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Abstract: The incidence of chronic wounds is steadily increasing each year, yet conventional treatments for chronic wounds yield 
unsatisfactory results. The delayed healing of chronic wounds significantly affects patient quality of life, placing a heavy burden on 
patients, their families, and the healthcare system. Therefore, there is an urgent need to find new treatment methods for chronic 
wounds. Plant-derived exosome-like nanovesicles (PELNs) may be able to accelerate chronic wound healing. PELNs possess 
advantages such as good accessibility (due in part to high isolation yields), low immunogenicity, and good stability. Currently, 
there are limited reports regarding the role of PELNs in chronic wound healing and their associated mechanisms, highlighting their 
novelty and the necessity for further research. This review aims to provide an overview of PELNs, discussing isolation methods, 
composition, and their mechanisms of action in chronic wound healing. Finally, we summarize future opportunities and challenges 
related to the use of PELNs for the treatment of chronic wounds, and offer some new insights and solutions. 
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Introduction
Chronic wounds are wounds that persist with incomplete restoration of skin anatomy and function and are typically 
difficult to heal.1,2 With population ageing and lifestyle changes, the incidence of chronic wounds, such as diabetic 
ulcers,3 venous ulcers4 and pressure ulcers,5 is increasing annually.6 The clinical treatment efficacy for chronic wounds is 
still unsatisfactory, and the delayed healing of chronic wounds significantly affects patient quality of life,7 imposing 
substantial burdens on patients, their families, and the healthcare system.8,9 Therefore, there is an urgent need to find 
new, more effective treatment methods for chronic wounds. Conventional treatments for chronic wounds include physical 
therapy, surgical intervention, and pharmacological therapy. Physical therapy methods include heat therapy, cold therapy, 
and ultrasound therapy.10,11 Surgical treatments include wound debridement, tissue repair, and skin grafting.12,13 

Pharmacological therapy entails the use of medication to promote healing, control infections, or alleviate symptoms.14 

However, these conventional treatments still have drawbacks, such as unsatisfactory therapeutic effects and high costs. 
Research indicates that certain plant-derived compounds are effective for treating chronic wounds,15–17 but the complex-
ity of their composition presents a challenge.

In 1987, researchers studying erythrocyte maturation discovered nanoscale vesicles and proposed the concept of 
exosomes.18 Exosomes are small vesicles that are formed within cells and then secreted into the extracellular space and 
are capable of transferring information between cells and regulating various biological processes.19,20 Exosomes exist not 
only in animal cells but also in plant cells.21,22 Animal-derived exosomes play important roles in intercellular commu-
nication, immune regulation, and disease development. However, animal-derived exosomes are inherently immunogenic, 
difficult to obtain, and prone to degradation.23–25 Therefore, plant-derived exosome-like nanovesicles (PELNs) isolated 
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from natural plants have become a hot research topic. PELNs may play a certain role in chronic wound healing. 
Compared with animal-derived exosomes, PELNs have the advantages of being readily obtainable, having low immu-
nogenicity, and having good stability.26,27 Compared to animal-derived exosomes, there are limited reports regarding the 
role of PELNs in chronic wound healing and their associated mechanisms, highlighting their novelty and the necessity 
for further research. In this review, methods for the isolation of PELNs and their components are summarized, and the 
mechanisms of their effects on chronic wound healing are analysed through recent studies. Finally, we summarize the 
future opportunities and challenges of PELNs in the treatment of chronic wounds and present several new insights and 
solutions.

Overview of PELNs
PELNs were first isolated by researchers in 2009.28 PELNs are exosome-like nanosized vesicles, encapsulated by a lipid 
bilayer membrane, that are released by plant cells. Their diameter typically ranges from 30 to 150 nanometres, although 
larger PELNs more similar in size to animal exosomes have also been observed.29 PELNs have been isolated from 
various plant parts, including roots,30–32 leaves,33,34 fruits35–38 and seeds.39 PELNs contain bioactive molecules that 
participate in biological processes and regulate various cell functions, such as those of stem cells,40 tumour cells,41,42 

fibroblasts43 and osteoblasts.44,45 Research indicates that PELN activities can modulate various diseases, such as 
cancers,41,42 autoimmune diseases,46 liver diseases,47 and inflammatory diseases.48,49 PELNs are also considered to 
have significant potential applications in the field of chronic wound healing.50

Isolation of PELNs
In 2023, the International Society for Extracellular Vesicles (ISEV) provided some guidance on methods for the isolation 
of extracellular vesicles based on yield and specificity.51 Currently, there is no single method for PELNs isolation that 
simultaneously achieves the highest yield and specificity. Therefore, the isolation method should be chosen based on the 
specific requirements of the intended research or application. The commonly used methods for isolating PELNs, as 
reported in the literature, are summarized in Table 1.

