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Abstract.	 [Purpose] The present study aimed to determine the effects of eccentric calf raise exercise, which has 
the characteristics of plyometric training, on the fascicle length and muscle thickness of the gastrocnemius medialis 
muscle and range of motion of the ankle using ultrasonography. [Participants and Methods] Twenty-one healthy 
volunteers were randomly assigned to the eccentric calf raise exercise group or normal calf raise exercise group. 
Measurements were performed before training and at 3, 6, 9, and 12 weeks after training. [Results] In the eccentric 
calf raise exercise group, the fascicle length significantly increased after 6 weeks compared to that at baseline and 
at 3 weeks after training. The dorsiflexion angle and muscle thickness after three weeks significantly increased 
compared to that at baseline, but the pennation angle was not significantly different. The fascicle length, pennation 
angle, dorsiflexion angle, and muscle thickness showed no significant difference at all time points in the NCR group. 
[Conclusion] The results of this study showed that continued stretching of the gastrocnemius medialis muscle dur-
ing eccentric calf raise exercise enhanced the morphological structures, such as the a fascicle length and muscle 
thickness. Eccentric calf raise exercise training may aid in injury prevention.
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INTRODUCTION

Plyometric training (PT) utilizing muscle elasticity and explosiveness is known as training to improve performance1–6). 
PT can be divided into a loading phase, coupling period, and unloading phase based on the movement characteristics of the 
muscles1). PT is considered to use that the stretch-shortening cycle (SSC), in which the muscle contracts sharply during the 
unloading phase following lengthening of the muscle-tendon unit during the loading phase2). In previous studies on PT, 
increased peak muscle power output and fiber area4), improved elastic energy storage capacity, and increased tendon stiffness 
and elastic force6) have been reported, and Bobbert et al.7) described that muscle stretch by SSC enhanced performance. In ad-
dition, the coupling phase is the transition between the loading and unloading phases and is characterized by quasi-isometric 
muscle activity1). A previous report stated that the elastic energy storage decreased when the coupling phase exceeded 0.2 
sec7). The shortening of this phase caused an improvement in performance8); it has been reported that continuous and rapid 
switching behavior induced during PT enhanced energy efficiency10). There were other studies that investigated the relation-
ship between muscle stiffness and muscle strength11), or investigated changes in ankle angle10), and several other studies12, 13). 
However, changes in muscle structures such as fascicle length (FL) and pennation angle by PT were not identified14, 15). 
In many studies4, 9, 10), that involved exercises consisting of whole-body training such as a counter-movement jump and 
depth jump, it was guessed which could easily compensate for weak muscles. Thus, we hypothesized that continuous and 
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rapid stretching of the localized site may increase FL. A previous study showed that eccentric training led to damage of the 
muscle fiber, and increased sarcomere number16). Therefore, we focused on the effect of the eccentric calf raise (ECR)17). We 
previously found that ECR with constant speed and rhythm have a characteristic SSC elements necessary for PT17). In this 
study, we defined ECR was training localized to the triceps surae as training included in PT. Increasing FL not only increases 
the range of motion of the muscle parenchyma and improves competition performance, but is also important for injury 
prevention. The purpose of the present study was to determine the effects of ECR exercise on the FL of the gastrocnemius 
medialis (GM) muscle.

PARTICIPANTS AND METHODS

Twenty-one healthy, normal volunteers (42 legs) with no injuries in the lower limbs provided informed consent and 
participated in this study. This study was approved by the ethics committee of Morinomiya Medical University (2016-107). 
They were randomly categorized into the ECR group (n=11; 8 males and 3 females [22 legs]; mean age, 21.2 ± 3.9 years; 
mean weight, 57.8 ± 10.2 kg; mean height 164.6 ± 9.4 cm) and the normal calf raise (NCR) exercise group (n=10; 6 males 
and 4 females [20 legs]; mean age, 19.6 ± 0.7 years; mean weight, 56.1 ± 8.3 kg; mean height, 164.1 ± 7.9 cm). Regarding 
the frequency of ECR training, we adopted the method described by Alfredson et al18). To equalize the total workouts in the 
groups, the ECR group was asked to perform 15 × 3 repetitions daily in two sets, seven days/week, and the NCR group was 
set to perform 20 × 3 repetitions daily in two sets, seven days/week. Both groups perform these respected regiments for 12 
weeks based on our pilot study. The starting position was either the normal standing position or standing with the forefoot on 
a 6-cm pedestal with the ankle in dorsiflexion. Calf raises were performed at 60 beats per minute; this rhythm was controlled 
using a metronome17). Ultrasound images of the GM muscle were recorded at a height of 25% of the proximal length of the 
lower thigh, with the ankle at the 0°-position in the prone position, using a B-mode 12-MHz linear transducer ultrasonography 
device (My Lab. 25, Esaote Corporation). The lower thigh was defined as the lateral knee joint space to lateral malleolus. The 
pennation angle and muscle thickness of the GM muscle were determined using Image-J (NIH, Washington, DC, USA)17), 
and extended lines that delineate the deep aponeurosis and visible fascicle on each image were used to determine the FL19). 
The maximum dorsiflexion angle of the ankle was determined with the knee in the fully extended position using a goniometer 
with the participant in a supine position. All measurements were carried out three times each and performed before training 
and at 3, 6, 9, and 12 weeks after training. The mean values were calculated. In each group, all measurements at each time 
point were performed using a repeated analysis of variance (ANOVA). All statistical analyses were performed using IBM 
SPSS Statistics 24.0 for Windows. Values of p<0.05 were considered to indicate statistical significance for all tests.

