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Abstract
Background: Translation of predictive and prognostic image-based learning
models to clinical applications is challenging due in part to their lack of inter-
pretability. Some deep-learning-based methods provide information about the
regions driving the model output. Yet, due to the high-level abstraction of deep
features, these methods do not completely solve the interpretation challenge. In
addition, low sample size cohorts can lead to instabilities and suboptimal conver-
gence for models involving a large number of parameters such as convolutional
neural networks.
Purpose: Here, we propose a method for designing radiomic models that com-
bines the interpretability of handcrafted radiomics with a sub-regional analysis.
Materials and methods: Our approach relies on voxel-wise engineered
radiomic features with average global aggregation and logistic regression. The
method is illustrated using a small dataset of 51 soft tissue sarcoma (STS)
patients where the task is to predict the risk of lung metastasis occurrence
during the follow-up period.
Results: Using positron emission tomography/computed tomography and two
magnetic resonance imaging sequences separately to build two radiomic mod-
els, we show that our approach produces quantitative maps that highlight the
signal that contributes to the decision within the tumor region of interest. In our
STS example, the analysis of these maps identified two biological patterns that
are consistent with STS grading systems and knowledge:necrosis development
and glucose metabolism of the tumor.
Conclusions: We demonstrate how that method makes it possible to spatially
and quantitatively interpret radiomic models amenable to sub-regions identifi-
cation and biological interpretation for patient stratification.
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1 INTRODUCTION

Radiomics has been introduced in the 2010s to enhance
the quantitative exploitation of medical images1 and
corresponds to the extraction of a large number of math-
ematical descriptors from the image. These characteris-
tics called “radiomic features” can be extracted through
well-defined mathematical expressions, so-called “engi-
neered features.”They can also be calculated by succes-
sive convolutional layers in deep convolutional neural
networks, referred to as “deep features.”2,3 By using
these features as an input to machine learning and deep
learning methods, classification and prediction models
are designed, for instance to predict the response to a
treatment.

Although supervised machine learning models have
shown great potential in medical imaging, their clinical
translation remains challenging.4 One reason is the
difficulty in interpreting the models and understanding
the information used to produce the output. Under-
standing models implies relating their output to some
biological rationales and even possibly formulate new
biological or medical hypotheses.

Whereas engineered features are mathematically
well defined, the interpretation of models based on such
features often remains challenging due to the complex
definition of some features and to their weighted com-
bination when building multivariate models. Moreover, in
most studies,engineered features are directly calculated
from a whole region of interest (ROI) with overall mea-
surements, making it difficult to relate the outputs to a
characterization at the voxel or sub-region level. Map-
ping the contributions of the voxels to the model out-
put would highlight the location of sub-regions that are
important for making a decision or a prediction and thus
could help to increase transparency and interpretabil-
ity. Several methods for such mapping have been pro-
posed in the context of deep learning, for example.5–11

Yet, while these methods are promising, they have lim-
itations, such as coarse resolution or sparse represen-
tation. More importantly, the complexity of the explained
models and the high-level abstraction of deep features
limit their transparency. Indeed, knowing where the rele-
vant information is in the image is helpful, but does not
tell how this information is used.12 Finally, since com-
plex models are often not inherently interpretable,expla-
nations may not be faithful to what the original model
computes.12–14 This could lead to potentially mislead-
ing explanations of what the model is actually based
on. Therefore, methods that combine the spatial and the
quantitative information related to the model outputs in
a straightforward and reliable way are still needed.

Sub-regional characterization using engineered
voxel-based radiomics could be useful in this context.
Few reports describe such methods facilitating model
interpretation.Wu et al.,15,16 Xu et al.,17 and Even et al.18

used unsupervised clustering methods to identify tumor

sub-regions and associate them to patient outcome.
Beaumont et al.19 used a random forest approach to
predict local recurrence from baseline images thanks to
locally calculated features and voxel-wise ground truths.
Vuong et al.20 investigated patch-based radiomics
with binary activation for tracing the spatial location of
regions responsible for a given classification.To the best
of our knowledge, although engineered radiomics is
largely used especially when datasets are not amenable
to deep radiomics, no approach has been proposed to
quantitatively map, at the voxel level, the output of a
model based on engineered radiomic features.

