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Power laws in pressure-induced structural change
of glasses
Huijun Zhang 1, Kaiyao Qiao 1 & Yilong Han 1✉

Many glasses exhibit fractional power law (FPL) between the mean atomic volume va and the

first diffraction peak position q1, i.e. va / q�d
1 with d≃ 2.5 deviating from the space dimension

D= 3, under compression or composition change. What structural change causes such FPL

and whether the FPL and d are universal remain controversial. Here our simulations show that

the FPL holds in both two- and three-dimensional glasses under compression when the

particle interaction has two length scales which can induce nonuniform local deformations.

The exponent d is not universal, but varies linearly with the deformable part of soft particles.

In particular, we reveal an unexpected crossover regime with d > D from crystal behavior (d=
D) to glass behavior (d < D). The results are explained by two types of bond deformation. We

further discover FPLs in real space from the radial distribution functions, which correspond to

the FPLs in reciprocal space.
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G lasses are amorphous solids and ubiquitous in our daily
life and in industry, but the understanding of glasses
remains a major challenge in science1,2. In particular,

microscopic structural changes in response to mechanical
deformation is poorly understood3–5. A well-known puzzle is the
fractional power law (FPL) in the reciprocal space of many
metallic glasses3,6, whose mechanism and generality remain
controversial3,6–9.

For crystals, the position of Bragg diffraction peaks is inversely
proportional to the lattice plane distances in real space, i.e. qj∝ 1/
a, where qj is the position of the jth peak of structure factor S(q)
and a is the lattice constant. Therefore the volume per atom
va / aD / q�D

1 must hold for a D-dimensional crystal. Surpris-
ingly, diffraction experiments for many metallic glasses show an
FPL in three dimensions (3D),

va / q�d
1 ; ð1Þ

with a fractional exponent d≃ 2.5 <D= 3 under composition
change6,8 or compression3,7,8. Recently, power laws with large
fluctuation of d were observed in glasses under compression and
composition change, which raises questions about the generality
of the FPL9. Here we summarize five open questions: (1) Does the
FPL generally hold in glasses? (2) Which factors affect the value
of d? (3) What is the origin of the FPL? The anomalous FPLs have
been attributed to atomic-scale fractal packing8 and medium-
range order6, but both explanations are derived from a single
state, not from a series of states as the FPL arises. Moreover,
further studies of metallic glasses did not reveal a fractal struc-
ture9. S(q1) contains structural information spanning broad
length scales in real space. It is therefore difficult to connect the
FPL concerning q1 in reciprocal space to certain structure changes
in real space. (4) How does the FPL change from crystal behavior
(d=D) to glass behavior (d <D)? It was not measureable before
because glasses were usually produced from supercooled liquids
instead of crystals2. (5) Does the FPL exist in two dimensions
(2D)? This question has not been explored. Dimensionality
strongly affects material properties and phase behavior. Recent
studies showed that 2D and 3D glasses are fundamentally similar,
but also differ in the local dynamics10–12. Here we try to answer
these five questions by systematically changing the parameters in
six systems in both 2D and 3D. To deepen our understanding of
the FPLs, we measure not only the glass regime, but also the
crossover to crystals.

Besides the FPL in reciprocal space, other structural power laws
have also been observed in real space, e.g. based on the distances
between neighbors in a granular glass13 and the correlations of
structural order parameters in supercooled liquids14. Whether the
FPLs in reciprocal space relate to certain power laws in real space
has not been explored. Here, we discover a new set of FPLs in real
space that correlates with the FPLs in reciprocal space.

Results
Six model systems. We perform simulations with three types of
binary particles in 2D and 3D, i.e. a total of six systems: hard/hard
spheres (Fig. 1a) in 2D (2DHH) and 3D (3DHH), spheres with
the Weeks–Chandler–Andersen (WCA) potential15 (Fig. 1c) in
2D (2DWCA) and 3D (3DWCA), and soft/hard spheres (Fig. 1e)
in 2D (2DSH) and 3D (3DSH)16. The three types of pair inter-
actions exhibit distinct deformation behavior, thus can help to
identify which type of structural change gives rise to the FPL. The
shoulder potential has been widely used to model metals, water,
silica, micelles and colloids17–21. The mixtures of soft/hard par-
ticles can mimic materials whose components have different
compressibilities such as alloy Ce75Al25 with soft Ce and hard Al
atoms22. We define the packing fraction ϕ as the volume fraction

of hard spheres and the hard cores of soft spheres. Generally,
when soft and hard particles are of the same size at low pressures,
they can form crystals16. As the pressure increases, an increasing
number of soft particles are compressed, resulting in finer-
grained polycrystals and eventually glasses (Supplementary
Fig. 1). Previously we resolved a sharp polycrystal-glass transition
which distinguishes fine-grained polycrystals and glasses in 2DSH
and 3DSH systems in ref. 16 Here we explore the crossover of the
power law from crystal behavior (d=D) to glass behavior (d <D)
for the first time. We systematically study the FPL by con-
tinuously tuning the fraction of soft particles η and the softness λ.

