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Proteomics progresses in microbial physiology and clinical
antimicrobial therapy
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Abstract Clinical microbial identification plays an important
role in optimizing the management of infectious diseases and
provides diagnostic and therapeutic support for clinical man-
agement. Microbial proteomic research is aimed at identifying

proteins associated with microbial activity, which has facilitated
the discovery of microbial physiology changes and host–path-
ogen interactions during bacterial infection and antimicrobial
therapy. Here, we summarize proteomic-driven progresses of
host–microbial pathogen interactions at multiple levels, mass
spectrometry-based microbial proteome identification for clini-
cal diagnosis, and antimicrobial therapy. Proteomic technique
progresses pave new ways towards effective prevention and
drug discovery for microbial-induced infectious diseases.

Abbreviations
FASP Filter-aided sample preparation
iTRAQ Isobaric tags for relative

and absolute quantification
LC Liquid chromatography
LC-MS/MS Liquid chromatography

tandem mass spectrometry
MALDI-TOF Matrix-assisted laser

desorption/ionization time-of-flight
MRM Multiple reaction monitoring
MS Mass spectrometry
SILAC Stable isotope labeling with

amino acids in cell culture
SRM Selected reaction monitoring
SWATH Sequential window acquisition

of all theoretical mass spectra
2-DE Two-dimensional gel electrophoresis
TMT Tandem mass tag

Introduction

Infection is a leading cause of death around the world, which
has especially become a growing threat for developing
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countries. More than 50% of emerging infectious diseases are
caused by bacteria or rickettsia, including a large number of
drug-resistant microbes [1]. Clinical microbial identification
includes the confirmation of bacterial, viral, fungal, and para-
sitic agents that cause human disease. The precise identifica-
tion for microbial pathogen provides diagnostic and therapeu-
tic support for the clinical management of patients, surveys
local and global epidemiology, as well as helps to prevent the
infectious diseases transmission [2]. With the emergence of
resistant strains and the release of large amounts of antimicro-
bials, anti-infection drugs are being severely tested [3].
Microbial resistance to antibiotics is on the rise and, yet, few
new antibiotics active against multiresistant bacteria are being
explored [4, 5]. New antibiotic agents against microbial infec-
tions need to be developed to tide over this crisis [6].
Microbial physiology usually focuses on biofilms and cell-
wall biosynthesis, protein biosynthesis, DNA and RNA repli-
cation, folate metabolism, cell-surface decoration, and iso-
prenoid biosynthesis, from which researchers discern micro-
bial molecular behaviors to explore drug targets for antimicro-
bial therapy [7, 8].

Proteomic studies are currently being greatly engaged in
the microbial field [8, 9]. Proteomics could yield not only
the qualitative information on proteins, including the identifi-
cation, distribution, posttranslational modifications, interac-
tions, structure, and function, but also quantitative informa-
tion, like abundance, distribution within different localiza-
tions, and temporal changes in abundance due to synthesis
and degradation or both [10, 11]. Microbial proteomic re-
search is aimed at identifying proteins associated with micro-
bial activity. By using gel-free and gel-based methods in com-
bination with liquid chromatography (LC) and mass spec-
trometry (MS)-based techniques, it has become a formidable
tool for deciphering microbial proteins [12]. By identifying
the resistance genes towards antibiotics using the comparative
proteome analysis for model strains and resistant mutants,
microbial proteomic investigation would be helpful not only
in instructing the clinical application, but also in the screening
of potential bioactive compounds and new antimicrobial
drugs [7, 13]. The proteomic analysis for biofilm provides a
new idea of an antibiotic cocktail therapy strategy for infection
[14]. Current MS-based proteomics technologies have ad-
vanced to the point where they are amenable to any biological
system [15]. For example, protein isolation approaches, in-
cluding affinity purification and tandem affinity purification,
combined with MS are powerful tools to decipher new pro-
tein–protein interactions [16]. The renewed interest in micro-
bial proteome profiling is to reveal the dynamics of
microbiome [17]. So, here we summarize and present an over-
view of proteomic progress towards host–microbial pathogen
interactions at different levels, and MS-based microbial iden-
tification for clinical diagnosis and antimicrobial therapy as
follows.

