.; Futscher, B.W. Stepwise DNA Methylation Changes Are Linked to Escape

from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization. Cancer Res. 2009, 69, 5251–5258. [CrossRef]
[PubMed]

3. Rodger, E.J.; Chatterjee, A.; Stockwell, P.A.; Eccles, M.R. Characterisation of DNA methylation changes in EBF3 and TBC1D16
associated with tumour progression and metastasis in multiple cancer types. Clin. Epigenetics 2019, 11, 1–11. [CrossRef] [PubMed]

4. Spainhour, J.C.G.; Lim, H.S.; Yi, S.V.; Qiu, P. Correlation Patterns Between DNA Methylation and Gene Expression in The Cancer
Genome Atlas. Cancer Inform. 2019, 18, 1176935119828776. [CrossRef]

5. VanderKraats, N.D.; Hiken, J.F.; Decker, K.F.; Edwards, J.R. Discovering high-resolution patterns of differential DNA methylation
that correlate with gene expression changes. Nucleic Acids Res. 2013, 41, 6816–6827. [CrossRef]

6. Sanchez-Romero, M.A.; Cota, I.; Casadesus, J. DNA methylation in bacteria: From the methyl group to the methylome. Curr.
Opin. Microbiol. 2015, 25, 9–16. [CrossRef] [PubMed]

7. Li, Z.-M.; Zhong, X.-L.; Wen, S.-H.; Zhang, L.; Liang, R.-P.; Qiu, J.-D. Colorimetric detection of methyltransferase activity based on
the enhancement of CoOOH nanozyme activity by ssDNA. Sens. Actuators B-Chem. 2019, 281, 1073–1079. [CrossRef]

8. Cui, L.; Zhao, M.-H.; Li, C.-C.; Wang, Q.; Luo, X.; Zhang, C.-Y. A Host-Guest Interaction-Based and Metal-Organic Gel-Based
Biosensor with Aggregation-Induced Electrochemiluminescence Enhancement for Methyltransferase Assay. Anal. Chem. 2021, 93,
2974–2981. [CrossRef]

9. Li, Y.; Wang, L.; Ding, C.; Luo, X. Highly selective ratiometric electrogenerated chemiluminescence assay of DNA methyltrans-
ferase activity via polyaniline and anti-fouling peptide modified electrode. Biosens. Bioelectron. 2019, 142, 111553. [CrossRef]

10. Tian, R.; Liu, D.; Weng, T.; Yin, Y.; Xie, W.; Yin, B.; Shi, B.; Tlili, C.; Wang, D. DNA-functionalized biosensor for amplifying signal
detection of DNA methyltransferase activity. J. Electroanal. Chem. 2021, 891, 115260. [CrossRef]

11. Dadmehr, M.; Karimi, M.A.; Korouzhdehi, B. A signal-on fluorescence based biosensing platform for highly sensitive detection
of DNA methyltransferase enzyme activity and inhibition. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2020, 228, 117731.
[CrossRef] [PubMed]

12. Kermani, H.A.; Hosseini, M.; Dadmehr, M.; Hosseinkhani, S.; Ganjali, M.R. DNA methyltransferase activity detection based on
graphene quantum dots using fluorescence and fluorescence anisotropy. Sens. Actuators B-Chem. 2017, 241, 217–223. [CrossRef]

13. Hu, J.; Liu, Y.; Zhang, C.Y. Construction of a single quantum dot nanosensor with the capability of sensing methylcytosine sites
for sensitive quantification of methyltransferase. Nanoscale 2020, 12, 4519–4526. [CrossRef] [PubMed]

14. Li, Y.; Sun, S.; Tian, X.; Qiu, J.-G.; Jiang, B.; Zhang, C.Y. A dumbbell probe-based dual signal amplification strategy for sensitive
detection of multiple DNA methyltransferases. Chem. Commun. 2020, 56, 13627–13630. [CrossRef] [PubMed]

15. Yin, J.; Liu, F.; Fan, T.; Ren, Y.; Jiang, Y. Rapid detection of methyltransferases utilizing dumbbell DNA-templated copper
nanoparticles. Sens. Actuators B-Chem. 2018, 276, 499–506. [CrossRef]