The systems contain N= 12,800 disks in a square box for the
2D case and 10,000 spheres in a cubic box for the 3D case. Each
state is directly compressed from a low-density liquid (see
Methods). Hence states under different pressures are uncorrelated
and the structural FPLs are not related to affine or non-affine
deformation. As a comparison, we also compressed the 2DSH
system step by step and obtained the same FPLs. The step by step
compression in 3DSH system yields similar FPLs in the crystal
and glass regimes, but different behaviors in the crossover regime.

Power laws in 2D systems. We calculate the structure factor

S q ¼ jqjð Þ ¼
XN
j¼1

eiq�rj
XN
k¼1

e�iq�rk
* +

N ð2Þ

from the positions of particles, r. q1 is measured from the Lor-
entzian fit of the first peak23.

Figure 1b, d, f shows that va / q�d
1 holds in the 2DHH,

2DWCA and 2DSH glasses. d≃D= 2 for the 2DHH and
2DWCA systems (Fig. 1b, d), indicating a uniform deformation
at all length scales like a crystal under compression. As hard disks
cannot overlap, the uniform deformation in the 2DHH glass
arises from squeezing the free volume of the gaps between
particles. The uniform deformation in the 2DWCA glass arises
from both the free-volume squeezing and the compression of
WCA particles. As small and large WCA particles have the same
softness characterized by the repulsive potential U(r) ~ r-12, their
size changes are proportional to each other, resulting in a uniform
deformation. By contrast, the shoulder potential has two length
scales which causes nonuniform deformation at the single-
particle length scale and gives rise to two distinct FPLs in
crossover and glass regimes (Figs. 1f and 2).

Unlike binary HH and WCA systems, SH systems can form
crystals at low pressures and glasses at high pressures. Figure 1f
shows three regimes of va / q�d

1 in the 2DSH system. In the
crystal regime, d= 1.95 ± 0.05≃D= 2, as expected. In the glass
regime, d= 1.36 < 2, similar to the FPLs with d < 3 in 3D metallic
glasses3,6. We find that the crossover regime can also be fitted by
an FPL with d= 4.6 (Fig. 1f).

The FPL in Fig. 1f is replotted in Fig. 2 as a function of packing
fraction ϕ,

q1 / ϕ1=d; ð3Þ
in order to compare the three power-law regimes with the five
regimes observed in refs. 16: 1 polycrystals at ϕ < 0.66 featuring
Hall–Petch behavior, i.e. the mechanical strength increases as the
crystalline grains become finer; 2 ultrafine-grained polycrystals at
0.66 < ϕ < 0.70 featuring inverse-Hall–Petch behavior24; 3 shadow
glass at 0.70 < ϕ < 0.76 featuring strong dynamics25; 4 low-density
glass at 0.76 < ϕ < 0.80; and 5 high-density glass at ϕ > 0.80. The
boundaries of these five regimes were identified from various
structural, dynamic, mechanical and thermodynamic quantities16.
Here the FPL provides new features at their boundaries: the three
power laws in Fig. 2 intersect at the boundary between the
Hall–Petch and inverse-Hall–Petch regimes and the boundary
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between the shadow and low-density glasses. In addition, the
minimum slope of q1 (ϕ) (black star in Fig. 2) coincides with the
boundary between the polycrystal and glass regimes identified via
other methods16. These results generally hold in other 2DSH
systems with different values of (η,λ). Hence the q1 (ϕ) curve
could provide empirical criteria to distinguish between
Hall–Petch and inverse-Hall–Petch regimes, and between
ultrafine-grained polycrystal and glass regimes, at least in 2DSH
systems.

The FPL in the crossover corresponds to a regime with
abnormally large compressibility (dashed curve in Fig. 2). The
low- and high-density glasses in Fig. 2 have been observed16,26

when the particle interaction has two length scales such as the
square-shoulder potential. Here we find that low- and high-
density glasses have the same d= 1.36 (Fig. 2), which is consistent
with the observation that both the low- and high-density metallic
glasses of Ce68Al10Cu20Co2 have the same FPL with d= 2.53.

