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Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that 
recognize microbial riboflavin metabolites presented by the monomorphic MHC class 
I-related (MR1) molecule. Despite the high level of evolutionary conservation of MR1 and
the limited diversity of known antigens, human MAIT cells and their responses may not
be as homogeneous as previously thought. Here, we review recent findings indicating
that MAIT cells display microbe-specific response patterns with multiple layers of het-
erogeneity. The natural killer cell receptor CD56 marks a MAIT cell subset with distinct
response profile, and the T  cell receptor β-chain diversity influences responsiveness 
at the single cell level. The MAIT cell tissue localization also influences their response 
profiles with higher IL-17 in tissue-resident MAIT cells. Furthermore, there is emerging 
evidence that the type of antigen-presenting cells, and innate cytokines produced by 
such cells, influence the quality of the ensuing MAIT cell response. On the microbial side, 
the expression patterns of MR1-presented antigenic and non-antigenic compounds, 
expression of other bioactive microbial products, and of innate pattern recognition 
ligands all influence downstream MAIT cell responses. These recent findings deepen our 
understanding of MAIT cell functional diversity and adaptation to the type and location 
of microbial challenge.

Keywords: mucosa-associated invariant T cells, MHC class i-related, CD56, cytokines, microbial immunity, antibacterial 
immunity, mucosal immunology

inTRODUCTiOn

Mucosa-associated invariant T cells are unconventional T cells operating on the border between the 
innate and adaptive immunity and respond promptly in an innate-like manner to antigens presented 
by the MHC class I-related (MR1) protein (1, 2). Human mucosa-associated invariant T (MAIT) 
cells express a semi-invariant T cell receptor (TCR) characterized by the uniform use of the Vα7.2 
segment paired with Jα12, 20, or 33, whereas the β-chain diversity is broader but still limited (3–7).

The naturally occurring MR1-presented MAIT cell agonists identified to date are metabolites 
derived from the riboflavin biosynthesis pathway (8, 9). This limited set of antigens coupled with 
the high evolutionary conservation of MR1 (10) has favored the notion that MAIT  cells may 
be functionally homogeneous and responding in a largely undifferentiated manner to microbes 
capable of riboflavin production. However, recent studies have demonstrated that MAIT cells are 
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in fact fairly heterogeneous in their phenotype and function, 
and that their response patterns are influenced by a range of 
factors.

MAiT CeLL ReSPOnSe PATTeRnS  
vARY BASeD On MiCROBiAL STiMULi 
AnD TiSSUe LOCALiZATiOn

We recently found that peripheral blood MAIT  cells respond dif-
ferently to distinct microbes in both the quality and quantity of 
cytokines produced (7). The Gram-negative bacterium Escherichia 
coli induced production of interferon (IFN)γ and tumor necrosis 
factor (TNF), as well as TCR downregulation, at significantly 
higher levels than the opportunistic fungus Candida albicans, and 
the MAIT cell polyfunctional cytokine profile significantly dif-
fered in response to these microbes (7). Moreover, several studies 
have provided evidence that MAIT  cell effector functions vary 
based on tissue localization. Upon bacterial stimulation, periph-
eral blood and gastric MAIT cells produce IFNγ and TNF, and 
degranulate (2, 4, 11–15), whereas MAIT cells from the female 
genital mucosa display a bias toward production of interleukin 
(IL)-17 and IL-22 (16). Moreover, in response to Mycobacterium 
tuberculosis stimulation, MAIT  cells from tuberculous pleural 
effusions display an enhanced capacity to produce IFNγ, IL-17F, 
and granzyme B than circulating MAIT cells (17). Upon phorbol 
myristate acetate and ionomycin stimulation, MAIT cells from 
the liver and adipose tissue produce more IL-17 and IL-10, 
respectively, than their peripheral blood counterparts (18, 19). 
Data from mouse models further support a role of MAIT cells 
in the control of type 1 diabetes via maintenance of gut integrity 
and control of anti-islet autoimmune responses (20), as well as of 
pulmonary infection by Francisella tularensis live vaccine strain 
(LVS) (21, 22). Overall, these findings suggest the existence of 
MAIT cell response patterns that vary with tissue localization and 
depend on the microbes encountered.

Antimicrobial immune responses are an outcome of the 
interplay between effector cells, antigen-presenting cells (APCs), 
and microbes. Recent findings have indicated that MAIT cells are 
phenotypically heterogeneous and comprise functionally distinct 
subsets (7). Thus, the functional compartmentalization of the 
MAIT  cell population, together with distinct characteristics of 
APCs and microbes, may influence MAIT cell responses upon 
microbial encounter.