Table 1 The Isolation Methods for PELNs

Isolation 
Method

Plant Sources Advantages Disadvantages References

dUC Pueraria lobata 
Apple 
Yam 
Phellinus linteus

Simple operation; High isolation 

efficiency

Need special centrifugal equipment; 

Easy to break the vesicles

[52] 

[53] 
[44] 

[54]

Density gradient 
centrifugation

Momordica charantia 
Portulaca oleracea L 
Ginseng 
Artemisia annua

More pure; Preservation integrity Complex operation; Large loss [55] 
[56] 

[31] 

[57]
PEG precipitation Blueberry 

Physalis peruviana
Simple operation; Lower costs PEG residue [58] 

[59]

Ultrafiltration Pueraria lobata Simple operation; Without complex 
equipment; Not introduce foreign 

substances

Some limitations for large scale 
application and high purity

[60]

SEC Cabbage High purity; Mild conditions Complex operation; High equipment 
requirements; Sample loss; Low 

recovery rate

[61]

C-CP Fruit and vegetable High throughput; More efficient; 
miniaturization

Lack of standardization; Low recovery 
rate

[62]

Abbreviations: PELNs, plant-derived exosome-like nanovesicles; dUC, differential ultracentrifugation; PEG, polyethylene glycol; SEC, size exclusion chromatography; C-CP, 
capillary channel polymer.
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Differential Ultracentrifugation
Differential ultracentrifugation (dUC) is a technique that is commonly employed for PELNs isolation. This method 
utilizes the centrifugal force generated by a centrifuge to separate and purify PELNs based on their density and size. 
Differential ultracentrifugation effectively removes large particles, dead cells, sticky proteins, fibers, and cell debris by 
sequentially applying low-speed, medium-speed, and high-speed centrifugation, followed by ultracentrifugation to obtain 
PELNs. PELNs can be obtained from Pueraria lobata,52 apples,53 yams,44 and Phellinus linteus54 by dUC. In general, 
differential ultracentrifugation enables the effective separation of PELNs based on their density and size, offering 
advantages such as simplicity, ease of operation, and high separation efficiency. However, this approach also requires 
specialized equipment and meticulous handling to prevent sample degradation.

Density Gradient Centrifugation
Density gradient centrifugation is another method commonly used for separating PELNs. This method utilizes centrifu-
gation in density gradient media, such as sucrose or iodixanol, to separate plant samples. PELNs precipitate in layers of 
different densities, thereby achieving separation. Density gradient centrifugation effectively removes large particles, dead 
cells, sticky proteins, fibers, and cell debris by sequentially applying low-speed, medium-speed, and high-speed 
centrifugation, subsequent sucrose gradient ultracentrifugation to collect vesicles between the sucrose layers to obtain 
PELNs. PELNs can be obtained from Momordica charantia,55 Edible,56 Ginseng,31 and Artemisia annua57 by density 
gradient centrifugation. Overall, density gradient centrifugation enables effective separation of PELNs based on differ-
ences in density, yielding relatively pure and intact nanovesicles. This method is highly valuable for studying the 
composition and functions of PELNs. However, this process is complex and involves considerable loss of nanovesicles 
during multiple washing and transfer steps.

Polyethylene Glycol (PEG) Precipitation
Polyethylene glycol (PEG) precipitation is a commonly used method for isolating PELNs from plants. This method exploits 
the precipitating properties of PEG to concentrate PELNs in solution. For example, blueberry juice was subjected to 
differential centrifugation, and the supernatant was incubated with PEG overnight and then centrifuged at 10,000 × g for 
30 minutes to obtain blueberry-derived exosome-like nanovesicles.58 Differential centrifugation of lantern fruit juice 
followed by overnight PEG incubation of the supernatant and subsequent low-speed centrifugation allowed the isolation 
of plant-derived exosome-like nanoparticles from Physalis peruviana fruit.59 This method is relatively simple and cost- 
effective; hence, it is widely utilized in laboratory settings. However, importantly, this method may leave behind residual 
PEG, which could impact certain downstream experiments or therapeutic applications and must be carefully considered.