Fraction of soft shells governing the FPL. 2DSH systems with
different values of η or λ similarly exhibit three power laws at the
crystal, crossover and glass regimes as shown in Fig. 3a, b,
respectively. The exponent d in the glass regime varies with η and
λ (Supplementary Fig. 2a, b). Interestingly, d decreases linearly
with the area fraction of the soft deformable part in the total area
of all the particles: X= η(λ2− 1)/λ2 (Fig. 3c). X describes the
amount of size mismatch available in the 2DSH system under
compression, which determines the amount of defects that can be
produced in the crystal and reflects the glass-forming ability of
2DSH crystals. We further measure three other systems, and all of
their d values lie on the linear d(X) as shown in Fig. 3c. Therefore,
we conclude that the soft deformable part governs d. A larger area
fraction of the soft part can produce more nonuniform defor-
mation under compression, thus d deviates more from D
(Fig. 3c). Compression-induced FPLs have been measured in two
types of metallic glasses based on La and Ce, e.g. La62Al14-
Cu11.7Ag2.3Ni5Co5 and Ce68Al10Cu20Co2. They both yield d≃
2.53,7, indicating that they have similar fractions of soft com-
pressible parts. In metallic glasses, Al, Cu, Ag, Ni and Co are
known to be hard-sphere-like atoms, while La and Ce are much
softer due to their localized electrons22,27. In fact, Ce can be
described by the square-shoulder potential17.

Extrapolating d to 2 and 1 gives X= 0.128 and 0.246,
respectively (Fig. 3c). These values correspond to η= 0.314 and
0.603 when λ= 1.3 (Fig. 3a), and λ= 1.16 and 1.40 when η= 0.5.
They coincide with the glass-forming regimes 0.30 ≤ η ≤ 0.60 for
λ= 1.3 and λ ≥ 1.16 for η= 0.5 observed in 2DSH systems16.
Beyond these regimes, systems either resemble a monodispersed
system (e.g. η < 0.30 or >0.60 at λ= 1.3; λ < 1.16 at η= 0.5),
or becomes a binary system with a large size ratio (e.g. λ > 1.4 at
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the compressibility (dashed curve).
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η= 0.5), which leads to phase separation28. Consequently,
systems beyond these regimes can only form large-grained
polycrystals instead of glasses even under the highest pressure16,
and the corresponding FPL does not exist in the glass regime
(Supplementary Fig. 3a, b).

FPLs near random-close packing. At the high-pressure limit,
almost all soft particles would be compressed so that the 2DSH
system becomes a 2DHH system with the same (η,λ) at the
random-close packing (RCP) point ϕRCP29. This is confirmed in
systems with various (η,λ) values. For example, the extrapolations
of q1 (ϕ) of 2DSH and 2DHH systems with the same
(η, λ)= (0.5,1.3) intersect at ϕ= 0.850≃ ϕRCP≃ 0.848 of binary
hard disks with diameter ratio 1.429 (Fig. 3d). To approach ϕRCP,
the rapid increase in q1 (ϕ) (i.e. d <D) in the glass regime needs to
be compensated by a slow increase in q1 (ϕ) (i.e. d >D) in the
crossover regime. More compressible parts (i.e. larger η or λ)
create a broader crossover regime with a stronger deviation from
the line of d= 2, hence a steeper q1 (ϕ) (i.e. smaller d) in the glass
regime is needed for the compensation as shown in Fig. 3a.

Power laws in 3D systems. Similar power laws are observed in
3D systems (Fig. 4), which further confirms that the FPL, d <D,
requires two length scales in the potential. 3DHH and 3DWCA
glasses exhibit the normal power laws with d= 3.0=D (Fig. 4a,
b) similar to their 2D counterparts (Fig. 1b, d). Similar to its 2D
counterpart, the 3DSH system also exhibits the crystal regime
with d= 3.0=D, the crossover regime with d= 4.03 >D and the
glass regime with d= 2.48 <D as shown in Fig. 4c. In contrast to
the continuous va (q1) curve in the 2DSH system (Fig. 1f), va (q1)

in the 3DSH system abruptly jumps at ϕ= 0.5 in Fig. 4c, coin-
ciding with the crystal-glass transition point (Fig. 4d). This is in
accordance with the observations in ref. 16 that the crystal-glass
transition is like first order in 3D and more continuous in 2D. If
the 3DSH system is compressed step by step, the crystal behavior
of the power law extends to the crossover regime and exhibits a
jump at the onset of the glass regime. Such protocol dependence
in the crossover regime should be due to the first-order-like
polycrystal-glass transition in 3D.