RESULTS

Sequential changes in each measurement outcome are shown in Table 1. In the ECR group, the FL significantly increased 
after six weeks compared to that at baseline) and after three weeks of training (68.3 ± 8.1 mm vs. 70.5 ± 9.2 mm; p<0.01 
[baseline] and p<0.05 [3 weeks]). Dorsiflexion angle and muscle thickness after three weeks significantly increased com-
pared to those at baseline (dorsiflexion angle, 12.2 ± 5.2 degrees vs. 14.8 ± 5.8 degrees; muscle thickness, 18.0 ± 2.3 mm vs. 
19.5 ± 2.4 mm). Pennation angle showed no significant difference in both groups. In the NCR group, the FL, pennation angle, 
dorsiflexion angle, and GM muscle thickness showed no significant differences at all time points.

Table 1.	 Values of fascicle length, dorsi-flex angle, muscle thickness and pennation angle of ECR and NCR groups

Baseline 3 w 6 w 9 w 12 w
ECR group (N=22)

Fascicle length (mm) 68.3 (8.1) 70.5 (9.2) 73.2 (8.8)*† 74.5 (8.3)*†† 74.2 (8.0)*††

Dorsi-flex angle (degrees) 12.2 (5.2) 14.8 (5.6)* 15.8 (6.8)* 16.0 (5.3)* 16.2 (7.1)*

Muscle thickness (mm) 18.0 (2.3) 19.5 (2.4)* 19.7 (2.8)* 19.3 (2.2)* 19.6 (2.3)*

Pennation angle (degrees) 17.4 (2.0) 17.6 (2.4) 16.9 (1.3) 16.5 (1.2) 16.9 (1.5)
NCR group (N=20)

Fascicle length (mm) 67.4 (8.3) 67.6 (8.2) 70.8 (8.8) 67.7 (9.8) 69.0 (9.1)
Dorsi-flex angle (degrees) 12.6 (4.1) 11.5 (4.0) 11.7 (4.4) 12.1 (3.4) 12.3 (4.7)
Muscle thickness (mm) 18.2 (2.1) 19.1 (2.1) 18.6 (1.7) 18.8 (1.9) 18.8 (2.1)
Pennation angle (degrees) 16.2 (2.4) 16.5 (2.7) 17.0 (2.7) 16.7 (2.9) 16.4 (2.0)
Mean significant difference from results of baseline (*p<0.01) and 3 weeks (†p<0.05, ††p<0.01).
Values: mean (SD); N: participant number; ECR: eccentric calf raise exercise; NCR: normal calf raise exercise.



279

DISCUSSION

Some evidence for the lengthening of the FL is available16, 20–26). However, to the best of our knowledge, this is the first 
study to show increases in the FL by PT. The results of this study showed that continued stretching of the GM muscle for 6 
weeks increased the dorsiflexion angle and enhanced morphological structures such as the FL and muscle thickness. Proske et 
al.16) have reported that eccentric exercise has led to an increase in the optimum length of muscle. It was considered that the 
muscles were damaged by the continuous stretching stimulus and adapted to increasing the sarcomere number in the repair 
process. Finally, these alterations increased the optimum length of muscle. It was considered that the same process occurred 
in the lengthening of FL caused by SSC in this study. Incidentally, static stretching has been utilized as an intervention method 
to promote muscle stretch in a similar manner. Currently, the effects of static stretching are as follows: increased muscle 
flexibility27), decreased muscle stiffness28), increased range of motion27, 29) and reduced passive joint moment30). Regarding 
increases in FL, the evidence are conflicting. Nakamura et al. showed that continuous static stretching for 4 weeks did not 
increase the FL, and stated that the increased flexibility of the connective tissue (so-called parallel elastic component) such as 
the perimysium around the muscle fibers was involved27). Conversely, Simpson et al. reported that the FL of the medial and 
lateral gastrocnemius muscles were increased by continuous static stretching after 6 weeks of training26). However, in their 
study, static stretching was being performed with concurrent resistance training of the gastrocnemius muscle using the leg 
press exercise. Additionally, they suggested that, to induce muscle adaptations with stretch training, it is necessary to apply 
the principle of overload to create a sufficient stimulus for adaptations in the skeletal muscle architecture. Based on this, it 
was suggested that continuous stretch-load stimulated the series elastic components as the contractile component contributed 
to increases in the FL. In addition, the muscle thickness showed a significant increase, however the pennation angle was not 
shown significant differences, because the FL were increased too.

Increases in the FL indicate that range of movement of the muscle parenchyma is also increased. This suggested that this 
was not a temporary increase in the range of motion due to improvement of the tissue flexibility such as fascia; instead, it was 
effective over a larger range of motion. This is important in improving performance. Increasing the FL by eccentric training 
is recognized to promote an optimum angle and length21, 22) shift and improvement in eccentric peak torque20), which was 
purported to be related to an increase in elastic energy storage capacity. In addition, it was considered that the increase in FL 
is important not only for improving performance, but also for the prevention of injuries such as muscle strain, because the 
muscles can work more efficiently without exposure to overstretching.

This study has some limitations. First, the FL was measured in only one direction. FL change as evaluated in 3D may 
be different than that evaluated in 2D. Second, passive tension of the tendon was not measured in this study. If there was a 
change in the muscle structure, there might be a change in the associated tendon structure; it is important to clarify this to 
understand the change in the gastrocnemius muscle by ECR. However, there is no research on passive tension and increases 
in the FL. This should be evaluated in future studies. In conclusion, our results revealed that the FL of the GM muscle in the 
ECR group increased after six weeks.
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