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Abstract: Implant therapy using osseointegratable titanium (Ti) dental implants has revolutionized
clinical dental practice and has shown a high rate of success. However, because a metallic implant
is in contact with body tissues and fluids in vivo, ions/particles can be released into the biological
milieu as a result of corrosion or biotribocorrosion. Ultrananocrystalline diamond (UNCD) coatings
possess a synergistic combination of mechanical, tribological, and chemical properties, which makes
UNCD highly biocompatible. In addition, because the UNCD coating is made of carbon (C), a
component of human DNA, cells, and molecules, it is potentially a highly biocompatible coating
for medical implant devices. The aim of the present research was to evaluate tissue response to
UNCD-coated titanium micro-implants using a murine model designed to evaluate biocompatibility.
Non-coated (n = 10) and UNCD-coated (n = 10) orthodontic Ti micro-implants were placed in the
hematopoietic bone marrow of the tibia of male Wistar rats. The animals were euthanized 30 days
post implantation. The tibiae were resected, and ground histologic sections were obtained and
stained with toluidine blue. Histologically, both groups showed lamellar bone tissue in contact
with the implants (osseointegration). No inflammatory or multinucleated giant cells were observed.
Histomorphometric evaluation showed no statistically significant differences in the percentage of
BIC between groups (C: 53.40 ± 13% vs. UNCD: 58.82 ± 9%, p > 0.05). UNCD showed good
biocompatibility properties. Although the percentage of BIC (osseointegration) was similar in UNCD-
coated and control Ti micro-implants, the documented tribological properties of UNCD make it a
superior implant coating material. Given the current surge in the use of nano-coatings, nanofilms,
and nanostructured surfaces to enhance the biocompatibility of biomedical implants, the results of the
present study contribute valuable data for the manufacture of UNCD coatings as a new generation of
superior dental implants.

Keywords: ultrananocrystalline diamond (UNCD) coating; surface treatment; biotribocorrosion;
biocompatibility; titanium micro-implants; osseointegration

1. Introduction

Pure titanium (Ti) and its alloys are widely used to manufacture dental and orthopedic
implants, among other medical applications, given their appropriate mechanical properties
and biocompatibility [1,2]. Osseointegratable Ti dental implants have revolutionized clinical

Nanomaterials 2022, 12, 782. https://doi.org/10.3390/nano12050782 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12050782
https://doi.org/10.3390/nano12050782
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-7907-6152
https://orcid.org/0000-0002-8087-7579
https://orcid.org/0000-0002-2084-6973
https://doi.org/10.3390/nano12050782
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12050782?type=check_update&version=2


Nanomaterials 2022, 12, 782 2 of 15

dental practice and have shown a high rate of success [3,4]. However, some technical and/or
biological complications associated with Ti dental implants can occur [5,6].

No metal or metal alloy is completely inert in vivo [7]. One of the possible causes of
failure of a Ti implant after initial success is biotribocorrosion, which is the combined effect
of mechanical, biochemical, and electrochemical factors in a biological environment [8–10].
Biotribocorrosion causes the release of ions/metallic particles from the Ti surface into the
surrounding tissue, thus allowing for their possible systemic dissemination and deposition
in distant organs [11].

Several studies have reported the presence of Ti particles in human peri-implant
tissues [6,9,12]. In line with studies reported in the literature, our research group histologi-
cally demonstrated the presence of Ti particles in peri-implant tissue surrounding failed
human dental implants [13], in oral mucosa in contact with the implant cover screw [14], in
cells exfoliated from the oral mucosa in contact with a titanium dental implant [15], and in
lesions found close to a Ti dental implant [16,17].