In this study, we propose an original mapping method
of the outputs of a logistic model based on engineered
features to enable its local and biological interpreta-
tion. In Section 2, we present the theory (Section 2.1),
the dataset used in our experiments, and the experi-
ments performed to test our method in the context of
predicting the risk of lung metastases in soft tissue sar-
comas (STS) based on positron emission tomography
(PET)/computed tomography (CT) and magnetic reso-
nance imaging (MRI) images (Section 2.2). The results
are then described and discussed in Section 3 and
Section 4.

2 MATERIALS AND METHODS

2.1 Theoretical background

This section describes how logistic regression can be
used to bridge a probabilistic binary classification to a
quantitative and interpretable voxel-wise characteriza-
tion map.

To allow for a mapping of the model output when using
engineered radiomics, the features are initially extracted
at the voxel level. A three-dimensional (3D) cubic sliding
window is used to compute the voxel-wise features. For
each position of the cube centered on voxel v inside the
ROI, the radiomic features are calculated in this cube
and the resulting values are assigned to v in the resulting
feature maps.

The value of the pth feature assigned to voxel v is
denoted x(i,v)

p , which is a component of the voxel-wise
feature set X (i,v) for patient i. The pth radiomic feature
g(i)

p for that patient i is obtained by averaging x(i,v)
p across

all v inside the ROI.

g(i)
p =

1
Nv(i)

Nv(i)∑
v=1

x(i,v)
p (1)

where Nv(i) is the total number of voxels within the tumor
ROI of patient i.

Each tumor is thus described with a feature vector G(i)

composed of Np features.
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Using logistic regression, the probability P(i) for a
given patient i to belong to class 1 is modeled as

P(i) =
1

1 + e−D(G(i))
(2)

In this equation,D represents the linear decision func-
tion of P, with 𝛽0 its learned intercept and 𝛽 the vector
of learned coefficients associated to G, and is defined
as

D
(
G(i)

)
= 𝛽TG(i) + 𝛽0

D
(
G(i)

)
=

Np∑
p=1

(
𝛽pg(i)

p

)
+ 𝛽0 (3)

where T represents the transpose operator.
The backprojection of 𝛽0 and 𝛽 to X (i,v) at the voxel

level yields a quantitative radiomic decision map (RDM)
DV (i), mapping the individual participation DV(X (i,v)) of
each and every voxel v to the probability for patient i to
belong to class 1.

DV
(
X (i,v)

)
= 𝛽TX (i,v) + 𝛽0

DV
(
X (i,v)

)
=

Np∑
p=1

(
𝛽px(i,v)

p

)
+ 𝛽0 (4)

The backprojection of 𝛽0 and 𝛽 to X (i,v) preserves
the probabilistic quantification. Indeed, due to the linear
nature of the mean and of D, the mean value DV (i) of
DV (i) across all voxels in the ROI is equal to D(G(i)).

DV (i) =
1

Nv(i)

Nv(i)∑
v=1

DV
(
X (i,v)

)

DV (i) =
1

Nv(i)

Nv(i)∑
v = 1

(
𝛽TX (i,v)

)
+ 𝛽0

DV (i) =

Np∑
p=1

(
𝛽pg(i)

p

)
+ 𝛽0

DV (i) = D
(
G(i)

)

DV = D (5)

A more detailed development is reported in Equation
(S1).

The decision function D, expressed as a function of
the averaged local features G, is equal to the average of
the local decision function, expressed as a function of
the local features X across all voxels within the ROI for
each patient.As such,we can express the probability for
a given patient i to belong to class 1 directly at the voxel

level using

P(i) =
1

1 + e
−

(
1

Nv(i)
∑Nv(i)

v=1 (𝛽TX (i,v))+𝛽0

) (6)

The proposed method thus produces RDMs that
quantify the contribution of each voxel to the patient
classification, highlighting the most contributory sub-
regions within the ROI.

