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Abstract

Growth differentiation factor 15 (GDF15) is a strong predictor of cardiovascular events and

mortality in individuals with or without cardiovascular diseases. Single nucleotide polymor-

phisms (SNPs) in microRNA (miRNA) target sites, also known as miRSNPs, are known to

enhance or weaken miRNA-mRNA interactions and have been linked to diseases such as

cardiovascular disease and cancer. In this study, we aimed to elucidate the functional signif-

icance of the miRSNP rs1054564 in regulating GDF15 levels. Two rs1054564-containing

binding sites for hsa-miR-873-5p and hsa-miR-1233-3p were identified in the 30 untranslated

region (UTR) of the GDF15 transcript using bioinformatics tools. Their activities were further

characterized by in vitro reporter assays. Bioinformatics prediction suggested that miRNA

binding sites harboring the rs1054564-G allele had lower free energies than those with the

C allele and therefore were better targets with higher affinities for both hsa-miR-873-5p

and hsa-miR-1233-3p. Reporter assays showed that luciferase activity was significantly

decreased by rs1054564-G-containing 30 UTRs for both miRNAs (P < 0.05) and was

restored by miRNA inhibitors. Comparing the fold suppression of the two miRNAs, only that

of hsa-miR-1233-3p showed significant changes between the rs1054564-G- and C-contain-

ing 30 UTRs (P = 0.034). In addition, western blots showed that transfection of both miRNA

mimics significantly decreased endogenous GDF15 expression in a melanoma cell line

(P < 0.05). Taken together, our findings demonstrate that GDF15 is a target of hsa-miR-

873-5p and hsa-miR-1233-3p and that the rs1054564-C allele partially abolishes hsa-miR-

1233-3p-mediated translational suppression of GDF15. These results suggest that

rs1054564 confers allele-specific translational repression of GDF15 via hsa-miR-1233-3p.

Our work thus provides biological insight into the previously reported clinical association

between rs1054564 and plasma GDF15 levels.
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Introduction

Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β
cytokine superfamily and its expression is low in all organs under normal conditions but

increases in response to stress signals in adults [1]. GDF15 is secreted by cells in response to

ischemia, proinflammatory cytokine stimulation, and oxidative or mechanical stress [1], and it

diffuses rapidly via circulation [2]. Circulating GDF15 levels have been used to predict disease

progression in cancer, cardiovascular disease, chronic renal and heart failure, and pulmonary

embolism [3]. GDF15 is also a strong predictor of cardiovascular, non-cardiovascular, and all-

cause mortality in community-dwelling and disease populations [4]. Although GDF15 appears

to have anti-inflammatory and antiapoptotic effects in the heart [5], the co-localization of

GDF15 with apoptotic markers in active macrophages suggests it may have proinflammatory

effects. Thus, it remains unknown whether GDF15 is a simple biomarker or whether it is an

active protective or detrimental mediator of cardiovascular events. Previous studies have

shown associations between GDF15 levels and genetic polymorphisms, clinical parameters,

and levels of circulating metabolic and inflammatory markers, albeit with controversial results

[6–11].

MicroRNAs (miRNAs) are a class of single-stranded, endogenous, non-coding RNAs of

approximately 22 nt that play vital regulatory roles in animals and plants by targeting mRNAs

for degradation or translational repression [12]. It is estimated that an average miRNA has

approximately 100–200 target sites, and a large fraction (~30%) of protein-coding genes

appear to be regulated by miRNAs. Recent studies have shown crucial correlations between

single nucleotide polymorphisms (SNPs) in miRNA-related pathways and many pathological

conditions [13–16]. SNPs in microRNA (miRNA) target sites, also known as miRSNPs, in the

30 untranslated regions (UTRs) of target genes, in particular, represent a specific mode of con-

trol of genetic information amplification, whose dysregulation may lead to substantial differ-

ences in posttranscriptional gene expression. By definition, miRSNPs in the seed sequence