Theoretical explanation for the FPL. At thermal equilibrium, the
Helmholtz free energy F=U− TS is minimized. U is the internal
energy and S is the entropy related to the free volume30. For SH
systems, when a SS or SH-bond is compressed (Fig. 5a), ΔU=U0

and TΔS∝ TASS or TASH. Note that the configurational entropy is
neglected because we focus on the entropy change instead of
entropy when a bond is compressed in a given glassy config-
uration. Apparently, the compressed area ASS >ASH as shown in
Fig. 5a. Therefore, SS bonds will be compressed first as they
reduce F more effectively. Consequently, we expect three regimes.
At low pressures, the compressed volumes come from the gaps
between particles. Few SS or SH bonds have been compressed so
that the structure remains a crystal. At medium pressures, the
volume change mainly arises from the compressed SS bonds,
resulting in a more disordered structure. The nonuniform spatial
distribution of the compressed volume (Supplementary Fig. 4a)
causes d to deviate from D. At high pressures, almost all SS bonds
have been compressed so that further volume shrinkage is caused
solely by the compression of SH bonds. These compressions do
not occur randomly in space, but only in the previously
uncompressed areas (Supplementary Fig. 4b). This compensates
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for the deviation from D in crossover regime, consistent with the
result based on the RCP point in Fig. 3d.

The three stages are confirmed in Fig. 5b for the 2D case and
Fig. 5c for the 3D case. Interestingly, the three stages in Fig. 5b, c
coincide well with the crystal, crossover and glass regimes in
Figs. 2 and 4c, suggesting that the compressions of SS and SH
bonds are responsible for the crossover and glass regimes,
respectively. Figure 5b for the 2DSH system shows that the
crossover regime is dominated by the compression of SS bonds,
and the glass regime is dominated by the compression of SH
bonds. Figure 5c for the 3DSH system shows an abrupt increase
in the number of compressed SS bonds at ϕ= 0.5, which

coincides well with the sharp first-order-like crystal-glass
transition identified in Fig. 4d. In the crossover regime (0.50 <
ϕ < 0.58), both SS and SH bonds are compressed (Fig. 5c), and
their mixing effects result in a nearly power law in Fig. 4c. In the
glass regime (ϕ > 0.58), the number of compressed SS bonds is
saturated so that the deformation solely arises from the
compression of SH bonds (Fig. 5c). Therefore, glass and crossover
regimes have distinct FPLs.

As the crossover regime is dominated by the compression of SS
bonds (Fig. 5b), systems with the same λ and different values of η
should have the same d because the compression of one SS bond
has the same impact on Δϕ and Δq1. This is confirmed in Fig. 3a.
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For systems with different values of λ, compressing a SS bond
changes ϕ and q1 differently. Hence, the power laws in the
crossover regime show a different d, as confirmed in Fig. 3b.
Systems with a larger η have more SS bonds which gives rise to a
broader crossover regime (Fig. 3a). The large exponent, i.e. d >D,
implies that q1 (ϕ) increases much more slowly than it does in
crystals. This can be understood as the compressed SS bonds
reducing ϕ effectively, but affecting q1 much less as q1 is from the
average of all bonds. Note that the compressed SS bonds at the
highest pressure represent <20% of all bonds. In addition, a larger
λ gives a larger ASS, i.e. more change in ϕ than q1, therefore
yielding a larger d (Fig. 3b) in the crossover regime. For example,
suppose that compressing one large-λ SS bond and two small-λ SS
bonds results in the same Δϕ, but the structural deformation in
the former case is more localized in real space and thus less
effective in changing q1. As this effect gives d > D in the crossover
regime, the glass regime should have d < D for the compensation
to be able to reach the RCP point.

The above arguments about the SS- and SH-bond compres-
sions without using any simulation results have qualitatively
explained d >D in the crossover regime and d <D in the glass
regime, and d(λ) behaviors. The simulation results in this section
just provide consistency checks and are not necessary for the
theoretical explanations. Beside the above approach, next we
introduce another approach based on Eqs. 4 and 5 below. This
second approach needs simulation results to fully explain the
observations. Thus the first approach above provides a full
qualitative explanation, while the second approach below is just a
consistency check.

We further estimate the effects of SS and SH bonds on the FPL.
The FPL indicates that 1/d is the slope of ln~q1=ln~ϕ. ~q1 ¼ q1=q

0
1,

~ϕ ¼ ϕ=ϕ0 and q01 and ϕ0 are values of the initial single crystal
(Fig. 3a, b). Under compression, ~q1 is a function of the volume
change. In 2DSH systems, the volume change arises from the
squeezing of the free volume characterized by ~ϕ, and the
compression of the SS and SH bonds. Note that the compressed
volume from a SS or a SH-bond, i.e. ASS or ASH, is a constant at a
fixed λ (Fig. 5a), and thus their numbers, nSS and nSH as functions
of ~ϕ, determine the amount of volume change. Consequently,
~q1 ¼ ~q1ð~ϕ; nSS; nSHÞ, and the FPL becomes

1
d ¼ d ln ~q1

d ln ~ϕ
¼ ∂ ln ~q1

∂ ln ~ϕ

���
nSS;nSH

þ∂ ln ~q1
∂ nSS

���
~ϕ;nSH

∂nSS
∂ln~ϕ

þ∂ ln ~q1
∂ nSH

���
~ϕ;nSS

∂nSH
∂ ln ~ϕ

:
ð4Þ

The constant nSS and nSH in the first term describe the fixed
numbers of SS and SH bonds. Hence the compression solely
occurs from the free-volume change, which is similar to the
uniform compression of SH crystals or HH glasses. Thus,
1
d ¼ ∂ln~q1