Some features, such as the shape features, do not
have any voxel-level counterpart,while they can still con-
tribute to a decision function that then reads as

D
([

G(i); G’(i)
])

= 𝛽TG(i) + 𝛽’TG’(i) + 𝛽0

D
([

G(i); G’(i)
])

=
1

Nv(i)

Nv(i)∑
v=1

(
𝛽TX (i,v)

)
+ 𝛽’TG’(i) + 𝛽0

(7)

where G’(i) represents the vector composed of Np’ fea-
tures g’(i)p’ without any local counterpart that is concate-

nated to G(i), and 𝛽’p’ the learned coefficients associated
with these features.

Similar to Equation (6), the probability for a given
patient i to belong to class 1 can be expressed as

P(i) =
1

1 + e
−

(
1

Nv(i)
∑Nv(i)

v=1 (𝛽TX (i,v))+𝛽’TG’(i)+𝛽0

) (8)

When the model includes features without voxel-level
counterpart, only part of the model is explained by the
RDMs. The coefficients associated with features that
can be mapped indicate the importance of these fea-
tures compared to the ones that cannot be mapped.

2.2 Experiments

2.2.1 Patients and data

We used a publicly available dataset of 51 STS patients
for whom fluorodeoxyglucose (18F) ([18F]-FDG) PET,CT,
T1, and fat-suppressed T2 MRI images, ROIs, clinical,
and follow-up information were available.21 During the
follow-up period,19 patients developed lung metastases
and 32 did not. The task was to predict the occurrence
of lung metastases at 2 years. PET/CT images were all
acquired at the McGill University Health Centre using the
same scanner (Discovery ST,GE Healthcare,Waukesha,
WI, USA) for the 51 patients. MRI scans were acquired
as part of routine care for each patient, with hetero-
geneous protocols across patients. T1-weighted MRI
images were available for all 51 patients. Two types of
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fat-suppressed T2 sequences were acquired, namely
fat-saturated T2-weighted (n = 26 patients) and short
tau inversion recovery (n = 25).The provided tumor ROI
had been manually drawn by an expert radiation oncol-
ogist on fat-suppressed T2 images and propagated to
PET, CT, and T1 images after rigid registration. Detailed
information is provided by Vallières et al.21

2.2.2 Image processing and feature
extraction

MRI preprocessing
T1 images were corrected for bias field with the N4ITK
algorithm,22 with default parameters and body mask as
the region for bias field estimation. No correction was
possible on fat-suppressed T2 images because there
was no significant signal outside the tumor ROI to esti-
mate the bias field.

In MRI T1 and T2 images, a voxel value cannot be
readily interpreted in terms of physical quantity, and
the same tissue type can yield different voxel values
between different acquisitions even when the images
are acquired in the same patient using the same pro-
tocol settings. An adapted version of the White Stripe
method23 was used to linearly scale the images based
on the fat as a reference tissue for all T1 images.
Spheres (average volume ± 1 standard deviation (SD)
of 239 ± 52 mm3) were manually drawn in fat tissue
for each patient (23 ± 9 spheres per patient). For each
patient, every voxel was linearly transformed so that the
mean value over all fat spheres was 0 with a SD of 1.

Iwv =
Iv − 𝜇fat

𝜎fat
(9)

where Iv is the intensity of each voxel v in the N4ITK cor-
rected T1 image, 𝜎fat and 𝜇fat are the SD and the mean
intensity within the reference fat tissue in the image,and
Iwv is the normalized value at voxel v.

As no reference tissue could be used to normalize
fat-suppressed T2 images, a z-score normalization was
used based on each tumor ROI, so that the mean value
in each tumor was 0 with a SD of 1 after normalization.