(i.e., the region of base-pairing between nucleotides 2–8 of the miRNA and the complementary

sequence in the target mRNA) can create, destroy, or modify miRNA–mRNA binding [17–

19], and as a result, these function as gain- or loss-of-function mutations. Whereas gain-of-

function mutations in 30 UTRs create new miRNA target sites and attenuate protein transla-

tion, loss-of-function mutations in 30 UTRs reduce or abolish miRNA–mRNA interactions

and augment protein expression. For example, a mismatch in the seed sequence pairing of

miR-22 and its target site in the TNFAIP8 30 UTR has been shown to abolish translational

repression of TNFAIP8 [20].

Owing to their potential to alter protein translational efficiency, miRSNPs are likely to con-

tribution to phenotypic variation and disease susceptibility. Several studies have used compu-

tational approaches to predict miRSNPs in the genome, and significant associations between

these miRSNPs and respective protein levels or related disease traits have been found [20–24].

However, it is difficult to prove that these associations are not instead due to linkage disequi-

librium with other SNPs or some other mechanisms. Although increasingly sophisticated

computational tools to predict miRSNPs are becoming available, target prediction still remains

a major challenge and requires in vitro experiments for functional validation.

Among the SNPs near the 30 UTR of the GDF15 locus, rs1054564 showed the most signifi-

cant association with circulating GDF15 levels [25, 26]. The Framingham study also revealed

that rs1054564 was associated with cis-gene expression of PGPEP1 and LRRC25 in blood cell

lines and lower circulating HDL cholesterol levels [9]. Ek et al. [27] further indicated that

genetically increased GDF15 levels, such as via GDF15 SNP rs1054564, directly influence
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methylation levels at several CpG sites. The aim of this study was to determine if specific miR-

NAs are capable of regulating GDF15 expression via translational repression.

Materials and methods

In silico analyses

MirSNP (http://cmbi.bjmu.edu.cn/mirsnp), a publicly available online database, is a collection

of human SNPs in predicted miRNA–mRNA binding sites. Analyses of the miRNA binding

sites in the GDF15 30 UTR were performed using microRNA.org (http://www.microrna.org/

microrna/home.do) and TargetScan (http://www.targetscan.org/). We used the NCBI database

of SNPs (dbSNP; http://www.ncbi.nlm.nih/gov/SNP) to obtain information about genetic vari-

ations. Using these bioinformatics tools, we identified two miRNAs, hsa-miR-873-5p and hsa-

miR-1233-3p, that potentially bind to a stretch of sequence harboring rs1054564 in the 30 UTR

of GDF15. The miRNA–target binding structures and energies were predicted using RNAhy-

bird (http://bibiserv.techfak.uni-bielefeld.de/rnahybird).

Construct

A genomic DNA fragment of the GDF15 30 UTR was amplified by PCR from one individual

who was heterozygous for rs1054564 in our previous association study [26]. The upstream and

downstream primers used were 50-ACTAGCTGCATATGAGCAGTCCTGGTCC-30 and 50-
AAGCTTCACCACAGGGAACAGTTCAG-30, which were tagged with the SpeI and HindIII
restriction enzyme sites (underlined), respectively. PCR products were subcloned into the

pCR12.1 vector (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s protocol. Plas-

mid DNA was subsequently isolated from recombinant colonies and sequenced to ensure

accuracy. The GDF15 30 UTR inserts were then extracted by SpeI/HindIII digestion, gel-puri-

fied, and subcloned into the SpeI/HindIII site of pMIR-REPORT™ (Ambion) downstream of

the firefly luciferase reporter gene. The validity and orientation of the inserts relative to the

luciferase gene were confirmed by sequencing.

Cell culture

Human embryonic kidney HEK293T (from Dr. Tzung-Chieh Tsai) and melanoma A2058 cell

lines (Food Industry Research and Development Institute, Taiwan) were maintained in Dul-

becco’s modified Eagle’s medium (Invitrogen) supplemented with 10% fetal bovine serum

(HyClone Laboratories, Logan, UT, USA), 80 units/ml penicillin, 80 μg/ml streptomycin, and

0.0175 mg/ml L-proline (Sigma).