16. Chen, L.P.; Zhang, Y.; Xia, Q.; Luo, F.; Guo, L.H.; Qiu, B.; Lin, Z.Y. Fluorescence biosensor for DNA methyltransferase activity and
related inhibitor detection based on methylation-sensitive cleavage primer triggered hyperbranched rolling circle ampli fication.
Anal. Chim. Acta 2020, 1122, 1–8. [CrossRef] [PubMed]

17. Yan, X.-L.; Xue, X.-X.; Deng, X.-M.; Jian, Y.-T.; Luo, J.; Jiang, M.-M.; Zheng, X.-J. Chemiluminescence strategy induced by HRP-
sandwich structure based on strand displacement for sensitive detection of DNA methyltransferase. Microchem. J. 2020, 158, 105183.
[CrossRef]

18. Wang, Z.Y.; Li, P.; Cui, L.; Xu, Q.; Zhang, C.Y. Construction of a Universal and Label-Free Chemiluminescent Sensor for Accurate
Quantification of Both Bacteria and Human Methyltransferases. Anal. Chem. 2020, 92, 13573–13580. [CrossRef]

http://doi.org/10.1002/cbic.201000195
http://doi.org/10.1158/0008-5472.CAN-08-4977
http://www.ncbi.nlm.nih.gov/pubmed/19509227
http://doi.org/10.1186/s13148-019-0710-5
http://www.ncbi.nlm.nih.gov/pubmed/31383000
http://doi.org/10.1177/1176935119828776
http://doi.org/10.1093/nar/gkt482
http://doi.org/10.1016/j.mib.2015.03.004
http://www.ncbi.nlm.nih.gov/pubmed/25818841
http://doi.org/10.1016/j.snb.2018.11.085
http://doi.org/10.1021/acs.analchem.0c04904
http://doi.org/10.1016/j.bios.2019.111553
http://doi.org/10.1016/j.jelechem.2021.115260
http://doi.org/10.1016/j.saa.2019.117731
http://www.ncbi.nlm.nih.gov/pubmed/31753656
http://doi.org/10.1016/j.snb.2016.10.078
http://doi.org/10.1039/C9NR10376G
http://www.ncbi.nlm.nih.gov/pubmed/32039424
http://doi.org/10.1039/D0CC05991A
http://www.ncbi.nlm.nih.gov/pubmed/33057479
http://doi.org/10.1016/j.snb.2018.08.140
http://doi.org/10.1016/j.aca.2020.04.061
http://www.ncbi.nlm.nih.gov/pubmed/32503739
http://doi.org/10.1016/j.microc.2020.105183
http://doi.org/10.1021/acs.analchem.0c03303


Biosensors 2022, 12, 569 10 of 10

19. Du, Y.-C.; Wang, S.-Y.; Li, X.-Y.; Wang, Y.-X.; Tang, A.-N.; Kong, D.-M. Terminal deoxynucleotidyl transferase-activated nicking
enzyme amplification reaction for specific and sensitive detection of DNA methyltransferase and polynucleotide kinase. Biosens.
Bioelectron. 2019, 145, 111700. [CrossRef]

20. Huang, J.; Li, X.-Y.; Du, Y.-C.; Zhang, L.-N.; Liu, K.-K.; Zhu, L.-N.; Kong, D.-M. Sensitive fluorescent detection of DNA
methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Biosens. Bioelectron.
2017, 91, 417–423. [CrossRef]

21. Chen, R.; Shi, H.; Meng, X.; Su, Y.; Wang, H.; He, Y. Dual-Amplification Strategy-Based SERS Chip for Sensitive and Reproducible
Detection of DNA Methyltransferase Activity in Human Serum. Anal. Chem. 2019, 91, 3597–3603. [CrossRef] [PubMed]

22. Wang, X.; Cui, M.; Zhou, H.; Zhang, S. DNA-hybrid-gated functional mesoporous silica for sensitive DNA methyltransferase
SERS detection. Chem. Commun. 2015, 51, 13983–13985. [CrossRef] [PubMed]