Izv =
Iv − 𝜇tum

𝜎tum
(10)

where Iv is the intensity of each voxel v in the fat-
suppressed T2 image, 𝜎tum and 𝜇tum are the SD and
the mean intensity within the tumor ROI, and Izv is
the z-score normalized value at voxel v. The difference
between normalization Equations (9) and (10) is that
Equation (9) preserves inter-patient variabilities of the
signal intensity between tumors whereas Equation (10)
does not.

Radiomic feature maps calculation
All images were resampled to isotropic voxels before
feature extraction using third-order B-spline inter-
polation. PET images were expressed in stan-
dardized uptake value (SUV) units, resampled to
3 mm × 3 mm × 3 mm voxels and a fixed bin size
discretization24 of 0.3125 SUV was used.25 CT images
expressed in Hounsfield units (HU) were resampled to
1 mm × 1 mm × 1 mm voxels and a fixed bin size of
10 HU was used. Preprocessed T1 and fat-suppressed
T2 images were resampled to 1 mm × 1 mm × 1 mm
voxels and bin sizes were set so that 128 bins were
defined between the minimum and the maximum voxel
value across the whole cohort which corresponded to
0.1668 for T1 images and 0.05611 for fat-suppressed
T2 images. CT voxels with values less than -230 HU or
greater than 600 HU were excluded from the CT ROI
to limit the presence of air and bone voxels in the ROI,
while keeping values possibly associated with tumor
hypodensities and calcifications.

First-order,gray-level co-occurrence matrix,gray-level
dependence matrix, gray-level run length matrix, and
neighboring gray tone difference matrix radiomic fea-
tures were locally extracted within all tumor ROI using
a 3D sliding window of nine voxels in each dimension,
leading to 308 radiomic feature maps per patient (77 fea-
ture maps per modality).

ROI-feature calculation
As defined in Equations (1) and (2), the average value
over the ROI was calculated for each feature to yield
two ROI-feature vectors of 154 components each per
patient,one vector from the PET/CT feature maps (com-
posed of 77 ROI-features from the PET and 77 ROI-
features for the CT) and another from the MRI feature
maps (composed of 77 ROI-features from the T1 and
77 ROI-features from the fat-suppressed T2).In addition,
volume and shape features were calculated from the CT
resampled segmentation mask (1 mm × 1 mm × 1 mm
voxels), producing 14 additional features that were
added to the PET/CT and MRI features to yield two 168
features vectors.

All image features used in this work are listed in
Table S1 and their definition can be found at https:
//pyradiomics.readthedocs.io/.26

2.2.3 Machine learning probabilistic
classification

In this section,PET/CT and MRI features were used sep-
arately. We created two separate models in order to test
our method in two different clinically realistic settings.
The main objective was to determine if the models were
based on common areas, areas specific to the informa-
tion carried by each modality, or a combination of both.

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
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Multicollinearity reduction
Many radiomic features can be highly correlated hence
collinear.Collinearity is a linear association between two
features whereas multicollinearity refers to a situation
in which more than two features are linearly related.
Collinearity and multicollinearity can be seen as redun-
dancies in the data and could adversely affect the stabil-
ity of generalized linear models such as logistic regres-
sion. To cope with that problem, unsupervised feature
selection was first performed using pairwise Pearson
correlation on the PET/CT and the MRI feature sets.
A maximum absolute Pearson R threshold was initial-
ized to 1. As long as there was perfect multicollinear-
ity in the data (null Pearson correlation matrix determi-
nant), this threshold was iteratively decreased by a step
of 0.001.During this process, if two features were corre-
lated so that their absolute Pearson R value exceeded
the threshold, the feature with the highest mean abso-
lute R value with the other features was removed. Then,
feature selection was performed by calculating the vari-
ance inflation factor (VIF),27 which estimates how much
the variance of a regression coefficient increases due
to the presence of multicollinearity. Let Gp be the pth

ROI-feature vector composed of g(i)
p for all patients in

the dataset. For each ROI-feature Gp, we can compute
VIFGp

by linearly regressing it against the other features
in the dataset.