Transfection and luciferase assay

Mimics and inhibitors for hsa-miR-873-5p and hsa-miR-1233-3p as well as miRNA negative

control #1 were obtained from Ambion (Carlsbad, CA, USA). Cells were plated in a 24-well

plate and grown to 80–90% confluence. Firefly luciferase constructs (500 ng) were cotrans-

fected with 20 nM mimic miRNAs with or without Ambion1 Anti-miR™ miRNA inhibitors

into HEK293T cells using Lipofectamine 2000 (Invitrogen). To monitor transfection effi-

ciency, cells were additionally cotransfected with 50 ng pRL-TK (Promega, Madison, WI,

USA), which encoded the Renilla luciferase. Luminescence was measured 48 h after transfec-

tion using a dual-luciferase reporter assay system (Promega). All transfections were per-

formed in triplicate, and data were analyzed by normalizing firefly luciferase activity with that

of the Renilla luciferase for each sample. Each construct was tested in three independent

transfections.
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Western blot

Equal amounts of total cell lysate proteins were loaded, separated by 10% SDS-PAGE, and

transferred to polyvinylidene difluoride membranes. Membranes were incubated with primary

antibodies against GDF15 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h and sub-

sequently with horseradish peroxidase-conjugated secondary antibodies for 1 h. Band densities

were detected by ECL chemiluminescence (Amersham Biosciences, Buchs, Switzerland) as

described by the manufacturer. Tubulin (Cell Signaling Technology, Beverly, MA, USA) was

used as an internal control. Images were scanned with a master imager (Microtek ScanMaker

9800XL, Shanghai, China) and semi-quantified with Photoshop 7.0 (Adobe, San Jose, CA,

USA).

Statistical analyses

All statistical analyses were performed using the SPSS 12.0 statistical software package (SPSS,

Chicago, IL, USA). Relative luciferase activity data are presented as means ± SD and were ana-

lyzed with Student’s t-test. All P-values reported are two-sided. P < 0.05 was considered statis-

tically significant.

Results

Rs1054564 is located in the predicted binding sites of hsa-miR-873-5p

and hsa-miR-1233-3p in the GDF15 30 UTR

Using a publicly available online database, MirSNP (http://cmbi.bjmu.edu.cn/mirsnp), hsa-

miR-873-5p was identified as the only conserved miRNA predicted to bind to the GDF15 30

UTR in the region containing rs1054564 with a good mirSVR score (-0.1265) (Table 1). The

prediction indicated an enhanced binding activity based on the rs1054564-G allele adjacent to

the 30 end of the conserved non-seed region of hsa-miR-873-5p (Fig 1). In order to search for

other possible miRNAs that could involve rs1054564, we further used two miRNA target pre-

diction tools, MiRanda and TargetScan. A non-conserved miRNA, hsa-miR-1233-3p, was

predicted to bind to the GDF15 30 UTR in the region that contains rs1054564 with a low

mirSVR score (-0.0096) (Table 1), and rs1054564 was located inside the hsa-miR-1233-3p seed

sequence (Fig 1).

Predicted structures and binding energies of miRNA–target duplexes

To determine the potential of rs1054564 alleles to alter predicted miRNA–mRNA interactions,

we conducted in silico hybridization between the predicted miRNAs and GDF15 30 UTRs

Table 1. Prediction results of miRNAs targeting the GDF15 30 UTR SNP rs1054564.