In situ degradation of a metallic implant alters its structural integrity, and the released
ions/particles can have different biological effects [7,18–22]. Aside from creating new metal-
free implant materials that can be used for oral rehabilitation purposes, it is paramount
to design enhanced implant surface treatments to minimize the risk of implant biotribo-
corrosion and the health problems associated with these processes. A number of coatings
and micro- and nanostructured surfaces have been developed in an attempt to improve
implant biocompatibility and osseointegration and prevent the release of ions/particles
from the implant surface into the biological milieu. The properties of these coatings are
evaluated using different biological parameters [23,24].

An ideal surface treatment would render the coating highly resistant to chemical
attack and would allow achieving micro- and nano-roughness, which has been shown to
enhance osseointegration [25,26]. Nanoscale-tailored surfaces can have a more profound
and significant impact on the fates of cells compared with microscaled surfaces [27–29].
A number of studies have engineered nanotopological features including nanogrooves,
nanofibers, nanodots, nanotubes, and complex shaped patterns [30] and have investigated
the significant effects of nanostructured implant surfaces on osteogenic differentiation and
the immune system [31].

Carbon-based materials [32,33] have emerged as promising candidates for implant
coatings in view of their good tissue compatibility, resistance to chemical attack by body
fluids, radiation resistance (which makes them suitable for sterilization processes), hemo-
compatibility, optimal mechanical and tribological properties (ultrahigh hardness, low
friction coefficient, negligible wear), and good adhesion to Ti [34].

The ultrananocrystalline diamond (UNCD) coating described in this article is one of
the carbon coatings available today and was developed [35–40] and patented [38,41] by
Auciello et al. This novel UNCD coating exhibits a unique synergistic combination of out-
standing mechanical (highest hardness compared to all other carbon-based coatings [37])
and tribological (lowest coefficient of friction compared to all other carbon-based coat-
ings [36,37]) properties, unique resistance to chemical corrosion by any fluid [37] (including
body fluids [40]), high electrical conductivity when inserting N atoms in the grain bound-
aries providing electrons for conduction or B atoms replacing C atoms in the diamond grain
lattice and providing electrons to the electric conduction band [37,42], and exceptional bio-
compatibility properties [23,37,40,43]. More specifically, its hardness (98 GPa) [37] is similar
to that of a diamond gem (100 GPa) and thus greater than that of any other material in thin
film form. The UNCD coating exhibits an extremely high fracture resistance/coefficient
and practically no wear and has one of the lowest coefficients of friction (~0.02–0.04) com-
pared to coatings available today for industrial products (mechanical pump seals and
bearings [37]) and implantable prostheses (hips, knees, and so forth) for clinical use. UNCD
is extremely resistant to chemical corrosion by any fluid, including strong acids like HF
and body fluids.
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As compared to other types of diamond-based coatings, the surface structure of UNCD
films facilitates adhesion, proliferation, and metabolism of different cell types, and thus
resembles the nanoscale extracellular matrix of tissue [44]. As shown by studies evaluating
the interaction between UNCD films and osteoblasts, fibroblasts, cortical neurons, and
cortical stem cells, UNCD films are a suitable, non-toxic support surface for cell growth
and proliferation [45–49].

Nanocrystalline diamond (NCD) and UNCD coatings have also been shown to be
useful for biosensing post-surface functionalization [50–52]. Auciello et al. showed the
UNCD coating to be an extremely biocompatible/eye-fluid-corrosion-resistant coating to
encapsulate a Si microchip (artificial retina), implantable inside the human eye to restore
partial vision to people blinded by retinitis pigmentosa (genetically induced degeneration
of retina photoreceptors) [23]. Other researchers have evaluated the use of other diamond
structures [53,54] and UNCD coatings [55] for ophthalmological devices, focusing on
restoring sight to patients with retinitis pigmentosa. UNCD has been proposed as a coating
for biomedical devices, such as coxofemoral prostheses, dental implants, cardiac valves,
and ocular devices [23,36].