VIFGp
=

1

1 − R2
Gp

(11)

where R2
Gp

represents the coefficient of determination

of the linear regression associated to Gp.
The VIF quantifies how much each feature introduces

redundancy in the data while considering all the features
together, unlike pairwise correlations that are based
on two-by-two comparisons. Highly redundant features
were thus removed by dropping the feature with the
highest VIF iteratively until the maximum VIF was <10
in the feature set.27

Multivariate modeling
From this stage, the PET/CT and MRI models are,
respectively, denoted as M1 and M2.

For both PET/CT and MRI, least absolute shrink-
age and selection operator (LASSO) (also denoted L1)
regularized logistic regression was used to model the
probability of lung metastasis occurrence with the cost-
sensitive balanced cross-entropy as a loss function to
account for data imbalance. The features resulting from
the multicollinearity reduction step were further selected
through a forward sequential wrapper using a metric
adapted from the stratified Brier scores.28 We defined
the “average stratified Brier score” (ASB) measuring
the calibrated and continuously defined accuracy of

the modeled probability, with equal importance between
class 1 (lung metastasis occurrence) and class 0 (no
lung metastasis occurrence), as follows:

SBC1 =
1

NC1

NC1∑
i=1

(
y(i) − P(i)

)2 [
y(i) = 1

]
(12)

SBC0 =
1

NC0

NC0∑
i=1

(
y(i) − P(i)

)2 [
y(i) = 0

]
(13)

ASB = 1 −
SBC0 + SBC1

2
(14)

where NC1 and NC0 are the number of patients belong-
ing to classes 1 and 0, respectively, in the data sub-
set from which the score is computed, and SBC1 and
SBC0 are the associated stratified Brier score where y(i)

and P(i) are the outcome and the predicted probability
of belonging to class 1 for patient i, respectively. […] is
an Iverson bracket, which equals 1 when the condition
within the brackets is true and 0 otherwise. The ASB
score is defined for all patients from 0 to 1. A perfect
model yields a mean ASB score of 1 whereas a model
that always predicts the wrong class yields a mean ASB
score of 0. A totally underfitted model which always pre-
dicts a probability of 0.5 yields a mean ASB score of
0.75, and a dummy model predicting the majority class
yields a mean ASB score of 0.5.

A grid-search approach was used to determine the
optimal regularization term C of the LASSO and the
number of forward selected features to be kept.C corre-
sponds to the inverse of the regularization strength usu-
ally denoted as 𝜆 or 𝛼. Thus, a lower value of C means
a higher regularization. Ten values were defined for C
from 0.1 to 100 on a log10 scale. For each value of C,
the forward selection procedure was performed using
200× 5-fold repeated stratified cross-validation with the
reduced feature set based on the VIF. Training samples
were used to scale the features using the z-score nor-
malization at each iteration of the cross-validation pro-
cedure.The mean and SD of the ASB score were saved
with the associated feature subset at each iteration of
the forward selection procedure. The retained C param-
eter and feature subset were manually selected based
on a tradeoff between the maximization of the mean
ASB score and the minimization of its SD and coeffi-
cient of variation, while favoring the most parsimonious
(few features) and regularized (low C) models.

To test whether our approach yielded over-optimistic
results by fitting data with noise, a permutation test
was performed.29 The whole machine learning pipeline
including the forward selection and the grid-search opti-
mization was repeated 200 times performing random
permutations of the class labels at each iteration. For
every iteration, the best grid-search mean ASB score
was saved, leading to a null distribution of the 200 best
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cross-validated scores. This distribution shows the esti-
mated performance when there is no real relationship
between features and labels. Based on this null distri-
bution, empirical p-value associated with the ASB score
observed for the models obtained for the correct labels
could be calculated.

In addition to their mean ASB score,the standard Brier
score loss, the mean receiver operating characteristic
(ROC) curve, and its associated mean area under the
curve (AUC) with SD were computed as figures of merit.