∂ln~ϕ

���
nSS;nSH

¼ 1
D. The second and third terms denote the

contributions from SS and SH bonds, respectively. ln~q1 is
proportional to nSS and nSH in Supplementary Fig. 6a, and we
find a similar relationship in CucZr1−c using the data in ref. 31

(Supplementary Fig. 6b). Consequently, ∂ln~q1
∂nSS

���
~ϕ;nSH

and ∂ln~q1
∂nSH

���
~ϕ;nSS

are denoted by two constants CSS and CSH, respectively.
∂nSS
∂ln~ϕ

���
nSH

¼
dnSS
dln~ϕ

���
nSH

and ∂nSH
∂ln~ϕ

���
nSS
¼ dnSH

dln~ϕ

���
nSS
, as nSS and nSH only depend on ϕ.

Thus, the integration of Eq. 4 yields

ln~q1 ¼
1
D
ln~ϕþ CSSnSS þ CSHnSH: ð5Þ

Fitting ln~q1ðln~ϕÞ curves with Eq. 5 (Supplementary Fig. 7)
yields CSS < 0 and CSH > 0 (Fig. 5d), indicating that the

compressed SS and SH bonds increase and decrease d relative
to D, respectively. This is consistent with d >D in the crossover
regime dominated by compressing SS bonds and d <D in the
glasses regime dominated by compressing SH bonds (Figs. 3b and
5b). Moreover, CSS and CSH vanish at λ≃ 1.14 (Fig. 5d),
indicating d→D as λ decreases toward 1.14. This is consistent
with the fact that the 2DSH system cannot be compressed into a
glass at λ ≤ 1.1616.

Power laws in real-space g(r). Power laws have been observed in
real-space structures of amorphous states, e.g. the jth pair dis-
tance rj (ϕ) in a granular system13 and correlation functions of
structural order parameters in supercooled liquids14. These power
laws cast important light on the disordered structures, but are not
directly related to the radial distribution function

gðr ¼ jrjÞ ¼ V=N
X
i≠j

δ½r� ðri � rjÞ�
* +

; ð6Þ

where V is the volume. g(r) is usually derived from the Fourier
transformation of the measured S(q) in scattering experiments6.
Thus it has been used to explore the structural origin of the FPL
in reciprocal space6,8. The FPL in reciprocal space has been
attributed to the fractal structures at the length scale of the
nearest neighbors, i.e. the first peak of g(r)8, but ref. 9 pointed out
that the fractal structure is absent at the atomic scale. Ref. 6

suggested that the FPL arises from the medium-range order from
the fit of the envelop of gðrÞ � 1j j � r�γexpð�r=ξÞ. However, this
fit only captures the structure at a fixed ϕ rather than the struc-
tural change at a series of ϕ values as the way that the FPL in
reciprocal space is derived.

Here we discover FPLs from the g(r) peaks of glasses with a
series of ϕ values. For binary systems, the first peak of g(r) splits
into three subpeaks because the first-layer neighbors have three
typical separations corresponding to S–S, S–H and H–H bonds
(Supplementary Fig. 5c). These three subpeak positions cannot
deviate much from their corresponding bond lengths, thus r1
changes very little, resulting exceptionally large exponents in the
power law (Supplementary Fig. 8). The second- and third-layer
peaks of g(r) split into more subpeaks which interferences with
each other, thus their ambiguous peak positions are not
measured. We focus on the positions of the unimodal peaks,
i.e. fourth to eighth peaks for 2DSH glasses (Fig. 6e), third to
seventh peaks for 2DHH glasses (Fig. 6a), and second to sixth
peaks for 2DWCA glasses (Fig. 6c). We find that

va / ϕ�1 / r
dj
j ð7Þ

with dj =D for 2DHH and 2DWCA glasses (Fig. 6b, d) and dj <
D for 2DSH glasses (Fig. 6f). Such a shift of the jth peak position,
rj, demonstrates that the medium-range pair distance changes
uniformly with ϕ for 2DHH and 2DWCA glasses and
nonuniformly for 2DSH glasses, in accordance with the FPLs in
reciprocal space. These results suggest that the power laws in real
space and reciprocal space have the same structural origin.
Whether dj from real space and d from reciprocal space have a
quantitative relation is worth to explore in the future.