Gene SNP Allele miRNA Conserveda mirSVRb Energyc Scored Seed region

GDF15 rs1054564 G hsa-miR-873-5p yes -0.1265 -28.4 97 no

C -26.0

G hsa-miR-1233-3p no -0.0096 -27.1 89 yes

C -21.4

aConservation information among vertebrates from microRNA.org
bmirSVR score of binding site from microRNA.org
cFree energy of miRNA–mRNA duplex from RNAhybird
dPredicted score of miRNA–mRNA binding by TargetScan. The higher the score the more stable the binding.

https://doi.org/10.1371/journal.pone.0183187.t001
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containing the major or minor allele of rs1054564. The affinity between each miRNA and its

target sequence can be assessed by computing the minimal free energy of the double-stranded

RNA hybrid [28], and this allowed us to compare the stabilities of the miRNA-target interac-

tions among hybrids with different rs1054564 alleles. The program RNAhybrid (http://

bibiserv.techfak.uni-bielefeld.de/rnahybrid/) was used to evaluate the Gibbs free energy (ΔG,

expressed as kcal/mole) for each rs1054564-containing 21-mer target sequence hybridized to

the miRNA of interest. RNAhybrid determined the most favorable hybridization site for each

miRNA and subsequently computed the hybridization energy and a potential base-pairing

pattern.

The predicted minimal folding energies of the hsa-miR-873-5p- and hsa-miR-1233-3p-tar-

get duplexes differed for the rs1054564-G and -C alleles (−28.4 vs. −26.0 kcal/mole for the hsa-

miR-873-5p-rs1054564-G and -rs1054564-C duplexes respectively, and −27.1 vs. −21.4 kcal/

mole for the hsa-miR-1233-3p-rs1054564-G and -rs1054564-C duplexes, respectively) (Fig 2).

The lower minimal folding energies of the rs1054564-G-containing duplexes indicated more

stable binding of hsa-miR-873-5p and hsa-miR-1233-3p to the target mRNA and hence more

efficient translational repression of the rs1054564-G-containing GDF15 transcript. The differ-

ence in Gibbs free energy (ΔΔG) between rs1054564-G- and -C-containing hsa-miR-1233-3p–

mRNA hybrids (−5.7 kcal/mole) was lower than that between rs1054564-G- and -C-containing

hsa-miR-873-5p–mRNA hybrids (−2.4 kcal/mole), suggesting a more pronounced effect of

rs1054564 variation on the mRNA-hsa-miR-1233-3p interaction than on the mRNA-hsa-miR-

873-5p interaction.

Fig 1. Schematic of GDF15 mRNA harboring putative miR-873-5p/miR-1233-3p binding sites and SNP

rs1054564 G>C in the 30 UTR. Alignment shows the GDF15 30 UTR variant rs1054564 G>C region with the

miRNA hsa-miR-873-5p and hsa-miR-1233-3p motifs. The location of the rs1054564 G>C polymorphism is

designated with an arrow in the sequence alignment. Allele G forms a Watson-Crick base-pair with C in the

miRNAs (solid line), whereas allele C does not (no line). The seed regions of both miRNAs are designated

with an open box. The dots between the base pairs G:U represent GU wobble pairs.

https://doi.org/10.1371/journal.pone.0183187.g001
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Functional analyses of rs1054564

To examine whether the rs1054564 variants affected the translational regulation of the GDF15

protein, we generated luciferase reporter constructs containing the GDF15 30 UTR with differ-

ent rs1054564 alleles. These constructs were designated as pMIR-G and pMIR-C, containing

the rs1054564-G and -C alleles, respectively. These constructs were cotransfected with either a

scrambled or a mimic miRNA of interest into HEK293T cells. Compared with the results of

the scrambled miRNA control, luciferase expression was significantly reduced following trans-

fection with either pMIR-G or pMIR-C in the presence of hsa-miR-873-5p (63.2% decrease for

pMIR-C, P = 0.041; 64.5% decrease for pMIR-G, P = 0.0013) (Fig 3A). However, in the pres-

ence of hsa-miR-1233-3p, expression was only reduced following transfection with pMIR-G

(42.1% decrease, P = 0.008) (Fig 3B). In other words, while hsa-miR-873-5p suppressed lucifer-

ase expression of both constructs, resulting in a 1.7% difference in the fold-changes between

the constructs (P> 0.05) (Fig 3C), hsa-miR-1233-3p only significantly suppressed luciferase

expression from pMIR-G, resulting in a 20.1% difference in fold-changes between the two con-

structs (P = 0.034) (Fig 3D). We further used miRNA inhibitors to assess whether the transla-

tional suppression was indeed caused by the respective miRNAs, and both miRNA inhibitors

fully reversed this suppression. Our data thus indicate that hsa-miR-1233-3p may preferen-

tially target the GDF15 30 UTR carrying the major rs1054564-G allele for translational

suppression.