Bootstrap aggregation and comparison to usual
biomarkers
Bootstrap aggregation, usually shortened as “bagging,”
prevents overfitting by reducing the variance of the final
classifier in comparison to a final classifier trained on the
whole dataset. Therefore, 1000 bootstrap samples were
drawn to build the models.The decisions functions’coef-
ficients of the 1000 bootstrap models were averaged to
obtain the final linear decision functions of M1 and M2,
denoted as DM1 and DM2.

The prediction performance of the two models was
compared with that of usual biomarkers. During the
bootstrap resampling of the bagging procedure, training
samples were used at each iteration to scale the fea-
tures using the z-score normalization,and the ROC AUC
were computed based on out-of -bag (OOB) samples for
model predictions as well as for anatomical tumor vol-
ume (ATV), SUVmax, metabolic tumor volume (MTV),
and total lesion glycolysis (TLG).

Decision maps and signature generation
The mean 𝜇Gp

and SD 𝜎Gp
over all patients of each fea-

ture Gp involved in final models M1 and M2 were used
to normalize the corresponding feature maps of each
patient i in the dataset.

z(i,v)
p =

x(i,v)
p − 𝜇Gp

𝜎Gp

(15)

where z(i,v)
p denotes the normalized value of the pth

voxel-wise feature computed at voxel v for patient i, and
x(i,v)

p its original value.
After resampling all feature maps on a common grid

of 1 mm × 1 mm × 1 mm voxels using third-order B-
spline interpolation, the RDMs DV (i)

M1, and DV (i)
M2 were

obtained for each patient i by backprojecting the ROI-
features’ coefficients at the voxel level.

2.2.4 Practical implementation

All images and masks were saved in NIfTI-1 format.
Using Python (version 3.7.10), the bias field correction
for MRI T1 images was performed with the N4ITK algo-

rithm implementation of the SimpleITK library (version
2.0.2).30 MRI intensity normalization used spheres man-
ually drawn in fat tissue with LIFEx software (version
6.31).31 Basic image operations and manipulations were
performed using the Python libraries NumPy (version
1.16.6),32 NiBabel (version 2.5.1),33 and Nilearn (ver-
sion 0.5.2).34 Radiomic features were computed using
the Image Biomarker Standardization Initiative24 com-
pliant Python library PyRadiomics (version 2.2.0).26 The
multicollinearity reduction was performed using R (ver-
sion 4.0.2) with the libraries Car (version 3.0-9)35 and
Caret (version 6.0-90).36 The machine learning steps
used the Python libraries Scikit-Learn (version 0.20.4)37

and Pandas (version 0.25.3).38,39 The logistic models
were trained using the Liblinear40 deterministic coordi-
nate descent algorithm, with LASSO (L1) penalty, a tol-
erance of 0.0001 as stopping criteria, and a maximum
number of iteration equal to 100. We used LIFEx for all
visualizations and interpretations.

All processing and analysis steps were run on Linux
Ubuntu 20.04.2, on a Dell Precision Tower 7920 with
128 Gb of RAM memory, a 2 × 12-Core Intel Xeon Sil-
ver 4214 64 bit, and a 16 Gb Nvidia Quadro RTX 5000
graphic card.

3 RESULTS

3.1 Feature extraction and
multicollinearity reduction

Four examples of voxel-wise feature maps are shown
in Figure 1 with their respective mean ROI-feature value
for a single patient,highlighting a variety of different pat-
terns.

A total of 25 (21 averaged voxel-level features and
four shape features that cannot be mapped) and 26 (22
averaged voxel-level features and four shape features)
ROI-features over 168 were selected from PET/CT and
MRI, respectively, through the multicollinearity reduction
step. The VIF value of the selected features is reported
in Table S2. Figure S1 represents the Pearson corre-
lation matrices of these features for PET/CT (a) and
MRI (b). As expected, several features were found to be
redundant at the ROI level, and only a fraction of them
were retained after reducing the multicollinearity.