Discussion
From the simulations of the six model systems, we found answers
to the five questions about the FPL in reciprocal space raised in
the Introduction section as follows:

Does the FPL generally hold in glasses? Yes, but the exponent d
is not a universal constant. We observed the compression-
induced FPLs with d <D in 2DSH and 3DSH glasses, and power
laws with d=D in 2DHH, 3DHH, 2DWCA and 3DWCA glasses.
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Compression or composition change can produce the power law
va / q�d

1 in our simulations and in the literature, but they have
different impacts on the value of d. Therefore the data points with
both pressure and composition change do not exhibit a good
power law9.

Which factor affects the value of d? The answer was previously
unclear because the responsible parameters were not system-
atically varied. We found that the compression-induced FPL with
d ≠D requires a mixture of soft and hard particles so that the
local structure can be deformed nonuniformly. By systematically
adjusting η and λ of 2DSH systems, we found that d is linearly
governed by the fraction of the soft shells X (Fig. 3c).

For particles of different sizes but with the same softness (e.g.
binary WCA spheres or binary hard spheres), the interparticle
distances change uniformly under compression, resulting in the
trivial d=D. This is consistent with the observed d≃ 3.0=D
when Zr46Cu54 is compressed9 because both Zr and Cu atoms are
like hard spheres31,32. Note that this does not conflict with d≃
2.3 <D= 3 in ZrxCu1−x metallic glasses when the mixing ratio x
is varied6 because changing x is analogous to compressing a SH
system rather than an HH system.

The FPL was mainly observed in metallic glasses when the
mixing ratio of different types of atoms was varied6. A few studies
showed that compression can also induce the FPL with d≃ 2.5 in
La- or Ce-based metallic glasses, e.g. Ce68Al10Cu20Co23,7, but
these coincidences at 2.5 do not mean that changing the pressure
or changing the mixing ratio would have the same effect on the
FPL. Ce atoms are much softer than other atoms22,27 and can be
described as spheres with a square-shoulder potential17 because
its 4f-electron orbit is localized at low pressure and delocalized at
high pressure, resulting in atomic volume collapse3,22, thus the
metallic glasses in ref. 3 are similar to our SH systems and exhibit
the FPL. However, our simulation suggests that d would not be
constant at 2.5 when metallic glasses with different fractions of
soft atoms like Ce are compressed.

What is the origin of the FPL? We found that the FPL and its
exponent d are determined by different types of volume changes.
For HH systems, the compression arises solely from the squeezing
of the free volume, i.e. the gaps between particles. Its d=D
indicates that such a volume change is uniform. For WCA sys-
tems, the volume change arises from both the squeezing of the
free volume and the compression of the particles. The latter is
also uniform as both large and small WCA particles have similar
softness, hence d=D in WCA systems. For 2DSH and 3DSH
systems, the volume change arises from the squeezing of the free
volume and the compression of SS and SH bonds. In the crystal
regime, the uniform free-volume change dominates and thus d=
D. In the crossover and glass regimes, the volume change is
dominated by the compression of SS and SH bonds, respectively
(Fig. 5). Compressing a large-λ SS bond is equivalent to com-
pressing multiple small-λ SS bonds in changing Δϕ, but the for-
mer deformation is more localized in space which is less effective
at changing S(q) at a small q1. Therefore, d is larger for a large-λ
system in the crossover regime. When λ= 1, the SH system
reduces to the HH system where d=D. Hence, d >D for λ > 1 in
the crossover regime reflecting a nonuniform local structural
change.

The volume change in the glass regime must occur in pre-
viously uncompressed local regions rather than at random posi-
tions. In other words, the structural change in the glass regime
will compensate for the nonuniform structural built up in the
crossover regime. Consequently, d >D in the crossover regime is
accompanied by a d <D in the glass regime, in accordance with
the same RCP structure of 2DSH and 2DHH systems. This
explanation for d <D and d >D in different regimes does not
need the assumption of any fractal structure. In fact, fractal
structures with dimension d >D cannot exist in a D-
dimensional space.

Note that the FPL is not related to affine or non-affine
deformation because each solid state is directly compressed from
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dj
j from the medium-range real-space structures of the glasses. a, c, e Radial distribution functions g(r) for 2DHH, 2DWCA and

2DSH glasses with (η, λ)= (0.5, 1.3), respectively. The curves are vertically shifted for clarity. The arrows show the peak positions in the medium range.
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dj
j measured from a, c and e, respectively. The scaling parameters v0a and r0j are for the highest-density glass. The exponents dj < D= 2 for 2DSH

glasses and dj≃ D for 2DHH and 2DWCA glasses.
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a low-density liquid, i.e. structures at different values of ϕ are
uncorrelated. This is also supported by the existence of the FPL in
metallic glasses when their compositions change, which is not
related to any non-affine deformation.