New insights into host–microbial pathogen
interactions by proteomic tools

Interactions between the host and microbial pathogen are cru-
cial for infections caused by microorganisms. Knowledge of
these interactions, such as how microbial pathogens display
their virulence to the host and develop their resistance, is,
therefore, essential in order to better understand and develop
strategies to fight infections. The new insights into host–mi-
crobial pathogen interactions by proteomic tools will be
discussed at different levels, including molecular, single-cell,
organism, and population levels (Fig 1).

Identifying microbial virulence proteins and protein
modifications

There are complex and dynamic interactions between patho-
gens and host immune defense mechanisms during the course
of invasive infection, which could determine the fate of the
host at the outset of the infection process [18]. Microbial path-
ogens subvert various molecules for their adhesion and inva-
sion to host cells, infection of neighbor cells, dissemination
into host systemic circulation, and evasion of host defense
mechanisms. Proteomic profiling of the outer and inner mem-
brane proteins and secreted proteins, such as siderophores,
provided new insights into host–pathogen interactions [19].

Fig. 1 Host–microbial pathogen interactions from proteomics dissection
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Virulence proteins, like proteoglycans [20], mediate protein–
pathogen interactions, to affect the onset, progression, and
outcome of infection [21, 22]. Accumulating evidences indi-
cate that microbial virulence contributes to host response and
the outcome of severe infections [23]. For example,
Staphylococcus aureus, a Gram-positive commensal bacteri-
um, which has an extensive arsenal of virulence factors, is a
major threat to modern healthcare systems. Moreover, some
pathogens acquire the capacity to communicate with each oth-
er and sense the host’s vulnerabilities [24].

Moreover, protein modifications, including glycosylation,
phosphorylation, and acetylation, seem to confer virulence,
which can be rapidly identified by MS [25–27]. One popular
human pathogen, Mycobacterium tuberculosis, has been in-
vestigated as a model microorganism using proteomic
methods for over a decade; especially, hundreds of putative
virulence determinants and posttranslational modifications
have been identified [28]. Recently, PhoP, a highly conserved
virulence-regulating protein in bacteria, has been confirmed to
acetylate at the lysine residue 201 in Salmonella typhimurium,
and it is deacetylated by deacetylase CobB enzymatically.
Also, its acetylation causes significantly attenuated intestinal
inflammation and systemic infection in the mouse model [29].
These findings on bacterial protein modifications ultimately
lead to better management of the related disease.

It is noticed that a new branch of host–pathogen interac-
tions at the atomic level is attempted to explore more micro-
cosmic changes. The pioneer, Salgado, tried to determine the
assembly and structure of the mature S-layer in Clostridium
difficile to discover host–pathogen interactions at the atomic
level [30]. The atomic level insight to microbial physiology
will greatly enlarge our understanding for infectious disease.

Exploringmicrobial resistance genes at the single-cell level

A single cell represents the basic unit of a living organism. To
avoid heterogeneity in the function and fate of cell popula-
tions, it is vital to measure quantity and dynamic processes in
single cells [31, 32]. Ultimately, the cellular plasticity depends
on changes in protein expression levels and proteomic
methods allowed to measure many proteins in parallel [33].
The emergence of resistant strains and the release of large
amounts of antimicrobials are serious problems. To fill the
multiple gaps that remain in understanding microbial resis-
tance, proteomic tools have also been used to study microbial
physiology in response to antibiotic stress [34]. Identification
of the resistance genes against antibiotics by comparative pro-
teome analysis of model strains and resistant mutants would
be helpful not only in instructing the clinical application, but
also in the evaluation of new drugs [7]. Moreover, proteomics
technologies have also successfully unraveled the drug resis-
tance mechanisms of microbial biofilms and possibly contrib-
uted to the new knowledge for future development in the field

[13]. Our recent study identified the changed bacterial proteins
of host strain S. aureus in response to daptomycin antibiotic
treatment, which disrupts bacterial physiology at multiple
levels [35]. And the findings help to develop novel daptomy-
cin derivatives against the upcoming antibiotic-resistant bac-
terial infection.

Microbial proteomics also offer new approaches to develop
potential bioactive compounds. The specific enzymes and
proteins, non-ribosomal peptide synthetases and polyketide
synthases, which are involved in the synthesis of natural prod-
ucts, are rapidly identified by proteomic analysis [31].
Proteomic methodologies contribute towards determining an-
timicrobial resistance genes; novel antibiotics designed
targeting resistance genes will bring an important break-
through of antibiotic development [36]. Especially, single-
cell proteomics can identify proteins and measure protein con-
centrations directly in a single cell [37], which is a more pow-
erful tool to pursuemicrobial resistance dynamics from a com-
plex sample.