GDF15 protein levels are regulated by both hsa-miR-873-5p and hsa-

miR-1233-3p

To determine the effect of hsa-miR-873-5p and hsa-miR-1233-3p on endogenous GDF15 pro-

tein expression, we transfected the two mimic miRNAs into the A2058 melanoma cell line.

Fig 2. In silico analysis of the pairing of miR-873-5p and miR-1233-3p to the binding site in the 30 UTR

of GDF15 showing the effect of the minor allele of rs1054564 on the hybrid structures formed between

hsa-miR-873-5p/hsa-miR-1233-3p and the GDF15 30 UTR. Allele C disrupts the stem part of the typical

stem-loop RNA folding structure. The arrow indicates the SNP site in the GDF15 30 UTR in each folding

structure.

https://doi.org/10.1371/journal.pone.0183187.g002
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Western blot showed that both hsa-miR-873-5p and hsa-miR-1233-3p significantly downregu-

lated GDF15 protein levels (42.7% decrease by hsa-miR-873-5p, P = 0.018; 26.7% decrease by

hsa-miR-1233-3p, P = 0.030). This effect was significantly reversed by treatment with corre-

sponding miRNA inhibitors (Fig 4). However, downregulation of GDF15 expression by hsa-

miR-873-5p was more effective than that by hsa-miR-1233-3p.

Our findings demonstrate that GDF15 is a target of hsa-miR-873-5p and hsa-miR-1233-3p

and that the rs1054564-C allele partially abolishes hsa-miR-1233-3p-mediated translational

suppression of GDF15.

Discussion

In this study, we discovered that both hsa-miR-873-5p and hsa-miR-1233-3p repressed endog-

enous GDF15 translation in a melanoma cell line, indicating that the GDF15 transcript is

Fig 3. Mimic miRNAs regulate human GDF15 30 UTR expression in human HEK293T cells. Results of luciferase reporter activity were analyzed by

Student’s t-test and are expressed as mean ± SEMs. (A) Effect of mimic miR-873-5p. (B) Effect of mimic miR-1233-3p. (C) Difference in net suppressive

effect of mimic miR-873-5p between rs1054564 alleles G and C. (D) Difference in net suppressive effect of mimic miR-1233-3p between rs1054564 alleles

G and C.

https://doi.org/10.1371/journal.pone.0183187.g003
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indeed a target of these miRNAs. Moreover, we are the first to report that variants of the SNP

rs1054564 differentially regulate hsa-miR-1233-3p-mediated translational repression. Higher

luciferase expression and weaker binding to hsa-miR-1233-3p tentatively suggest that individ-

uals carrying the minor rs1054564-C allele may exhibit elevated GDF15 protein expression.

Under pathological conditions like chronic systemic inflammation where GDF15 levels are

already high [29–31], the presence of this C-allele may predispose carriers to an even greater

risk of undesirable disease outcomes and poor prognoses.

Polymorphisms in miRNA target sites can affect the binding efficacy of miRNA. As a result,

they can alter target gene expression and may even contribute to the development of certain

Fig 4. Effect of hsa-miR-873-5p and hsa-miR-1233-3p mimic miRNAs on GDF15 protein expression in human melanoma A2058 cells.