MAiT CeLLS—nOT AS HOMOGeneOUS 
AS THeY FiRST MAY SeeM

Adult peripheral blood MAIT cells were long considered phe-
notypically homogeneous in that they express a restricted semi- 
invariant TCR α-chain and predominantly exhibit a CD45RO+ 
CCR7−CD62L−CD28+ effector memory phenotype (3, 7, 23, 24),  
as determined by individual assessment of surface receptors 
(23, 24) and by screening of their surface immune-proteome 
(7). However, MAIT cells vary in their expression of TCR Vβ 
segments (3–7), and of the natural killer (NK) cell-associated 
receptor CD56 (7). Thus, the discovery of these phenotypically 

distinct MAIT cell populations suggested the existence of sub-
sets that could potentially exhibit different functional properties.

THe TCR β-CHAin COMPOSiTiOn 
inFLUenCeS MAiT CeLL  
AnTiMiCROBiAL ReSPOnSeS

Although less diverse than that of other T  cells (5, 6), the Vβ 
usage of MAIT  cells adds some diversity to their overall TCR 
β-chain repertoire. We observed that the Vβ segment expression 
can influence MAIT  cell responses, as MAIT  cells expressing 
Vβ8+, Vβ13.1+, and Vβ13.6+ were hyporesponsive to E. coli, and 
Vβ13.2+ MAIT cells were slightly hyperresponsive to C. albicans 
when compared with the total MAIT cell population (7). Lopez-
Sagaseta et al. (25, 26) had previously reported different binding 
affinities between MAIT cell TCRs with different Vβ segments 
and MR1 in complex with a MAIT cell agonist. Thus, while the 
semi-invariant α-chain is indispensable for TCR recognition of 
MR1–ligand complexes (25, 27), the TCR β-chain may influence 
MAIT  cell antimicrobial responses by fine-tuning the overall 
TCR–ligand–MR1 interaction. In light of the aforementioned 
findings, one can speculate that localization or accumulation of 
Vβ13.2+ MAIT cells, which comprise a significant proportion of 
the total MAIT cell population (7), at sites of C. albicans colo-
nization, such as the genitourinary tract (28), could boost local 
immune responses against this opportunistic pathogen.

Mucosa-associated invariant T  cell subpopulations defined 
by Vβ expression also have differential proliferative capacity 
in vitro. MAIT cells that express the more abundant Vβ’s prolif-
erate more in vitro in response to E. coli than the less abundant 
ones (7). This finding raises the possibility that the in  vivo 
interactions with microbes believed to drive the expansion of 
MAIT  cells from the low frequencies seen in cord blood also 
shape the Vβ repertoire by selectively driving the expansion of 
more responsive MAIT  cell subsets in an antigen-dependent 
manner. If this is the case, the MAIT cell TCR repertoire might 
be influenced by vaccination strategies that expose individuals 
to microbial antigens. In agreement with this, Howson et al. (29) 
recently reported a preferential expansion of certain MAIT cell 
clonotypes in human volunteers challenged with Salmonella 
enterica serovar Paratyphi A (29). Interestingly, the MAIT cell 
clonotypes that expanded in vivo were more strongly activated 
in  vitro in an MR1-dependent manner than those that con-
tracted during infection, potentially due to higher functional 
avidity between their TCRs and MR1 ligands (29). Thus, the 
MAIT cell TCR β-chain repertoire may function as a bacterial 
infection signature of any given individual. Furthermore, factors 
such as the geographic location, diet, or medication usage [all 
of them known to affect the microbiota (30, 31)] might shape 
the MAIT  cell TCR β-chain repertoire as well. Hinks et  al. 
(32) reported that the levels of MAIT cells in peripheral blood 
and bronchial tissues were affected in steroid-treated chronic 
obstructive pulmonary disease patients when compared with 
non-steroid-treated patients (32). However, it remains to be 
investigated if this or any other factor influences the MAIT cell 
TCR β-chain repertoire through its effect on the microbiota.
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FiGURe 1 | Summary of the mucosa-associated invariant T (MAIT) cell, antigen-presenting cell (APC), and microbial factors that may influence MAIT cell 
antimicrobial responses. The MAIT cell TCR β-chain and the expression of CD56 and of co-stimulatory and co-inhibitory receptors influence their responses to 
microbial stimuli. Microbes with distinct pathogen-associated molecular pattern (PAMP) repertoires and differential expression of the riboflavin operon differently 
activate APCs and influence the type and amount of MAIT cell agonists or folic acid derivative/non-stimulatory compounds that are presented to MAIT cells, 
respectively. APCs differ in the amount of MHC class I-related–antigen complexes presented to MAIT cells, the type and amount of innate cytokines produced, as 
well as the panel of co-inhibitory and co-activating molecules expressed. The combination of all these factors influences downstream MAIT cell responses, both 
cytokine production and cytolytic capacity, in different tissues, such as peripheral blood and the female genital mucosa.
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CD56 MARKS A MAiT CeLL SUBSeT wiTH 
enHAnCeD innATeneSS