How does the FPL change from crystal behavior (d=D) to
glass behavior (d <D)? We studied this question for the first time
by creating a novel crystal-to-glass transformation. We found that
the crossover regime between a crystal and a glass can also be
fitted by a power law, but its d >D does not sit between the d
values of the crystal and the glass. This is because the volume
change in the crossover regime mainly comes from the com-
pression of SS bonds, which is more effective at changing ϕ than
changing q1 as explained in the answer to question 2. We dis-
covered that the onset of the crossover FPL regime coincides with
the boundary between Hall–Petch and inverse-Hall–Petch
regimes, while the minimum slope coincides with the polycrystal-
glass transition in 2DSH systems (Fig. 2). In 3DSH systems,
however, the crystal regime with d=D terminates at the
crystal-glass transition (Fig. 4c). These coincidences generally
hold for systems with different values of η and λ, which cast new
light on the poorly understood Hall–Petch-to-inverse-Hall–Petch
transition16,24 and the polycrystal-to-glass transition16.

Does the FPL exist in 2D? Yes, the FPL in 2D is similar to that
in 3D and has been explained above. Low-dimensional systems
are much softer because there are more long-wavelength fluc-
tuations33 and particles have fewer neighbors providing con-
straints. Consequently, the space dimension could strongly affect
the nature of phase transition33,34. For example, 3D crystal
melting is a first order phase transition, while 2D melting often
exhibits two continuous transitions33. Similarly, here we found
that the va (q1) curve at the crystal-to-glass transition is con-
tinuous in 2D (Fig. 1f), but makes an abrupt jump in 3D (Fig. 4c),
which is consistent with the behaviors of other quantities in ref. 16

Besides the FPLs in reciprocal space, we discovered power laws
about the medium-range g(r) peaks. Although g(r) has been
intensively studied in liquids, crystals and glasses, the shift of the
jth peak has rarely been explored because (1) the positions of
medium-range peaks are difficult to measure accurately from the
Fourier transform of S(q) in scattering experiments, and (2) the
trivial relation, va / 1=ϕ / rDj , is expected to hold. Surprisingly,
we find that dj can deviate from D (Fig. 6f) when the pair
interaction has two length scales. dj <D in SH systems and dj=D
in HH and WCA systems. These real-space results are similar to
those in reciprocal space, suggesting that they have the same
structural origin.

The results bring new insights on material fabrication. For
example, how particle interaction affects material properties is a
key question in materials science, but the understanding is lim-
ited. For instance, soft solvent particles are empirically argued to
be responsible for the elastic modulus of metallic glasses35. Here
we found that two length scales in the pair potential result in d ≠
D, indicating that the soft particles play a key role in the FPL and
the structural change in glasses. Our results predict that com-
pressing metallic glasses composed of hard-sphere-like atoms will
result in d=D, and the higher the fraction of soft atoms like Ce,
the more d deviates from D. Fabricating ultrafine-grained poly-
crystals is another important challenge in materials science as
they are unstable and tend to coalesce into larger grains36. We
found that a large η, i.e. more soft particles and SS bonds, causes a
broad crossover regime, which corresponds to a broader regime
of ultrafine-grained polycrystals with inverse-Hall–Petch behavior
and abnormally large compressibility. The fraction of the soft
shells of soft particles determines d. 2DSH glasses can only form
at 1 < d < 2. Beyond this range, the systems can only form large-
grained polycrystals. These results provide guidance for

fabricating ultrafine-grained polycrystals and glasses with differ-
ent degrees of nonuniform deformation under compression.

Methods
Simulation methods. We performed Brownian dynamics simulations for 2DWCA
and 3DWCA systems using LAMMPS37 and event-driven molecular dynamics
simulations38 for the other four types of systems. All the simulations were per-
formed under periodic boundary conditions in NVT ensembles. Samples were
relaxed for long enough at each ϕ.

Simulations of soft/hard and hard/hard mixtures. 2DSH: The simulations
contained N= 12,800 disks with the mixing ratio η=NS/N, where NS is the
number of soft disks. The soft particles had square-shoulder potential (Fig. 1e)

UðrÞ ¼
1; r ≤ σ

U0; σ < r ≤ λσ

0; λσ < r

8><
>: ð8Þ

where σ and λσ are the diameters of the inner core and outer shell, respectively. σ
serves as the length unit. U0 is the height of the shoulder. The pair potential of the
hard particles

UðrÞ ¼ 1; r ≤ λσ

0; λσ < r

�
: ð9Þ

The packing fraction was calculated as

ϕ ¼ N
A
πσ2

4
ð1� ηÞ ´ λ2 þ η ´ 12
� �

; ð10Þ

where A is the area of the box.
Particles were randomly distributed in the box at ϕ= 0.62, and then relaxed at

T= 2.0 U0/kB for a time period of 105t0 and finally equilibrated at T= 0.133U0/kB
for 105t0. kB is the Boltzmann constant. t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=U0

p
is the amount of time a

disk takes to move a distance σ, where m is the unit of mass. To facilitate the
equilibration, initial velocities of particles were reassigned every 104t0 with a
Gaussian distribution. Starting from ϕ= 0.62, crystals were compressed into higher
packing fractions using the Lubachevsky–Stillinger algorithm39. All the results were
measured at T= 0.133U0/kB, a low temperature used to thermalize the system16.