UNCD can be micromachined to produce tailored micro-nano-electro-mechanical sys-
tems (MEMS/NEMS) [35], such as biosensors and drug delivery devices; all these systems
are based on UNCD films [37]. UNCD films are grown using Microwave Plasma Chemical
Vapor Deposition (MPCVD) or Hot Filament Chemical Vapor Deposition (HFCVD). The
HFCVD method currently yields more homogenous films on large areas (up to 300 mm in di-
ameter) and is being used for manufacturing commercial industrial products such as UNCD-
coated mechanical pump seals and bearings developed by Advanced Diamond Technology,
a company founded by Auciello and colleagues in 2003 (www.thindiamond.com, accessed
on 31 December 2021). UNCD thin films grown on metallic, semiconductor, and insulating
surfaces exhibit an inherently smooth topography (~7–10 nm rms roughness). Auciel-
los’ group demonstrated that a nanometer-scale-thick tungsten (W) layer (~50–100 nm)
grown on the surface of any substrate used to grow UNCD films induces much denser and
smoother (~3–5 nm rms surface roughness) UNCD films than films grown without the W
layer [39].

In view of the mechanical and chemical properties of UNCD coatings, the aim of this
study was to evaluate tissue response to UNCD-coated Ti micro-implants using a murine
model to assess the biocompatibility of the UNCD coating.

2. Materials and Methods
2.1. Implants

Orthodontic Ti micro-implants 5 mm in length and 1.3 mm in width were used (Ti-6Al-
4V, AbsoAnchor® NH 1312-05, Dentos Inc, Daegu, Korea) (Figure 1). The micro-implants
were assigned to one of two groups: a Control group (C), which included non-coated
micro-implants (n = 10), and an Experimental group (E) consisting of UNCD-coated micro-
implants (n = 10).
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2.2. Method to Grow a Tungsten (W) Interface Layer on Ti Micro-Implants

A tungsten (W) interface layer was grown on the Ti micro-implant surface using
conventional RF magnetron sputtering. Magnetron sputter-deposition was carried out
using an input RF power of 150 W and an Ar gas flow of 30 sccm (mTorr-range pressure)
at room temperature to strike a plasma discharge on the surface of a solid W target in the
magnetron system. The Ar ions impacting on the surface of the W target induce ejection of
W atoms that travel across the space between the target and the Ti substrate to land on the
Ti surface and induce the growth of the W layer.

2.3. Method to Grow a UNCD Coating on W-Coated Ti Micro-Implants

The UNCD film was grown on the surface of W-coated Ti micro-implants employing
the Microwave Plasma Chemical Vapor Deposition (MPCVD) technique using a commercial
IPLAS (Innovative Plasma Systems GmbH, Troisdorf, Germany) MPCVD system. The
novel patented UNCD growth process involves introducing an Ar-rich (99%)/CH4 (1%)
gas mixture into the MPCVD chamber, evacuated of air to produce a base pressure of
~5 × 10−7 Torr. A mixture of Ar (49.2 sccm)/CH4 (0.8 sccm) gas was flown into the
evacuated chamber producing a pressure of 90 mbar. Microwave power (1200 watts)
was coupled onto the gas, producing a plasma that generates C2-dimers (main UNCD
nucleation species), CH3, CH2, and CH radicals, which induce the growth of the UNCD
films upon impacting on the substrate surface [37]. UNCD films were grown on heated
(800 ◦C) Ti implant samples coated with a ~100 nm W layer with the surface seeded with
nanocrystalline diamond particles embedded on the W surface by ultrasound waves in
an ultra-sonicator with a solution of nano-diamond particles in methanol. After the initial
seeding, extensive surface cleaning involving sequential exposure of the surface to solvents
was performed to remove all large particulates from the substrate surface prior to film
growth. UNCD films were subsequently grown for different periods of time to achieve the
desired film thickness (~0.5–1 µm).