A proportion of human MAIT cells in peripheral blood express 
the NK cell marker CD56 (7). Interestingly, the CD56-expressing 
MAIT  cells have a higher capacity to respond to IL-12 and 
IL-18 than their negative counterparts (7). This can possibly be 
explained by their higher expression levels of IL-12R and IL-18R, 
as well as higher levels of the transcription factors PLZF, Eomes, 
and T-bet (7). The higher responsiveness of CD56+ MAIT cells 
to innate cytokines may make them more efficient in mounting 
MR1-independent responses during viral and bacterial infec-
tions, as well as sterile inflammatory conditions. In addition, 
CD56+ MAIT cells are reportedly more abundant in the liver than 
in peripheral blood (19, 33). Whether this MAIT cell subset has 
protective, pathogenic, or modulatory roles in liver diseases such 
as viral hepatitis remains to be determined.

In summary, the type and magnitude of effector functions 
mounted in response to stimuli can be influenced by factors 
intrinsic to the MAIT cells: the TCR β-chain composition and 
CD56 expression (Figure 1). Thus, the relative amounts of CD56+ 
and CD56− MAIT  cells and of Vβ-defined MAIT  cell subsets, 
the latter potentially already determined by previous microbial 

encounters in vivo, might play an important role in determining 
how the MAIT cell compartment will respond to a new antigenic 
challenge.

DiFFeRenTiAL DePenDenCe On MR1 
FOR MAiT CeLL CYTOKine PRODUCTiOn

At steady state, MR1 is mostly retained intracellularly (34–37) 
and traffics to the cell surface upon ligand availability and APC 
activation (34, 36, 38). Interestingly, blocking experiments have 
revealed differential MR1-dependency in MAIT  cell responses 
(7). In responses to both E. coli and C. albicans, most IFNγ 
and virtually all TNF produced by MAIT  cells was dependent 
on the TCR–MR1 interaction (7). However, a small proportion 
of IFNγ was produced in an MR1-independent manner (7). 
The dependency on MR1-mediated antigen presentation for 
MAIT cell production of TNF suggests tight regulation of their 
pro-inflammatory responses. This may be an important regula-
tory mechanism to prevent MAIT cell activation in response to 
riboflavin biosynthesis-competent commensal microbes that do 
not actively produce MAIT cell agonists at steady state, but still 
reside close to MAIT cells. Moreover, the low levels of MR1 on 
most cells at steady state may prevent continuous activation of 
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MAIT cells by MR1 ligands from commensal microbes. As MR1 
can bind extracellular ligands directly on the cell surface, these 
ligands, even if present at homeostatic levels, could otherwise 
lead to unnecessary MAIT cell pro-inflammatory responses (36).

innATe CYTOKineS ACTivATe MAiT 
CeLLS in An MR1-inDePenDenT 
MAnneR

Microbes activate APCs to secrete cytokines, such as IL-12 and 
IL-18, which induce IFNγ production by MAIT cells indepen-
dently of TCR signaling and MR1 (39). In agreement with these 
initial findings, Jesteadt et  al. (40) recently reported different 
MAIT cell responses to two microbes that differ in their capacity 
to activate the inflammasome, a proinflammatory innate immune 
system collection of receptors and sensors that involve activation 
of caspase-1 and inflammatory molecules to both microbes and 
host-derived proteins (40, 41). In contrast to Francisella tularensis 
LVS, Francisella novicida is a strong inflammasome activator that 
induced high levels of IL-18 production by macrophages and 
subsequent high levels of IFNγ production by murine MAIT cells 
(40). Moreover, the magnitude of the in vitro IFNγ production 
in response to F. novicida was directly influenced by the concen-
tration of IL-18 in the cultures (40). Therefore, one can expect 
differential MAIT cell responses to microbes with different ability 
to induce IL-18 production by the APCs.