Ultrafiltration
Ultrafiltration is another commonly used technique for isolating PELNs from plants. This method utilizes membrane 
filters (with pore sizes typically ranging from 100 to 300 nanometres) to perform molecular sieving, removing cellular 
debris and larger particulate matter, thereby yielding relatively pure extracellular vesicles. Research in Pueraria lobata 
has shown that after the supernatant is filtered through a 0.22 μm membrane to remove large debris, followed by 
centrifugation, edible exosome-like nanovesicles can be obtained.60 The ultrafiltration method is relatively simple to 
perform, requires no complex instrumentation, and does not introduce exogenous substances, as is the case for PEG 
precipitation. However, this method has certain limitations in terms of large-scale application and achieving high purity.

Size Exclusion Chromatography
Size exclusion chromatography (SEC) is a commonly used chromatographic technique that can also be employed to 
separate PELNs. Size exclusion chromatography separates molecules in a sample the basis of their size as they pass 
through a matrix, typically a porous gel or gel beads. Larger molecules are eluted more rapidly from the matrix, while 
smaller molecules experience greater hindrance and elute more slowly, establishing the basis of the molecular separation. 
Studies have shown that size exclusion chromatography can be used to isolate exosome-like nanovesicles from 
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cabbage.61 Size exclusion chromatography offers a method for the separation of high-purity PELNs under mild 
conditions. However, it has drawbacks such as operational complexity, the need for specialized equipment, and sample 
loss/low recovery rates.

Capillary Channel Polymer (C‒CP) Separation
Capillary channel polymer (C-CP) technology is an emerging method used for the separation and capture of PELNs. This 
approach utilizes microfluidics technology and polymer materials to create microscale capillary channels, enabling the 
efficient separation of PELNs through these channels. The C-CP method has been used to isolate exosome-like 
nanovesicles from common fruits and vegetables.62 C-CP technology features high throughput, high efficiency, and 
miniaturization, allowing the separation and capture of PELNs at microscale. This method has potential applications in 
PELNs research, aiding researchers in gaining a better understanding of the composition and functions of exosomes; 
however, it exhibits low recovery rates. Importantly, as C-CP technology is still in the developmental stage, it lacks 
standardization, and further experimental validation and optimization are required to ensure its stability and reliability in 
the isolation of PELNs.

Each of these methods has its own advantages and disadvantages, and the choice of method depends on the nature of 
the PELNs of interest, the research objectives, and the laboratory’s equipment and technical capabilities. When studying 
PELNs, it is usually necessary to consider each of these methods and select the most suitable separation method based on 
specific circumstances.

PELNs Composition
PELNs may contain a variety of biomolecules, and their composition varies depending on the plant species, tissue type, 
growth conditions, and physiological status. However, these components typically include the following constituents 
(Figure 1): i. Proteins. PELNs contain a variety of proteins, including structural proteins, signalling proteins, and regulatory 
proteins. These proteins play crucial roles in intercellular communication and signal transduction.63,64 ii. Nucleic acids. 
PELNs may contain nucleic acid molecules such as DNA, mRNA, and miRNA. These nucleic acids might play a role in 
regulating gene expression, thereby influencing cellular functions and biological processes.49,65,66 iii. Lipids. The lipid 
components of PELNs include membrane lipids and free phospholipids, which may play crucial roles in the organization 
and regulation of cell membrane structure and function.33,63,67 iv. Other small molecules. PELNs may also contain other 
small molecules, such as vitamin C, ions, polysaccharides, oligosaccharides, and metabolites.40,53,63,67,68

The components of PELNs, such as proteins and lipids, exhibit a degree of similarity to those found in mammalian 
cells, which reduces the likelihood of their being recognized as foreign substances by the host immune system.63 The 
bilayer lipid membrane of PELNs offers excellent physical stability, maintaining the integrity of their contents and 
allowing them to effectively withstand environmental changes.27

The specific composition of PELNs varies among different types of plant cells and under different environmental 
conditions and greatly influences their biological functions and effects. Therefore, research on the composition of PELNs 
is of great importance.

Role of PELNs in Chronic Wound Healing
The current most common types of chronic wounds are as follows: i. Diabetic foot ulcers. These ulcers, which occur on 
the feet of diabetic patients, can easily develop into chronic wounds due to neuropathy, poor blood circulation, and 
infection associated with diabetes.69,70 ii. Venous leg ulcers. Poor venous circulation in the lower extremities causes 
tissue ischaemia and hypoxia, leading to ulcers that are difficult to heal.71 iii. Arterial leg ulcers. Inadequate blood supply 
to the lower limbs results in tissue ischaemia, necrosis, and the formation of ulcers that are difficult to heal.72 iv. 
Radiation ulcers. Skin damage and chronic wounds caused by radiation therapy are common in cancer patients who have 
undergone radiation treatment.73 v. Pressure ulcers. Prolonged pressure on the skin and tissues in patients who are 
bedridden or confined to a wheelchair causes localized damage that does not heal, resulting in chronic wounds.74 vi. 
Allergic eczema ulcers. Skin damage and ulceration caused by chronic skin inflammation or allergic reactions can have 
difficulty in healing.75
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Chronic wound healing is a relatively complex biological process that requires a closely coordinated cascade of 
responses to restore and repair the damaged site. These processes include cell proliferation and migration, inflammatory 
response, angiogenesis, granulation tissue formation, extracellular matrix deposition, and remodelling, ultimately com-
pleting the healing process.76–78 The mechanisms of action of PELNs in chronic wound healing are still under 
investigation, but some studies have suggested that they may involve the following mechanisms (Figure 2 and Table 2).