Endogenous GDF15 was suppressed by both mimic miRNAs and restored by miRNA inhibitors. Data represent expression levels relative to those of

control samples and indicate the mean of three independent experiments; error bars indicate SE. p-values were determined by a Student’s t-test, and

* denotes a p-value < 0.05.

https://doi.org/10.1371/journal.pone.0183187.g004
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diseases. In fact, a number of studies have already reported associations between miRSNPs and

human diseases [32–38]. Most of these studies focused on miRSNPs within the target sequence

complementary to the seed region of the conserved miRNAs, as a mismatch between the two

sequences in this region can alter miRNA-target interactions. For instance, Yuan et al. identi-

fied anMMP-9 SNP, rs1056628, that was located in theMMP-9 30 UTR region complementary

to the miR-491 seed sequence and that contributed to an increased risk of atherosclerotic cere-

bral infarction by increasing MMP-9 expression through destruction of a miR-491 target site

[34]. Moreover, Saba et al. showed that SNP rs9291296 is located in the 3’ UTR of gamma-ami-

nobutyric acid receptor subunit alpha-4 in a region complementary to the seed sequence of

miR-26a-5p. This SNP strengthens miR-26a-5p binding by creating a target site and was

found to be associated specifically with degenerating neurons, such as prion disease and other

neurodegenerative disorders [35].

In the current study, we identified a non-conserved miRNA, hsa-miR-1233-3p, the binding

affinity of which was significantly affected by miRSNP rs1054564. Functional data showed that

luciferase expression was only significantly reduced by the rs1054564-G allele, implying that

the rs1054564-C allele destroys a target site in the GDF15 30 UTR complementary to the seed

region of hsa-miR-1233-3p. It is worth noting that hsa-miR-1233-3p may play a significant

role in the regulation of GDF15, even though its lower ranking score from the prediction tools

reflected a lack of evolutionary conservation. Indeed, two recent studies have identified and

validated significant roles of non-conserved miRNAs [37, 39]. Cui et al. [39] showed that the C

allele of SNP rs2266788 destroys the miRNA hsa-miR-3201 binding site at in the APOA5 30

UTR, thereby increasing translation of APOA5 and subsequently increasing plasma APOA5

levels. In addition, Ryan et al. [37] identified a SNP that disrupted a novel binding site for

miR-516a-3p, leading to moderate increases in CXCR2mRNA and protein expression and

increased MAPK signaling that was associated with lung cancer risk. These results indicate

that non-conserved miRNAs and genetic polymorphisms can play potentially significant roles

in protein regulation.

As found in this study, several previous studies have identified two miRNAs regulating

gene expression via overlapping target sites that contain the same SNP [28, 39, 40]. Consistent

with our study, Minguzzi et al. found thatMTHFD1L SNP rs7646 creates a target site comple-

mentary to the seed region of miR-197 that contributes to hybrid stability; in contrast, SNP

rs7646 is located in a region complementary to the non-seed region of miR-9. Their results

demonstrated that rs7646 significantly affects miR-197 binding affinity, causing greater sup-

pression when miR-197 is bound toMTHFD1LmRNA containing the G allele rather than the

A allele. However, rs7646 did not cause any significant changes in miR-9 binding affinity.

Using computational modeling, we predicted and computed the minimal free energies of

the secondary structures of has-miR-873-5p and has-miR-1233-3p when bound to the GDF15
30 UTR containing either a G or C allele at SNP rs1054564. Because a SNP in this sequence

could influence the interactions of several miRNAs, the sum of the ΔΔG value was used to

assess the impact of this SNP. Landi et al. [41] proposed that the sum of the ΔΔG reflects the

influence of a SNP in the interactions between miRNAs and the target sequence. Namely, the

larger the sum of the ΔΔG of a SNP, the more likely it is to be a functional SNP. Our results

showed that rs1054564-C might significantly change the has-miR-1233-3p binding affinity,

causing a loss of the suppressive effect, whereas it results in only a mild change in the has-miR-

873-5p binding affinity. Thus, our data provide evidence that GDF15 is a direct miR-1233-3p

target and that the GDF15-associated SNP rs1054564 affects miR-1233-3p binding efficacy.