Other cytokines can have a range of effects on peripheral blood 
MAIT cells. In the absence of microbial stimulation, IL-7 induces 
GrzB and upregulates Prf expression without concomitant pro-
duction of cytokines (14), whereas IL-15 in combination with 
IL-18 and/or IL-12 induces IFNγ and GrzB production (42–44). 
Upon stimulation with suboptimal doses of E. coli, both IL-7 and 
IL-15 augment cytokine and cytolytic molecule expression by 
MAIT cells (14, 42). Moreover, the combination of MR1 antigen 
presentation with either IL-12, or IL-7 and IL-12, induces GrzB 
production by MAIT cells in response to E. coli (13) or nontype-
able Haemophilus influenzae (NHTi), respectively (45). Thus, it 
is plausible that APCs shape MAIT cell antimicrobial responses 
through the cytokines they produce upon microbial-mediated 
activation. In fact, the capacity of MAIT cells to be activated by 
cytokines alone underlies their ability to respond in vitro to sev-
eral viruses, including dengue virus, influenza virus, and hepatitis 
C virus, in a process dependent on IL-12 and IL-18, IL-18 alone, 
and IL-18 and IL-15, respectively (43, 46). In addition, both IFNα 
and IFNβ were shown to activate MAIT cells (43, 47) and further 
contribute to the MAIT  cell response to HCV (43). Moreover, 
MAIT  cells can respond to the superantigen staphylococcal 
enterotoxin B independently of MR1 and in an IL-12, IL-18, TCR 
Vβ, and HLA class II-dependent manner (48, 49).

DiFFeRenT TYPeS OF APCS vARY in KeY 
FUnCTiOnS ReQUiReD FOR MAiT CeLL 
ACTivATiOn

As the MR1 gene is ubiquitously expressed (50–52), many 
different cell types are able to present antigen to MAIT cells. 

The repertoire of innate cytokines and the extent to which 
MR1 is upregulated and brought to the cell surface upon 
activation and ligand availability vary not only with the type of 
stimulation but also with the type of APC (38, 53). Professional 
APCs (DCs, macrophages, and B cells) are efficient in microbe 
internalization and processing, as well as in delivering co-
stimulatory signals to T  cells. Kurioka et  al. showed that the 
MR1-dependency of the MAIT cell response to pneumococci 
varied with the type of APC used (54). While the MAIT cell 
response in the presence of monocytes was MR1-independent, 
it was partially MR1-dependent in the presence of monocyte-
derived macrophages (54). We previously observed that the 
addition of anti-CD28 to E. coli-fed monocytes cultured with 
Vα7.2+ cells boosted MAIT  cell IFNγ production (55), thus 
indicating that monocytes are not intrinsically efficient in 
delivering co-stimulatory signals and that the magnitude of the 
MAIT  cell response varies with the degree of co-stimulation 
provided.

In conclusion, several aspects of the APC shape the magnitude 
and quality of MAIT  cell antimicrobial responses. Such APC-
intrinsic factors include the surface expression of MR1–antigen 
complexes, the innate cytokines produced, and the panel of co-
stimulatory and co-inhibitory receptors expressed upon microbial 
exposure (Figure 1). MAIT cells are likely to encounter different 
APCs in vivo, and their responses will ultimately be influenced by 
the type and representation of APCs.

MiCROBe GROwTH COnDiTiOnS 
inFLUenCe THe PRODUCTiOn OF  
MR1-PReSenTeD LiGAnDS

Mucosa-associated invariant T  cells sense microbes through 
antigens presented by MR1 on the surface of APCs. The naturally 
occurring activating antigens identified thus far belong to the 
riboflavin biosynthesis pathway (8, 9), expressed in many differ-
ent species of bacteria and fungi (56, 57). However, the ability of a 
microbe to activate MAIT cells depends not only on its capacity to 
produce MR1-presented agonists but also on whether MAIT cell 
non-stimulatory MR1-binding compounds are also produced 
and to what extent.

The type and concentration of MR1-presented compounds  
vary with the microbial growth conditions. 5-(2- 
oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), the 
most potent MAIT cell agonist identified thus far, requires the ribo-
flavin intermediate precursor 5-amino-6-d-ribitylaminouracil  
(5-A-RU) and either methylglyoxal or glyoxal for its generation 
(9), whereas natural MAIT  cell non-stimulatory compounds 
derive from folic acid (8, 58, 59). The concentration of these pre-
cursor molecules at effector sites will likely dictate the amount of 
antigenic and non-antigenic MR1-presented compounds. It was 
recently shown that Streptococcus pneumoniae clinical isolates 
respond to exogenous availability of riboflavin by downregulating 
the ribD gene (which encodes the enzyme pyrimidine deaminase/
reductase essential for the production of 5-A-RU), with a con-
sequent decrease in MAIT  cell stimulatory potential (60). On 
the other hand, heat-stress was shown to induce the riboflavin 
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operon in pneumococci, with upregulation of the riboflavin 
pathway genes within 2–4 h under such conditions (54).