2.4. Physical-Chemical Characterization of the Implant Surface

Samples of micro-implants from both groups were examined using scanning electron
microscopy (SEM Zeiss Supra model 40, Oberkochen, Germany). For SEM imaging, the
samples were coated with a thin (20 nm) layer of silver in a vacuum evaporator to make
them electrically conductive and enable optimum SEM imaging. In addition, the chemical
composition of the samples was determined using Energy-dispersive X-ray Spectroscopy
(EDS, INCAx-sight model, Oxford Instruments, High Wycombe, UK), with an analytical
least detectable dose of 0.5%.

2.5. Experimental Animals

Male Wistar rats, 120 g body weight, were used. The animals were housed under
standard conditions, receiving water and food ad libitum and under 12:12 light–dark cycles
and controlled temperature (22–24 ◦C) conditions. The protocol was approved by the
Institutional Experimentation Committee (School of Dentistry of the University of Buenos
Aires, Resolution Number 006/2015). Adequate measures were taken to minimize animal
pain and discomfort. All procedures were performed in compliance with the National
Institutes of Health (NIH) guidelines for the care and use of laboratory animals (NIH
Publication—Guide for the Care and Use of Laboratory Animals: Eighth Edition, 2011)
and the guidelines of the School of Dentistry of the University of Buenos Aires (Res. (CD)
352/02 and Res. (CD) 694/02).

2.6. Surgical Procedure

The animals were anesthetized by intraperitoneal injection of a solution of 8 mg of
ketamine chlorhydrate (Fort Dodge®, La Plata, Provincia de Buenos Aires, Argentine) and
1.28 mg of xylazine (Bayer, Leverkusen, Germany) per 100 mg of body weight. Implantation
inside the medullary cavity of the tibiae was performed following the technique described
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by Cabrini et al. [56]. A non-coated micro-implant was placed inside the medullary com-
partment of the left tibia (C Group) and a UNCD-coated micro-implant was placed inside
the medullary compartment of the right tibia (UNCD Group). Both lower limbs were
shaved using an electric shaver (Philips®, Buenos Aires, Argentina), and a 1.5 cm incision
was made along the tibial crest using a surgical blade (N◦ 11 Bard Parker®). The muscles
and periosteum were dissected to expose the metaphyseal and diaphyseal region of the
outer side of the tibia. A 1.5 mm hole was drilled through the bone by rotating a round
burr (Dentsply Maillefer, Tulsa, OK, USA) manually to avoid heating and ensuing necrosis
of the bone tissue. Each implant was placed inside the hematopoietic bone marrow, parallel
to the longest axis of the tibia. The tissues were repositioned, and the skin was sutured
with separate stitches (Vicryl® N◦3.0, Johnson & Johnson, New Brunswick, NJ, USA). No
antibiotic therapy was administered. Thirty days post implantation, all the animals were
euthanized by anesthetic overdose, and the tibiae were resected, fixed in 10% buffered
formalin, and radiographed.

2.7. Histological Processing

The tibiae were processed and embedded in acrylic resin. Longitudinal histological
sections were obtained using the micro-grinding system EXAKT 300 CP & 310 CP Precision
Parallel Control (EXAKT, Hamburg, Germany) and stained with toluidine blue 1% for
histological examination by light microscopy.

2.8. Histomorphometry

The histological sections were analyzed histomorphometrically using an optical pho-
tomicroscope (Leica, DM 2500, Wetzlar, Germany) with LAS EZ software (Leica Application
Suite, Wetzlar, Germany) at a magnification of 400×. The area of peri-implant bone tissue
and percentage of osseointegration (bone-implant contact: BIC) were determined.

2.9. Statistical Analysis

The data were statistically analyzed using Student’s t-test. Values are expressed as
mean and SD; statistical significance was set at p < 0.05.

3. Results
3.1. Growth of W Interface Layer

The W layers grown by magnetron sputter-deposition were about 50 to 10 nm thick
and had a surface roughness of about 6 nm rms, as measured using Atomic Force Mi-
croscopy (AFM). Scanning Electron Microscopy (SEM) and AFM studies showed that
UNCD films grown on a substrate surface without the W layer exhibited a surface rough-
ness of about 20 nm rms, while UNCD films grown on a 100 nm thick W layer showed a
surface roughness of about 6.3 nm rms.