3.2 Multivariate modeling

The null distributions of the 200 random models from the
permutation tests are shown in Figure 2 together with
the real cross-validated performance of the M1 (a) and
M2 (b) models. Five features were retained for PET/CT
and MRI both with C = 2.2 through the grid-search pro-
cedure. The associated mean ASB scores (±1 SD)
were 0.872 ± 0.056 (p-value = 0.005) for PET/CT and
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F IGURE 1 Example of engineered radiomic feature maps. As
the models were trained by taking the mean values inside the region
of interest as inputs, there was no need to resample all the feature
maps on a common grid at this stage. The feature maps then had
different spatial resolution (3 mm × 3mm × 3 mm for positron
emission tomography (PET), 1 mm × 1 mm × 1 mm for computed
tomography (CT) and magnetic resonance imaging (MRI)). (a) CT
first-order entropy, (b) PET gray-level co-occurrence matrix (GLCM)
contrast, (c) T1 gray-level dependence matrix (GLDM) gray-level
non-uniformity (GLNU), and (d) fat-suppressed T2 gray-level run
length matrix (GLRLM) long run high gray-level emphasis (LRHGLE)

TABLE 1 Cross-validated performance for the grid-search
forward selection and least absolute shrinkage and selection
operator (LASSO) C parameter optimization

Model building
settings M1 M2

C 2.2 2.2

Number of selected
features

5 (1 shape
feature)

5 (1 shape
feature)

ASB (±1 SD) 0.872 ± 0.056 0.838 ± 0.065

Brier score loss (±1 SD) 0.133 ± 0.057 0.167 ± 0.068

ROC AUC (±1 SD) 0.910 ± 0.094 0.853 ± 0.115

Abbreviations: ASB, average stratified Brier score; AUC, area under the curve;
ROC, receiver operating characteristic; SD, standard deviation.

0.838 ± 0.065 (p-value = 0.035) for MRI, significantly
higher than those of the random models in both cases.
Model building results are summarized in Table 1.

3.3 Final bagging models and
comparison to usual biomarkers

The bagging linear decision functions DM1 and DM2 are
reported in Equations (16) and (17) with the SD associ-
ated to each feature across the 1000 bootstrap samples.

DM1 = − 0.653 (±0.623) × CTGLDMLDLGLE

+ 1.711 (±0.745) × PETFIRST ORDERMINIMUM

+ 2.655 (±0.907) × PETFIRST ORDERSKEWNESS

F IGURE 2 Average stratified Brier score permutation test
distribution for M1 and M2 model building settings. (a) Positron
emission tomography (PET)/computed tomography (CT) and (b)
magnetic resonance imaging (MRI)

+ 1.469 (±0.600) × PETGLCMCORRELATION

+ 0.953 (±0.710) × SHAPEELONGATION

− 0.673 (±0.428) (16)

DM2 = −1.325 (±0.735) × T1FIRST ORDERENERGY

−1.729 (±0.698) × T1GLDMSDLGLE

+1.032 (±0.470) × fat − supressed

−T2FIRST ORDERRMS
+ 1.895 (±0.731)

× fat − supressed − T2FIRST ORDERENERGY

+1.197 (±0.577) × SHAPESPHERICITY

−0.857 (±0.444) (17)

Figure 3 shows the probability density function of the
OOB ROC AUC distributions for M1 and M2 predictions,
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F IGURE 3 Probability density function of the
out-of -bag (OOB) receiver operating characteristic
(ROC) area under the curve (AUC) for M1 (positron
emission tomography (PET)/computed tomography
(CT)), M2 (magnetic resonance imaging (MRI)),
anatomical tumor volume (ATV), SUVmax, metabolic
tumor volume (MTV), and total lesion glycolysis
(TLG). The average ROC curves associated with
these distributions are reported in the left sub-figure

TABLE 2 Bootstrap out-of -bag (OOB) receiver operating characteristic (ROC) area under the curve (AUC) for M1 (positron emission
tomography (PET)/computed tomography (CT)), M2 (magnetic resonance imaging (MRI)), anatomical tumor volume (ATV), SUVmax, metabolic
tumor volume (MTV), and total lesion glycolysis (TLG)