It is also possible that other, yet unknown MAIT cell antigens 
with different requisites for their formation exist. Meermeier et al.  
(61) reported that MR1-restricted non-classical TRAV1-2- (Vα7.2-)  
MAIT cells could be activated in an MR1-dependent manner by 
Streptococcus pyogenes, a riboflavin biosynthesis-incompetent 
microbe. This suggests that MR1 can present MAIT cell agonists 
other than riboflavin metabolites (61).

Other microbial products that are not presented by MR1 
may also influence MAIT  cell responses. For instance, lactate 
was shown to dampen NK and T cell activation in response to 
Staphylococcus aureus (62). Furthermore, short-chain fatty acids 
derived from bacterial fermentation, such as acetate, butyrate, 
and propionate, promote differentiation of T cells in a cytokine 
milieu-dependent manner (63, 64). Further investigation is 
required to determine if MAIT cells respond similarly to these 
microbial products.

In conclusion, the type of MR1-presented compounds and 
other bioactive microbial products will likely shape the func-
tional characteristics of MAIT  cell antimicrobial responses, 
as previously exemplified in in  vitro competition experiments 
between MAIT cell activating and non-activating MR1-binding 
compounds (58, 59, 65).

MiCROBiAL GeneTiC BACKGROUnD 
MAY PLAY A ROLe in MAiT CeLL 
ReSPOnSeS

Recent studies showed that different S. pneumoniae isolates acti-
vated MAIT cells to different extents, as assessed by CD69 upregu-
lation and IFNγ production (54, 60). Interestingly, Hartmann et al. 
found that S. pneumoniae isolates with similar MAIT cell activat-
ing properties grouped together with regard to their multilocus 
sequence type, suggesting a link between the MAIT cell response 
and microbial genetic background (60). The pneumococcus strain 
groups inducing higher levels of MAIT cell responses expressed 
significantly higher levels of the ribD gene and of MAIT  cell 
ligands (60). Thus, differences in the genetic background between 
microbes influence their capacity to activate MAIT cells.

THe MiCROBiAL PAMP SiGnATURe AnD 
PROPenSiTY FOR PHAGOCYTOSiS CAn 
AFFeCT MAiT CeLL ReSPOnSeS

Different classes of microbes express distinct PAMPs, which can 
trigger toll-like receptors (TLRs) in APCs. Recently, Ussher et al. 
showed that the IFNγ production by MAIT  cells upon E. coli 
stimulation can be positively or negatively affected by pretreat-
ment of APCs with TLR agonists (38). Therefore, the PAMP–TLR 

interaction might be another factor shaping MAIT cell antimi-
crobial responses.

Given that phagocytosis of particles depends on their size and 
shape (66), geometrically different microbes may have different 
propensity to be phagocytosed. Moreover, certain microbes 
contain a polysaccharide capsule, and variations in this structure 
are known to influence the rate of phagocytosis (67, 68). Thus, 
the intracellular microbial load may vary quite extensively with 
the type of microbe. Interestingly, by using S. enterica serovar 
Typhi and E. coli as microbes and a B cell line as APCs, Salerno-
Goncalves et al. found that the quality of the MAIT cell response 
depended on the microbial load (69).

In summary, MAIT cell antimicrobial responses can be influ-
enced by several microbe-intrinsic factors, including their genetic 
background, physical characteristics, and PAMP repertoire, as 
well as their ability to produce MAIT  cell antigens and other 
microbial products (Figure 1). These factors will not only influ-
ence MAIT cell functions but also dictate the amount of microbe 
that is required for optimal responses. In our study of MAIT cell 
responses to E. coli and C. albicans, we found that the optimal 
dose necessary for maximal MAIT cell activation, as assessed by 
CD69 upregulation and IFNγ production, was much higher for 
E. coli than for C. albicans (7).

COnCLUDinG ReMARKS

In conclusion, numerous factors influence the quality and mag-
nitude of MAIT  cell antimicrobial responses, including the 
MAIT cell TCR β-chain composition, the expression of NK cell-
associated receptors, and the TCR–ligand–MR1 interaction. 
Predominance of MAIT cell subsets with distinct effector func-
tions at sites of microbial invasion and their co-localization with 
functionally heterogeneous conventional CD4+ and CD8+ T cells 
that recognize distinct antigens (70–72) builds multifaceted 
immune barriers of immunosurveillance able to efficiently target 
pathogens with different requirements for eradication.
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