Profiling microbial proteome at the organism level

As an important non-invasive body fluid source for diagnostic
and prognostic biomarkers of human diseases, urine may con-
tain whole human cells shed into the urine from anatomically
proximal tissues and organs (e.g., kidney, prostate, bladder,
urothelium, and genitals) [38, 39]. The cells derived from such
tissues can viruses and microbial organisms which caused the
urogenital tract infection. Identification of the function, abun-
dance, and tissue of origin of such proteins could help to
understand the host–pathogen interaction process, including
the cause of urinary tract infection, and the human immune
response to the infection-associated pathogen(s) [40]. For ex-
ample, a study has reviewed the proteomic results of Shigella
dysenteriae, Shigella flexneri, enterohemorrhagic Escherichia
coli, and uropathogenic E. coli [41]. It showed that the nutrient
availability and oxygen had dynamic adaptations to changes,
including the increased anaerobic respiration and mixed acid
fermentation in vivo. And the host model investigated mainly
determined the utilization of carbon and nitrogen resources by
the bacteria.

Investigating the community physiology
and pathogenicity at the population level

Recent studies have shown that the local contact or social
population structure of the host may cause large shifts in vir-
ulence in pathogen populations as a result of a bistability in
evolutionary dynamics [42]. Mixtures of thousands of differ-
ent phylotypes interact with each other and with their environ-
ment [40, 43].

Advances in host–pathogen interactions by proteomic tools
at the population level were well illustrated by the
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development of metaproteomics. The emerging field of
metaproteomics aims at analyzing the proteome profiles of
mixed microbial communities, from which community phys-
iology and pathogenicity are learnt [44, 45]. Metaproteomics
analyzes the abundance and activity of enzymes during nutri-
ent cycling to their phylogenetic origin at the protein level [46,
47]. Metaproteomics opens a door to capture the natural prod-
ucts from uncultivated microorganisms into model production
host strains, recognizing the metabolic spectrum of microbes
that are not fully expressed in laboratory culture and which
could not be sampled by classical means [40, 46].
Multispecies bacterial biofilms of the catheter were dissected
by a metaproteomics approach [48], which unraveled the bac-
terial community structure and function of the related biofilm,
elucidating the interplay between bacterial virulence and the
human immune system within the urine.

Metaproteomics technology has made a direct impact on
our understanding ofmicrobial diversity, ecology, and second-
ary metabolism, which would provide an efficient guide to the
access of numerous non-culturable microorganisms for their
associated prosperity for potential applications in clinical bio-
markers screening and natural product antibiotic discovery.
One group has adopted shotgun metaproteomic approaches
combined with metagenomics to identify potential functional
signatures of Crohn’s disease in stool samples [49]. Their
study revealed the genes, proteins, and pathways that primar-
ily differentiated subjects with Crohn’s disease in the ileum
from the healthy patients and underscored the link between the
gut microbiota and functional alterations in the pathophysiol-
ogy of Crohn’s disease, aiding the identification of novel di-
agnostic targets and disease-specific biomarkers. Similarly,
metabolomics has also been applied to discover the bio-
markers of hepatocellular carcinoma [50] and catheter-
associated urinary tract infections. For example, proteins re-
lated to pathogenicity and resistance/survival, beta-lactamase
and TetR, are detected by metaproteome analysis, which may
assume special relevance in terms of pathogenesis and resis-
tance to host defenses and treatment [45].

More and more investigations into pathogens focus on gut
microbiome and human health [51, 52]. Indeed, the
microbiome is intrinsically complex, with many important
functions. Mammalian gut microbiota is considered to be a
novel type of Borgan^ [53, 54]. A more recent article has
shown how fundamentally important the intestinal bacteria
are to the rest of our mental and physical health, affecting
almost everything from our appetite to our state of mind
[55]. Study in microbial populations opens up a new research
area in which researchers can get more relevant details. With
this trend, the White House Office of Science and Technology
Policy, in collaboration with federal agencies and private-
sector stakeholders, announced the National Microbiome
Initiative (NMI) on May 13, 2016. The NMI will launch with
a combined federal agency investment of more than $121

million in fiscal year 2016 and 2017 funding for cross-
ecosystem microbiome studies, aiming to foster the integrated
study of microbiomes across different areas, such as
healthcare, food production, and environmental restoration.