23. Jiang, B.; Wei, Y.; Xu, J.; Yuan, R.; Xiang, Y. Coupling hybridization chain reaction with DNAzyme recycling for enzyme-free
and dual amplified sensitive fluorescent detection of methyltransferase activity. Anal. Chim. Acta 2017, 949, 83–88. [CrossRef]
[PubMed]

24. Wang, Q.; Pan, M.; Wei, J.; Liu, X.; Wang, F. Evaluation of DNA Methyltransferase Activity and Inhibition via Isothermal
Enzyme-Free Concatenated Hybridization Chain Reaction. Acs Sens. 2017, 2, 932–939. [CrossRef] [PubMed]

25. Chen, S.; Ma, H.; Li, W.; Nie, Z.; Yao, S. An entropy-driven signal amplifying strategy for real-time monitoring of DNA methylation
process and high-throughput screening of methyltransferase inhibitors. Anal. Chim. Acta 2017, 970, 57–63. [CrossRef] [PubMed]

26. Rouhanifard, S.H.; Mellis, I.A.; Dunagin, M.; Bayatpour, S.; Jiang, C.L.; Dardani, I.; Symmons, O.; Emert, B.; Torre, E.; Cote, A.
ClampFISH detects indivicual nucleic acid molecules using click chemistry-based amplification. Nat. Biotechnol. 2019, 37, 84–89.
[CrossRef]

27. Deng, R.; Zhang, K.; Li, J. Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell. Acc. Chem. Res. 2017,
50, 1059–1068. [CrossRef] [PubMed]

28. Berman, B.P.; Weisenberger, D.J.; Laird, P.W. Locking in on the human methylome. Nat. Biotechnol. 2009, 27, 341–342. [CrossRef]
29. Cao, A.; Zhang, C.Y. Sensitive and Label-Free DNA Methylation Detection by Ligation-Mediated Hyperbranched Rolling Circle

Amplification. Anal. Chem. 2012, 84, 6199–6205. [CrossRef]
30. Diep, D.; Plongthongkum, N.; Gore, A.; Fung, H.-L.; Shoemaker, R.; Zhang, K. Library-free methylation sequencing with bisulfite

padlock probes. Nat. Methods 2012, 9, 270–272. [CrossRef]
31. Zhao, H.; Lu, Z.-H. Detection of DNA methylation by hyperbranched rolling circle amplification and DNA microarray. Chin.

Chem. Lett. 2014, 25, 1559–1564. [CrossRef]
32. Huang, R.; He, L.; Li, S.; Liu, H.; Jin, L.; Chen, Z.; Zhao, Y.; Li, Z.; Deng, Y.; He, N. A simple fluorescence aptasensor for gastric

cancer exosome detection based on branched rolling circle amplification. Nanoscale 2020, 12, 2445–2451. [CrossRef]
33. Li, X.; Meng, M.; Zheng, L.; Xu, Z.; Song, P.; Yin, Y.; Eremin, S.A.; Xi, R. Chemiluminescence Immunoassay for S-

Adenosylhomocysteine Detection and Its Application in DNA Methyltransferase Activity Evaluation and Inhibitors Screening.
Anal. Chem. 2016, 88, 8556–8561. [CrossRef] [PubMed]

34. Raddatz, G. The Intestinal Microbiota Programs DnA Methylation to Control Tissue Homeostasis and Inflammation. In
Gene Expression Omnibus. Available online: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137037 (accessed on
15 March 2022).

35. Yuan, F.-L.; Li, X.; Xu, R.-S.; Jiang, D.-L.; Zhou, X.-G. DNA Methylation: Roles in Rheumatoid Arthritis. Cell Biochem. Biophys.
2014, 70, 77–82. [CrossRef] [PubMed]

36. Chen, D.; Feng, X.; Lv, Z.; Xu, X.; Lu, Y.; Wu, W.; Wu, H.; Liu, H.; Cao, L.; Ye, S. ACADS acts as a potential methylation biomarker
associated with the proliferation and metastasis of hepatocellular carcinomas. Aging-Us 2019, 11, 8825–8844. [CrossRef] [PubMed]

37. Nagahara, M.; Hoon, D.S.B. Sex Hormone Receptors and Epigenetics in Breast Cancer. In Female Sex Hormones and Cancers;
George, G.C., Ed.; Nova Science Publishers: New York, NY, USA, 2010.