The results of the 2DSH system with (η, λ)= (0.5, 1.3) are shown in Figs. 1f, 2,
5b and 6c. Other values of (η,λ) were explored and some of them are shown in
Fig. 3. η varies from 0.35 to 0.60 in Fig. 3a, in which range the system can be
compressed to the glass state16. During compression, defects steadily accumulated
through collapse of shoulders in soft particles (Fig. 5a), which caused the crystal to
transform into glass (Supplementary Fig. 1). As a nonequilibrium state, glass
depends not only on state parameters such as temperature, density and pressure,
but also on its fabrication history2. We compared two glass states compressed from
a liquid (Fig. 3a, b) and from a crystal (Fig. 1f) at the same (η, λ)= (0.5, 1.3), and
found similar FPLs: d= 1.36 in Fig. 1f and d= 1.35 in Fig. 3a, indicating that the
FPL is insensitive to the glass formation pathway.

3DSH: The simulations were performed in a cubic box containing 5000 soft
and 5000 hard spheres. The initial state was set to a fluid with ϕ= 0.3 and relaxed
at T= 2.0U0/kB to obtain different configurations across trials. Then it was directly
compressed into the target ϕ (Fig. 4d) and relaxed at T= 0.2U0/kB for 105t0. The
packing fraction is defined as

ϕ ¼ N
V
πσ3

6
ð1� ηÞ ´ λ3 þ η ´ 13
� �

: ð11Þ
The system with (η, λ)= (0.4, 1.25) exhibits similar features at the crystal-glass

transition to those of the 2DSH systems16.
The simulations of 2DHH and 3DHH systems are the same as those of 2DSH

and 3DSH systems, except that the binary HH spheres cannot form crystals at a
low ϕ. The time unit for HH systems t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ðkBTÞ

p
.

Simulations of WCA systems. WCA potential15

UðrÞ ¼ 4U0
σ
r

� �12� σ
r

� �6þ 1
4

n o
; r ≤ 21=6σ

0; r > 21=6σ

8<
: ð12Þ

where σ= 1.3, 1.15 and 1.0 for large-large, large-small and small-small particle
interactions, respectively. U0= 1.0 is the unit of energy. WCA potential is a well-
known short-range repulsive potential which has often been used to model col-
loidal interactions14,15,40. At each ϕ, particles were randomly distributed in the
box. After energy minimization using the FIRE algorithm41, the system was relaxed
at T= 0.002ε/kB for 108 steps with the time step δt= 0.001. The packing fraction
was calculated using Eq. 10 for the 2D case and Eq. 11 for the 3D case with the
effective diameter 21/6σ.

Structural identification. To characterize the local crystalline order of each par-
ticle, we used the modified orientational order parameter16,42. This parameter is
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more accurate than the conventional bond-orientational order parameter because
each neighbor is properly weighed by the corresponding edge of the Voronoi cell42.
For 2D systems, the modified orientational order parameter

ψ6j ¼
1
ltot

XNj

k¼1

ljke
i6θjk ; ð13Þ

where θjk is the orientational angle of the bond between particle j and its neighbor
k. The Voronoi polygon43 has Nj edges with perimeter ltot, and the length of the
edge between j and k is ljk. A higher jψ6jj represents a higher crystalline order.
Particles with three or more crystalline bonds were defined as crystalline, where a
crystalline bond (between particles j and k) is one that satisfies jψ6j � ψ*

6kj> 0:616.
Two neighboring crystalline particles belong to the same grain if the difference
between their orientational angles jArgðψ6jÞ � Argðψ6kÞj≤ 5:0� . Noncrystalline
particles and single isolated crystalline particles are defined as disordered16.

For 3D systems, the modified orientational order parameter

qli ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2l þ 1

Xl

m¼�l

Xn
j¼1

Aj

A
Ylmðθij;ϕijÞ2

�����
�����

vuut ; ð14Þ

where θij and ϕij are the spherical angles of the vector from particle i to its jth
nearest neighbor. Aj is the area of the Voronoi facet to the jth neighbor. A is the
total surface area of the Voronoi cell. Ylm is a spherical harmonic function of degree
l and order m. ql=6 ≤ 0.4 are disordered particles; and ql=6 > 0.4 are crystalline
particles44. Crystalline particles with ql=4 > 0.143 are defined as having an face-
centered cubic (FCC) structure and the rest are hexagonal close-packed (HCP)
structures (Fig. 4d)44.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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