However, there are still some critical obstacles that need to
be addressed. Proteomics identified peptides bymatchingMS/
MS spectra against theoretical spectra of all candidate peptides
represented in a reference protein sequence database [56]. The
subsequent inference of the protein identity and protein quan-
tification using the sequences and abundances of the identified
peptides is based on a reference protein sequence database,
such as Ensembl, RefSeq, and UniProtKB [57]. Nevertheless,
these databases may not contain all the peptides and many
peptides may not present in any reference database. Besides,
peptides may contain mutations and may represent novel pro-
tein coding loci or alternative splice forms [58]. Alternatively,
the proteogenomics approach was introduced in 2004 [59],
using proteomic data derived from MS to improve and refine
genome annotation. A number of automated softwares for
proteogenomic analyses have been developed for the integra-
tion of MS-based proteomic data into genome databases
[60–63]. For example, a one-stop open-source software
termed GAPP, which applies the target-decoy search strategy
to calculate the false discovery rate (FDR) for all employed
algorithms’ results, provides a large-scale posttranslational
modifications analysis on a proteome-wide level against pro-
karyotes [64].

MS-based proteomics progresses on microbial
identification and antimicrobial therapy discovery

MS-based methods for rapid identification of clinical
microbials

Traditional identification of bacterial isolates has long relied
on a combination of biochemical properties such as oxygen
requirement, Gram staining, carbohydrate metabolism, and
the presence of specific enzymes [3]. Nowadays, MS-based
proteomic approaches have been used regularly in routine
clinical diagnostic procedures, including the comprehensive
characterization, classification, and identification of microor-
ganisms [65–67]. Matrix-assisted laser desorption/ionization
time-of-flight MS (MALDI-TOF MS) has been broadly
adopted by many clinical microbiology laboratories over the
past decade [68, 69]. The general schematic for the analysis of
microbiological isolates and clinical material is illustrated in
Fig. 2. MALDI-TOF MS is a very reproducible and reliable
tool for microbial identification and can identify bacterial iso-
lates in a few minutes and with low costs, with high efficiency
from both a diagnostic and a cost-per-analysis point of view
[70, 71]. Currently, a commercial MALDI-TOF MS system
(VITEK®MS) has been approved by the U.S. Food and Drug
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Administration after extensive and successful clinical trials
predominantly [72].

Two-dimensional gel electrophoresis (2-DE), which is no
longer the exclusive separation tool used in the field of prote-
omics but still offers the highest resolution in protein separa-
tion, was typically combined with MALDI-TOF MS for mi-
crobial protein identification by peptide mass fingerprinting
[73–75]. Moreover, in combination with isolation techniques,
MALDI-TOF MS can be used to identify bacteria directly
from blood culture bottles and urine samples [72, 76–78].
The MS identification of Candida species directly from blood
culture bottles within 30 min was concordant with the con-
ventional culture-based method for 95.9% of C. albicans and
86.5% of Candida non-albicans [72]. Moreover, mass cytom-
etry, namely flow cytometry coupled with mass spectrometry,
has been applied to rapidly process urine samples [77, 78].

Stable isotope labeling with amino acids in cell culture
(SILAC), a widely used in vivo metabolic labeling method,
incorporates a stable isotope into the proteins in vivo by
adding an isotope like 13C, 15N, or 18O as salts or amino acids
to the growth media [79]. Of course, new SILAC-based ap-
proaches have been updated to improve identification efficien-
cy. Through the E. coli cell-free protein expression system,
named PURE (protein synthesis using recombinant elements)
[80], the preparation of stable isotope-labeling reference pep-
tides is performed in a 96-well plate within a short period. This
SILAC labeling system, based on the reconstituted E. coli

translation machinery, offers a general and rapid cell-free
SILAC approach, which is also applicable for microbial MS
identification. With extensive modification of the SILAC
method, a pulsed SILAC (pSILAC) has been developed to
monitor modest changes of proteins during de novo protein
synthesis by metabolic pulse labeling of cells using two dif-
ferent heavy isotopic forms of arginine and lysine [81].
Meanwhile, the triple SILAC method, accomplished by
SILAC in a triple labeling format (Fig 3), allows to study
proteins derived from three samples or the time dimension
of the proteome [82, 83]. These methods widely broaden the
scope of SILAC-based proteomics.