Promotion of Healing
PELNs components such as proteins, lipids, and nucleic acids can promote cell proliferation, migration, and differentia-
tion, aiding in the formation and repair of new tissue and thus accelerating the chronic wound healing process. One study 
showed that plant-derived exosome-like nanovesicles from Physalis peruviana fruit promote the proliferation and 
migration of human skin fibroblasts, upregulate the expression of type I collagen, and have the potential to promote 
the healing of chronic wounds.59 Furthermore, exosome-like nanovesicles from aloe vera peels enhanced the proliferation 
and migration of human keratinocytes and human fibroblasts and reduced the levels of reactive oxygen species (ROS) in 
human keratinocytes, indicating antioxidant effects and the ability to promote the healing of chronic wounds.79 Solanum 
lycopersicum (tomato)-derived exosome-like nanovesicles induced the migration of human keratinocytes and mouse 
fibroblasts, promoting wound healing, suggesting their potential therapeutic effects in chronic wound healing.80 Finally, 
Grapefruit-derived exosome-like nanovesicles have been shown to increase cell viability and migration in human 
epidermal keratinocytes, indicating their potential to promote chronic wound healing.81

Figure 1 The composition of PELNs. 
Abbreviation: PELNs, plant-derived exosome-like nanovesicles.
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Anti-Inflammatory Effects
Certain components of PELNs may possess anti-inflammatory properties, helping to reduce the inflammatory response in 
wounds and create a more favourable microenvironment for chronic wound healing. Currently, researches have shown 
that exosome-like nanovesicles derived from Lemon,89 Cabbage,61 and Turmeric,90 have anti-inflammatory effects. In 
addition, Aloe vera peel-derived exosome-like nanovesicles reduced the expression of the proinflammatory cytokines 
TNFα, IL-1β, and IL-6, demonstrating anti-inflammatory properties that are beneficial for chronic wound healing,43 and 
pomegranate-derived exosome-like nanovesicles have exhibited anti-inflammatory effects that are beneficial for the 
healing of chronic wounds.82 Further, Dendrobium-derived exosome-like nanovesicles can inhibit IL-1β expression in 
mouse wounds, exhibiting anti-inflammatory effects and promoting wound healing.83

Promotion of Angiogenesis
Certain components in PELNs may promote angiogenesis, which helps improve the blood supply to the wound and 
facilitates healing. Researches have shown that PELNs from Grapefruit,81 Aloe saponaria,50Wheat84 and Ginseng85 

enhance the tube formation capability of human umbilical vein endothelial cells (HUVECs), promote angiogenesis and 
exhibit the potential to facilitate the healing of chronic wounds.

Modulating the Immune Response
Some PELNs components may have immunomodulatory effects, helping to balance immune responses, reduce inflam-
matory reactions, and lower the risk of complications during the wound healing process. Research has shown that PELNs 

Figure 2 The role of PELNs in chronic wound healing. 
Abbreviation: PELNs, plant-derived exosome-like nanovesicles.

https://doi.org/10.2147/IJN.S485441                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 11298

Wu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


from Catharanthus roseus can promote macrophage polarization and lymphocyte proliferation, alleviate leukopenia and 
bone marrow cell cycle arrest in immunosuppressed mice, and have an immunomodulatory effect.86 Other studies 
showed that PELNs from edible Pueraria lobata60 and Turmeric87 can promote M2 polarization of macrophages, 
exerting immunomodulatory and anti-inflammatory effects, and subsequently facilitate wound healing in diabetes.

Antibacterial Activity
Certain PELNs components may possess antibacterial activity, helping to reduce bacterial infections in chronic wounds 
and thereby improve the success rate of wound healing. Research has shown that dandelion-derived exosome-like 
nanovesicles possess antibacterial activity and can neutralize staphylococcal exotoxins, reduce bacterial infections, and 
expedite the healing of chronic wounds.88

These mechanisms of action may interact through multiple pathways, contributing to the improvement of chronic 
wound healing, accelerating the healing process, reducing healing time, and minimizing the occurrence of complications. 
Notably, there are still unknowns regarding the possible role of PELNs in chronic wound healing. Further research is also 
needed to elucidate the underlying molecular mechanisms involved.