3.2. Growth of the UNCD Coating

UNCD coatings grown on the characteristic screw-type dental implants using the
MPCVD process exhibited an extremely dense/pin-hole-free structure conformal to the
screw-type implant, as shown by SEM (Figure 2a). Figure 2b shows the surface roughness
of the UNCD coating as measured by the well-known Atomic Force Microscopy (AFM)
technique. The AFM technique involves scanning a sharp metal tip, integrated in a can-
tilever, over the surface of the sample. A laser beam reflecting from the top surface of
the cantilever is directed to a sensor, producing the image of a surface with atomic scale
resolution. HRTEM studies showed that the UNCD films grown on Ti exhibited the typical
grain size of 3–5 nm (Figure 2c).
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Figure 2. (a) Cross-section SEM image of a UNCD coating grown on a Ti micro-implant (note the
extremely dense/conformal structure of the UNCD coating with a nanoscale surface roughness on
the Ti implant); (b) surface roughness of the UNCD coating measured by Atomic Force Microscopy
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3.3. SEM Imaging and EDS Analyses of Uncoated and UNCD-Coated Ti Micro-Implants

As shown by SEM, the surface of the uncoated Ti micro-implants in Group C showed
all the typical features of a machine-finished surface (Figure 3a,b). The surface of the
micro-implants in the UNCD group, however, was grainy, with grain sizes ranging from
3–5 nm (Figure 4a,b), and the coating fully covering the Ti surface of the implant.
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The elemental composition of the micro-implants was qualitatively confirmed by
EDS analysis. Composition of control micro-implants was 6.55% aluminum (Al), 90.43%
titanium (Ti), and 3.03% vanadium (V), whereas UNCD-coated micro-implant composition
was 42.77% carbon (C), 1.96% aluminum (Al), 54.60% titanium (Ti), and 0.68 vanadium (V)
(Figure 5a,b).
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3.4. Radiographic Study

Radiographic evaluation revealed that all implants remained in the implantation site
in the diaphyseal area (Figure 6).

3.5. Histologic Evaluation

Histologic examination of control and experimental samples revealed areas of lamellar
bone in close contact with the surface of the implant (BIC, osseointegration) and areas
of bone marrow in contact with the implant surface (myelointegration) thirty days post
implantation (Figure 7a–c or Figure 8a–c). No inflammatory or multinucleated giant cells
were detected.
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3.6. Histomorphometry 

Figure 8. UNCD histological sections obtained thirty days post implantation. Note the lamellar bone
(*) tissue in close contact with the UNCD surface and the absence of inflammatory infiltrate and
multinucleated giant cells. Acrylic resin. Ground sections. Staining with toluidine blue 1%. Original
magnification (a) 25×, (b) 100×, and (c) 400×.

3.6. Histomorphometry

The histomorphometric study showed no statistically significant differences in the per-
centage of BIC (osseointegration) between groups (C: 53.40 ± 13% vs. UNCD: 58.82 ± 9%,
p ≥ 0.05). The area of peri-implant bone tissue was significantly greater in the C group than
in the UNCD group (C: 352932.7 ± 85.794 µm2 vs. UNCD: 228244.1 ± 26.800 µm2, p < 0.05)
(Figure 9a,b).
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p < 0.05.

4. Discussion

The potential toxicity and biological risks associated with ions/particles released as a
result of biotribocorrosion of metallic implants is a public health concern that particularly af-
fects patients carrying a metallic medical implant, whether orthopedic or dental, since these
prostheses must remain inside the body over long periods of time, even decades [6,14,57,58].
Managing and controlling biotribocorrosion of a biomedical implant is therefore paramount
from a biological, sanitary, metallurgic, economic, and social point of view. Furthermore,
studies in the orthopedic and dental literature show that biotribocorrosion of titanium
implants can lead to loss of osseointegration [7,57].