Quantitative proteomics techniques applied
for monitoring antimicrobial therapy

Advanced methods of quantitative proteomics are capable of
quantifying proteins and peptides from microbial strains with
high resolution, which is available for dynamically monitoring
microbial changes and drug efficiency. The selected reaction
monitoring (SRM) is a greatly effective method, in which an
ion of a particular mass is selected in the first stage of a tandem
MS and an ion product of a fragmentation reaction of the
precursor ion is selected in the second MS stage for detection
[84]. Multiple reaction monitoring (MRM) is the application
of selected reaction monitoring to multiple product ions from
one or more precursor ions. MRM/SRM techniques are a key

Fig. 2 A simplified illustration
for the general analysis of clinical
microbials by matrix-assisted la-
ser desorption/ionization time-
of-flight mass spectrometry
(MALDI-TOF MS). MALDI-
TOF MS allows the identification
of microbial pathogens cultured
on agar, in blood culture bottles,
or directly from urine samples.
After being spotted on the plate,
the sample is covered with a
matrix and then desorbed and
ionized by a laser to generate a
specific fingerprint. To improve
the spectral generation, formic
acid and ethanol-based methods
are optional. A fingerprint pattern
is searched against a microbial
standard library for the most
matching spectra
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operating mode for target compound quantitation with a triple
quadrupole MS, providing sensitive and precise quantitative
results by monitoring one or several primary ion transitions
per targeted compound [85–87].

Besides, isobaric chemical labeling approaches
employed multiplex isobaric mass tags and, thus,
benefited from increased throughput potential (Fig 4).
Isobaric tags for relative and absolute quantification

Fig. 3 Stable isotope labeling with amino acids in cell culture (SILAC)-
derived metabolic techniques. a pSILAC (pulsed SILAC) incorporated
the stable isotope into proteins by adding Bheavy^ amino acids into the
growth media. Cells are experimentally manipulated while growing in
Blight^ (Lys0, Arg0) SILAC medium. Subsequently, the treated and
control samples are transferred to distinctly labeled SILAC media,
Bheavy^ (Lys8, Arg10) and Bmedium^ (Lys4, Arg6). After one or a few
doublings, samples are harvested and combined at the ratio 1:1. Proteins
present before treatment will show up as a Blight^ peak (L) in the mass
spectrograph and can be ignored. The effect of the treatment on protein
production rates can be calculated as the ratio of signal at the Bmedium-

heavy^ (M) and Bheavy^ (H) peaks. b In triple SILAC, three samples can
be analyzed at the same time, labeled with Blight^ (Lys0, Arg0),
Bmedium^ (Lys4, Arg6), and Bheavy^ (Lys8, Arg10) SILAC medium.
Proteins were then combined and analyzed together by liquid
chromatography tandem mass spectrometry (LC-MS/MS). In the MS
spectra, each peptide appears as a triplet with distinct mass differences.
The ratios between the samples are calculated directly by comparing the
differences in the intensities of the peaks. BLys0, Arg0^: unlabeled lysine
and arginine; BLys4, Arg6^: 2H4-lysine and 13C6-arginine; BLys8,
Arg10^: 13C6

15N2-L-lysine and
13C6

15N4-L-arginine

Fig. 4 Isobaric chemical labeling method. Isobaric chemical labeling,
including isobaric tags for relative and absolute quantification (iTRAQ)
and tandem mass tag (TMT), labeled the N-termini and the lysine-side
chains in the digested peptides with different isobaric compounds, which
have the same mass and chemical structure but contain different numbers
and combinations of 13C and 15N isotopes in the mass reporter. Then, the
different tags were identified and the relative peptide abundances
estimated. Because the masses of all of the tags are the same, identical

peptides from different samples are co-eluted and selected by MS. After
tag cleavage and another round of MS, the tags are used to quantitate
relative peptide intensities, while the peptide fragment ions are sequenced
for protein identification. The isobaric chemical labeling based
multiplexing comparison is used to compare up to four, six, eight, or
ten samples, depending the isobaric tags used (i.e., 4-plex iTRAQ, 6-
plex TMT, 8-plex iTRAQ, or 10-plex TMT)
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(iTRAQ) [88] has become a popular method for quan-
titative proteomic labeling, in which trypsin-digested
peptides were labeled separately with different isotopic
variants of iTRAQ tags. Thus, the labeled peptides
contained three functional parts: a reporter ion group,
a mass normalization group, and an amine-reactive
group [89]. By using an iTRAQ-based proteomic anal-
ysis, our group addressed the differential bacterial pro-
teome of S. aureus to daptomycin antibiotic exposure
[37], from which bacterial NDK and NT5 genes are
indicators in response to the antibiotic treatment. This
iTRAQ method could also be combined with SRM/
MRM to perform a large-scale phosphoproteome analy-
sis [90, 91].