38. Yang, M.; Chen, L.; Guo, L.; Qiu, B.; Lin, Z. High Sensitive Electrochemiluminescence Biosensor Based on Ru(phen)(3)(2+)-loaded
Double Strand DNA as Signal Tags use to Detect DNA Methyltransferase Activity. Electroanalysis 2021, 34, 387–396. [CrossRef]

39. Mao, X.; Wei, M.; Zhu, C.; Lu, J.; Gao, J.; Simon, A.J.; Shi, J.; Huang, Q.; Fan, C. Real Time in Vitro Regulation of DNA Methylation
Using a 5-Fluorouracil Conjugated DNA-Based Stimuli-Responsive Platform. ACS Appl. Mater. Interfaces 2013, 5, 2604–2609.
[CrossRef] [PubMed]

40. Luo, X.; Kang, T.; Zhu, J.; Wu, P.; Cai, C. Sensitivity-Improved SERS Detection of Methyltransferase Assisted by Plasmonically
Engineered Nanoholes Array and Hybridization Chain Reaction. ACS Sens. 2020, 5, 3639–3648. [CrossRef]

41. Zhang, Y.; Hao, L.; Zhao, Z.; Yang, X.; Wang, L.; Liu, S. Immuno-DNA binding directed template-free DNA extension and enzyme
catalysis for sensitive electrochemical DNA methyltransferase activity assay and inhibitor screening. Analyst 2020, 145, 3064–3072.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.bios.2019.111700
http://doi.org/10.1016/j.bios.2016.12.061
http://doi.org/10.1021/acs.analchem.8b05595
http://www.ncbi.nlm.nih.gov/pubmed/30724066
http://doi.org/10.1039/C5CC05463J
http://www.ncbi.nlm.nih.gov/pubmed/26245236
http://doi.org/10.1016/j.aca.2016.11.003
http://www.ncbi.nlm.nih.gov/pubmed/27876150
http://doi.org/10.1021/acssensors.7b00168
http://www.ncbi.nlm.nih.gov/pubmed/28750535
http://doi.org/10.1016/j.aca.2017.03.017
http://www.ncbi.nlm.nih.gov/pubmed/28433059
http://doi.org/10.1038/nbt.4286
http://doi.org/10.1021/acs.accounts.7b00040
http://www.ncbi.nlm.nih.gov/pubmed/28355077
http://doi.org/10.1038/nbt0409-341
http://doi.org/10.1021/ac301186j
http://doi.org/10.1038/nmeth.1871
http://doi.org/10.1016/j.cclet.2014.09.010
http://doi.org/10.1039/C9NR08747H
http://doi.org/10.1021/acs.analchem.6b01579
http://www.ncbi.nlm.nih.gov/pubmed/27464505
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137037
http://doi.org/10.1007/s12013-014-9913-8
http://www.ncbi.nlm.nih.gov/pubmed/24652004
http://doi.org/10.18632/aging.102292
http://www.ncbi.nlm.nih.gov/pubmed/31652420
http://doi.org/10.1002/elan.202100184
http://doi.org/10.1021/am3033052
http://www.ncbi.nlm.nih.gov/pubmed/23480369
http://doi.org/10.1021/acssensors.0c02016
http://doi.org/10.1039/D0AN00008F
http://www.ncbi.nlm.nih.gov/pubmed/32141455

	Introduction 
	Materials and Methods 
	Reagents 
	Apparatus 
	MTase Activity Detection Procedures 
	Activity Detection of M.SssI with SYBRTM Gold 
	Gel Electrophoresis 
	Activity Detection of M.SssI in Human Healthy Serum and Selectivity of the Strategy 
	Evaluation of MTase Inhibitors 

	Results and Discussion 
	Scheme of M.SssI Activity Detection Using PP and RCA 
	Feasibility of M.SssI Verification Using PP and RCA 
	Optimization of the Experimental Conditions 
	Sensitivity Detection of MTase and Selectivity of the Strategy 
	Detection of M.SssI Activity in 10% Human Serum 
	Inhibitory Activity Assay of M.SssI Inhibitors 

	Conclusions 
	References