It remains unknown whether the presence of inflammation, which causes a decrease
in pH, triggers corrosion processes [59,60], or whether corrosion processes, which result
in the release of particles, trigger an inflammatory response. Whichever the case, the
presence of macrophages loaded with Ti particles is a bioindicator of the occurrence of
biotribocorrosion. Once the metallic particles are phagocytized by macrophages, a number
of chemical proinflammatory mediators (cytokines, chemokines) are released and can, in
turn, trigger a range of biological effects, including osteoclast activation, and thus favor
bone resorption, inhibit osteoblasts from secreting bone matrix, and ultimately result in
osteolysis [61–63].

There are also reports showing an immune response to Ti triggered by exposure to
ions/particles released from an implant [18,19,64]. In a previous study, we evaluated biop-
sies of oral mucosa adjacent to implant cover screws. Positive immunohistochemical stain-
ing with antibodies anti-CD68 and anti-CD45RO confirmed the presence of macrophages
and T lymphocytes associated with the metal particles [14]. This finding suggests an
immune response mediated by cells and is in line with reports in the literature [65,66].

Histological examination performed in the present study revealed the presence of
lamellar bone tissue in contact with the implants (osseointegration). Our histological results
showed that UNCD-coated implants were well tolerated by the surrounding tissue and,
like the non-coated implants, caused no inflammatory reaction.

The development of peri-implantitis triggered by the presence of metallic particles
themselves and/or by their interaction or synergistic effect with periodontal pathogens [67–69]
is another documented biological effect of Ti implants that is raising growing concern [67–69].

As to the carcinogenic potential of implants, there are scant reports on the possible de-
velopment of malignant tumors associated with prosthetic structures in humans [20–22,70].
Nevertheless, there is no clear evidence that biotribocorrosion of Ti implants is not involved
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in carcinogenesis [71]. Of note, TiO2 was classified by the International Agency for Cancer
Research as possibly carcinogenic to humans (Group 2B) [72].

Several mechanisms have been proposed to explain the possible association between
malignant transformation and a metallic implant device. Features such as valence, particle
concentration and size, and hypersensitivity have been proposed as potential factors [70].
Nevertheless, no direct cause-and-effect has been demonstrated in humans to date [70,71,73,74].

Specifically regarding titanium dental implants, 46 cases of squamous cell carci-
noma [71,73], one osteosarcoma [20], and one plasmacytoma [21] in the vicinity of a Ti
implant have been reported in the scientific literature in English. Some authors have sug-
gested an association between the release of particles from a metallic implant and carcino-
genic and mutagenic changes in the oral cavity [73,75]. In addition to the aforementioned
studies, cases of breast, lung, and prostate metastases associated with dental implants have
also been reported in the literature [71,73]. In a previous work, we reported [17] a case of
intraosseous metastasis of kidney adenocarcinoma, which to our knowledge is the first
report of this type of lesion close to a dental implant. It is important to point out that
whereas there are no reports of a benign neoplasm developing in the vicinity of a titanium
dental implant, our series included a case of peripheral cemento-ossifying fibroma.

According to Doak el at., evidence for the genotoxicity and carcinogenesis of carbon-
based nanomaterials is accumulating, with a clear dependency on physicochemical features,
but their long-term impact on human health has yet to be definitively established [76].
There are no reports in the literature suggesting a carcinogenic potential of the UNCD
coating. We speculate that because the coating is a carbon-based material and carbon is a
component of human tissue, it is highly biocompatible.

It is also known that trace metals can increase the physiological production of reactive
oxygen species (ROS), which can lead to tissue damage in the absence of a compensatory
increase in antioxidant species [77–79]. Previous experimental studies performed by our
research group showed that TiO2 particles were transported in the blood via cells of the
mononuclear phagocytic lineage and were deposited in organs with macrophagic activity
such as the liver, spleen, and lungs and caused an increase in oxidative stress in lung
and liver macrophages [13,80]. Toxicity studies performed by our research group allowed
establishing a relation between the toxic effects of TiO2 particles and particle size. In
line with a number of studies demonstrating that the smaller the particle, the greater
its toxicity [81–83], our studies showed that superoxide anion generation was inversely
proportional to particle size [84].