The capability of multiplexing is its unique advantage of
isobaric chemical labeling in comparison to the metabolic la-
beling techniques. Currently, iTRAQ 4-plex and 8-plex label-
ing reagents are commercially available, allowing to compare
2–8 samples in a single LC-MS/MS analysis. Similarly, an-
other commercially available reagent termed tandem mass tag
(TMT) is also ideal for multiplexed protein quantitation [92].
Moreover, TMT has currently been developed to a 10-plex set
of tags. When analyzing more than eight samples, TMT 10-
plex has the advantage of comparing up to ten samples simul-
taneously [93, 94]. One recent publication applied SPS-MS3
TMT10-plex analysis to investigate the proteomic alterations
in S. cerevisiae resulting from the adaptation of yeast from
glucose to nine different carbon sources [95], and over 5000
yeast proteins across ten growth conditions were quantified in
a single experiment.

Comparing with the labeling methods, label-free quantifi-
cation is simpler, more economical, and more applicable,
without the requirement for extra preparation steps for label-
ing and the limitation for materials that cannot be directly
labeled [96]. Label-free quantification tries to find the differ-
ences in protein abundances by integrating the aligned peak
intensity profiles from LC-MS/MS analyses. One previous
report compared the membrane proteomes between virulent
M. tuberculosis H37Rv and the Mycobacterium bovis BCG
vaccine strain by using label-free quantitative proteomics [97].
As a result, 2203 membrane-associated proteins were identi-
fied in high confidence and 294 of them showed statistically
significant differences of at least two-fold in relative abun-
dance, which is helpful to investigate mechanisms underlying
M. tuberculosis H37Rv virulence and identify new targets for
therapeutic intervention. After that, the role of the
M. tuberculosis SecA2 pathway in exporting solute binding
proteins and Mce transporters to the cell wall has been re-
vealed recently [98].

However, some major bottlenecks still remain for this
approach, such as the need for measuring samples under
strict standard procedures, the restricted specific quanti-
fication not suitable as generic tools at a proteome

scale, and the modest accuracy of the quantitative read-
outs not capable of the detection of small changes [99,
100]. Nevertheless, new algorithms like MaxLFQ [99]
and aLFQ [101] were developed to solve those prob-
lems and to achieve the highest possible accuracy of
quantification. Promisingly, sequential window acquisi-
tion of all theoretical mass spectra (SWATH) MS, a
data-independent workflow that uses a first quadrupole
isolation window to step across a mass range, collecting
high-resolution full-scan composite MS/MS at each step
and generating an ion map of fragments from all detect-
able precursor masses, is optimally suited to acquire
proteome-wide quantitative data over many samples
with a high degree of reproducibility, large dynamic
range, and low limit of detection [102, 103]. A recent
study applied SWATH MS to examine proteomic reor-
ganization of M. tuberculosis during exponential growth,
hypoxia-induced dormancy, and resuscitation. A dataset
was obtained covering >2000 proteins revealing how
protein biomass is distributed among cellular functions
and the investigators provided a quantitative description
of microbial states [104]. Alternatively, robust, highly
parallel procedures to generate peptide mixtures are crit-
ical to increase effectiveness. For example, a method
termed filter-aided sample preparation (FASP), com-
bined with nano-LC in one dimension followed by on-
line MS/MS analysis on a Q-exactive MS, can distin-
guish more than 1000 distinct microbial proteins and
1000 distinct human proteins from urine in a single
experiment [105, 106].

Perspective

With the development of proteomics and MS technology,
more high-efficiency and high-throughput methods can be
available for microorganism investigation in the future.
Microbial proteomics provides a powerful tool for microbial
basic research and translational applications, not only profil-
ing the mechanism and microbial physiology research, but
also giving a clue in clinical diagnosis and antimicrobial ther-
apy. Moreover, it will be helpful for a better understanding of
microbial community functions and microbial physiology,
which provides tools to exploit novel bioactives and new an-
tibiotics for clinical antimicrobial therapy.
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