Table 2 The Role of PELNs in Chronic Wound Healing

Mechanisms of 
role

Plant Sources In Vitro and (or) Vivo Effects References

Promotion of 

healing

Physalis peruviana HDF Elevated HDF proliferation and migration; Upregulated 

collagen I

[59]

Aloe HDF; HaCaT Reduced ROS levels in HaCaT; Enhanced migration 
ability of HaCaT and HDF

[79]

Tomato 
Grapefruit

HaCaT; mouse 

fibroblasts (NIH-3T3) 
HaCaT

Increased cell migration of HaCaT and NIH-3T3 

Increased cell migration of HaCaT

[80] 

[81]

Anti-inflammatory 

effects

Aloe RAW264.7 

macrophages; HaCaT

Anti-inflammatory potential in macrophages and 

keratinocytes; Decreased the secretion of pro- 
inflammatory cytokines TNFα, IL-1β, and IL-6. 

[43]

Pomegranate Monocytic cell (THP-1); 

Intestinal cell (Caco-2)

Anti-inflammatory effects in vitro cultures of THP-1 

and Caco-2 cell lines

[82]

Dendrobium C57BL/6J mice Suppressing IL-1β expression [83]

Promotion of 
angiogenesis

Grapefruit HUVECs Increased the tube formation capabilities of HUVECs [81]
Aloe HUVECs Enhanced tube formation in HUVECs [50]

Wheat HUVECs Increased tube-like structure formation of the 

HUVECs

[84]

Ginseng HUVECs; ICR mice Enhanced the migration and angiogenesis in HUVECs; 

Facilitated skin wound healing in mouse

[85]

Modulating the 
immune response

Catharanthus roseus RAW264.7 
macrophages; primary 

spleen lymphocytes; 

BALB/c mice 

Promoted the polarization of macrophages and 
lymphocyte proliferation; Alleviated white blood cell 

reduction and bone marrow cell cycle arrest in 

immunosuppressive mice

[86]

Pueraria lobata Peritoneal macrophages Promote M2 macrophage polarization [60]

Turmeric RAW 264.7 

macrophages; C57BL/6J 
mice

Regulate macrophage polarization and advance the 

healing process

[87]

Antibacterial 

activity

Dandelion Staphylococcus aureus; 

mouse RBCs; ICR mice

Binding to Staphylococcus aureus exotoxins; Showing 

detoxification effect in vivo

[88]

Abbreviations: PELNs, plant-derived exosome-like nanovesicles; HDF, human dermal fibroblast; HaCaT, Human keratinocytes; HUVECs, Human umbilical vein endothelial 
cells; RBCs, red blood cells; ROS, reactive oxygen species; TNFα, tumor necrosis factor α; IL-1β, interleukin-1β; IL-6, interleukin-6.
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Conclusions and Future Perspective
PELNs can promote the healing of chronic wounds through mechanisms such as enhancing cell proliferation and 
migration, exerting anti-inflammatory effects, promoting angiogenesis, modulating immune responses, and providing 
antibacterial activity. Additionally, factors such as the isolation and purification methods used and the variations in 
PELNs components can influence their ability to promote chronic wound healing. PELNs hold great promise for research 
and applications in chronic wound healing; however, there remain challenges such as standardization, purity, yield of 
isolation and storage, as well as a lack of clarity regarding their functional mechanisms and biosafety.86,91,92. 

Collaborating with the International Organization for Standardization to promote the standardization of PELNs, thereby 
establishing globally recognized standards, is considered a viable approach for the standardization of PELNs.93 

Optimizing extraction techniques, improving separation methods, and automating production for scale-up are strategies 
to enhance the purity and yield of PELNs.94 PELNs can be refrigerated at 4°C, which is suitable for temporary 
storage.51,95 PELNs are stored in a −80°C to maintain their activity and stability.51,96 Lyophilization of PELNs is 
considered beneficial for long-term preservation and reducing the risk of degradation during transport and storage.51,97 

Clarifying the functional mechanisms and biosafety of PELNs requires long-term scientific research and assessment.98 In 
the future, with continuous research efforts and technological advancements, we anticipate that these challenges will be 
gradually overcome, harnessing the immense potential of PELNs in the field of chronic wound healing and enabling their 
widespread application.
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