With the aims of preventing or limiting the release of TiO2 particles into the biolog-
ical milieu and avoiding the likely adverse biological effects, UNCD coatings have been
developed to optimize implant biocompatibility, improve osseointegration, and reduce the
likelihood of biotribocorrosion.

Film adhesion is one of the crucial requirements for any type of coating for biomedical
implants. In this regard, it has been demonstrated that UNCD coatings exhibit strong
adhesion, even in situations where two UNCD-coated parts rub together due to a strong
pushing force, as is the case of UNCD-coated mechanical pump seals [85].

Our group evaluated the in vivo biological effects and biokinetics of UNCD particles
compared to the biological response to TiO2 nanoparticles in an experimental animal
model [86]. The scant amount of UNCD deposits in the parenchyma of the analyzed organs,
the absence of morphological alterations, and the lower oxidative inductions as compared to
observations in TiO2-nanoparticle-exposed animals suggest that tissue response would be
less aggressive or negligible in the event that the UNCD coating detached from the implant
surface. These differences in biological response may be associated with the fact that UNCD
coatings are made of carbon (C), a component of human DNA, cells, and molecules, which
potentially makes them highly biocompatible coatings for medical implant devices [87].

Interestingly, tissue response to the UNCD coated implant was assessed in vivo in
the present study [56]. The experimental model used here was developed by our research
group [56]. The basic principle of the model is the osteogenic capacity of the rat tibia bone
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marrow, and it has been used to evaluate the influence of different systemic and local factors
on tissue repair. The model provides an isolated microenvironment that is not exposed
to microbial contamination or mechanical forces; this controlled environment allows eval-
uating tissue response to a specific condition, ruling out the interference of confounding
variables. Our in vivo model allows implant immobilization. Radiographs confirmed that
the biomaterial remained in the same place and position inside the tibial medullary cavity
throughout the entire experiment, and thus served as a 3D osteoconductive scaffold.

Nanostructured surfaces have controlled physicochemical properties, including rough-
ness, wettability, surface charge, and topography [26]. The UNCD coating had a surface
with nanometric-scale structures and the typical grain size of 3–5 nm, enhancing implant
surface interactions with ions, biomolecules, and cells and optimizing biocompatibility. Un-
like conventional surface topographies, UNCD provides tailored surface nano-topography
where osteoblasts recognize differences in nanometer range, favoring the osseointegration
rate of UNCD implants [35,37].

The results of the present study allow concluding that UNCD has excellent biocom-
patibility properties and, though the percentage of BIC (osseointegration) was similar in
UNCD-coated and control Ti micro-implants, its documented tribological properties would
make it a superior implant coating material. Although the UNCD coating did not improve
the percentage of osseointegration, it could protect against biotribocorrosion of the base
material (titanium) and its ensuing deleterious biological effects.

Given the current surge in the use of nano-coatings, nanofilms, and nanostructured
surfaces to enhance biocompatibility of biomedical implants, the results of the present
study contribute valuable data for the manufacture of UNCD coatings as a new generation
of superior dental implants. With regard to the above statement, it is relevant to consider
recent R&D findings of a clinical trial conducted at a world-class clinic in Querétaro, Mexico,
in 2018, involving implantation of UNCD-coated commercial Ti-6Al-4V dental implants in
thirty-five patients. The results indicate that the biocompatible UNCD coatings will enable a
new generation of dental implants that are superior to current metal-based dental implants.
A recently published book chapter by our group [88] provides a detailed description of
the materials and technological research and development of the UNCD-coated dental
implants and of the results obtained in experimental animal studies and clinical trials.
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