MiR-1233 has been found to play a role in a plethora of diseases. For example, it is a poten-

tial biomarker for cancer and cardiovascular disease [42–45], and its overexpression in pla-

centa significantly decreases the proliferation and invasive ability of trophoblasts in patients
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with hypertensive disorder complicating pregnancy [46]. Interestingly, while its expression

changes in opposite directions in patients with gastric cancer and renal cell carcinoma [42, 43],

it is consistently upregulated in patients with heart failure and acute pulmonary embolism [44,

45]. As higher GDF15 levels are also found in these patients [47], these results thus imply the

existence of a feedback mechanism in whichmiR-1233 transcription is increased in order to

compensate for elevated GDF15 levels under disease conditions.

Our results clearly indicate that hsa-miR-873-5p represses GDF15 translation regardless of

rs1054564 genotype. Although hsa-miR-873-5p and GDF15 levels appeared to be negatively

correlated in our in vitro assays, elevated hsa-miR-873-5p or GDF15 levels have been previ-

ously associated with different stages of cancer-like cell proliferation [48–50], metastasis [49,

51, 52], and chemoresistance [47, 53–55]. One reason for these findings is that hsa-miR-873-

5p represses the translation of several proteins in addition to GDF15, and this may in turn

increase the transcription or prolong the mRNA stability of GDF15. Furthermore, it is possible

that hsa-miR-873-5p and GDF15 are often not co-expressed in the same type of cancer. Simply

overexpressing miR-873-5p or GDF15 may therefore generate completely different results

depending on the cell type-specific machinery and underlying gene expression profiles of the

cancer cells in question [49,56]. Nevertheless, our combined results of hsa-miR-873-5p-medi-

ated repression of luciferase and endogenous GDF15 expression in two different cell types sug-

gest that miR-873-5p may represent a novel therapeutic target for the treatment of cancers that

exhibit increased activity of the GDF15 gene.

In addition to cancer, it has been reported that the chromosome 9p21 locus, wheremiR-
873-5p resides, is strongly associated with coronary artery disease (CAD) [57–63] and periph-

eral arterial disease (PAD) [64, 65]. Intriguingly, we have previously showed that GDF15 serves

as a prognostic factor for all-cause mortality in diverse human disorders including CAD and

PAD [26]. Based on the findings of this study, it is tantalizing to speculate that miR-873-5p

participates in CAD and PAD through cis-regulation of GDF15 expression. However, other

open reading frames in the vicinity of 9p21, including cyclin-dependent kinase inhibitor 2A/B,

may also contribute to these diseases [66]. Future studies are needed to determine whether

miR-873-5p plays a role in the cardiovascular system and whether it loses its ability to repress

GDF15 expression under pathological conditions.

There are several limitations to our study. First, we could not find a cell line heterozygous

for rs1054564 to examine the allelic differences in GDF15 translation. Second, we could not

detect endogenous hsa-miR-873-5p and hsa-miR-1233-3p expression in the cell lines used in

this study and therefore could not address their modes of interaction in greater detail. Third, a

suitable animal model was not available, hampering further investigation. Finally, the mecha-

nism by which hsa-miR-873-5p and hsa-miR-1233-3p regulate GDF15 translation is not yet

fully understood and requires further elucidation.

Conclusions

Our work delineates a comprehensive framework for miRNA-mediated translational repres-

sion of GDF15. We propose that in a certain percentage of the human population, the

rs1054564-C mutation weakens the hsa-miR-1233-3p binding site in the GDF15 30 UTR and

thereby increases the chances for higher GDF15 protein expression. This upregulation might

at least partially account for the strong associations between rs1054564 and elevated GDF15

levels reported in previous study [26]. Further investigations regarding the interactions

between the studied miRNAs and GDF15 levels and their involvement in the progression of

cardiovascular diseases and cancers should be interesting and may help to uncover novel ther-

apies against related complications.
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