OOB ROC AUC M1 M2 ATV

Mean (±1 SD) 0.883 ± 0.086 0.840 ± 0.090 0.691 ± 0.107

95% CI [0.660, 1.000] [0.622, 0.974] [0.472, 0.890]

Maximum PDF (mode) 0.908 0.858 0.703

OOB ROC AUC SUVmax MTV TLG

Mean (±1 SD) 0.806 ± 0.094 0.594 ± 0.117 0.728 ± 0.110

95% CI [0.612, 0.971] [0.361, 0.818] [0.501, 0.931]

Maximum PDF (mode) 0.789 0.569 0.749

Abbreviations: CI, confidence interval; PDF, probability density function; SD, standard deviation.

SUVmax, TLG, ATV, and MTV. Models and biomarkers
bootstrap OOB ROC AUC are summarized in Table 2.

3.4 Decision maps

Representative slices examples of RDMs DVM1 (a) and
DVM2 (b), PET (c), CT (d), T1 (e), and fat-suppressed T2
(f) images are shown in Figure 4 for six patients (1–6).
The RDMs DVM1 and DVM2 revealed predictive patterns
that are interpretable and consistent across patients.
In particular and supported by Equations (16) and
(17), DVM1 highlighted high FDG uptake sub-regions,
substantial and homogeneous tumor regions with low
metabolism, and some hypodense sub-regions. The
sub-regions highlighted by the DVM2 maps showed over-
all good colocalization with the ones that were hypo-
dense and non-FDG-avid in the DVM1 maps. This corre-
sponds to low-signal sub-regions in T1 and high-signal
sub-regions in fat-suppressed T2 images. Biologically,
these sub-regions correspond to suspected necrosis.
In DVM1 maps, the sub-regions characterized by focal

and heterogeneous high FDG uptake most of the time
included the SUVmax voxel.

Patient 1 risk was well predicted with a high probability
from both M1 (0.85) and M2 (0.88), consistent with the
high SUVmax (29.99) and the large necrotic sub-region
seen in the tumor. With a well-predicted risk for both
M1 (0.82) and M2 (0.58), patient 2 PET image showed
a smaller necrotic sub-region but still a high SUVmax
(27.80), consistent with the lower predicted probability
for M2 than for M1. Necrotic volume of patients 2 and
3 were comparable, with a lower SUVmax (5.37) for
patient 3. This could explain the lower predicted prob-
ability for M1 (0.02) than for M2 (0.67), yielding a false
positive for M2. M1 (0.27) and M2 (0.20) well predicted
similar low probability for patient 4. The predicted prob-
ability for patient 5 led to a false negative for M1 (0.08)
and a true positive for M2 (0.57), still consistent with the
relatively low SUVmax (4.21) for this patient. Last, the
predicted probabilities for patient 6 with a SUVmax of
7.15 and a large necrotic volume led to a true positive
for M1 (0.67), illustrating its superiority over SUVmax in
this case, despite their consistency.
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F IGURE 4 Slice examples of radiomic decision maps DVM1 (a) and DVM2 (b), positron emission tomography (PET) (c), computed
tomography (CT) (d), T1 (e), and fat-suppressed T2 (f) images for six patients

These findings suggest that two biological local image
patterns were associated with the risk of lung metas-
tasis occurrence in this dataset: the development of
necrosis in the tumor and its high glucose metabolism.

3.5 Surrogate model

From our reading of the RDMs and the model equations,
and to assess the validity of our interpretations, we built
a simplified surrogate model from M1, namely M1ʹ. We
engineered simpler and more easily interpretable fea-
tures with the aim of describing the necrotic develop-
ment inside the anatomical volume of the tumor with
PET/CT images. We computed the absolute volume (V)
and the relative volume (rV) over ATV that were char-

acterized either by a low metabolism (<40% SUVmax
in PET), a hypodense signal (<20 or <30 HU in CT), or
a combined measure of these two patterns using the
union or the intersection operators. The log10 transfor-
mation was also applied to these new features as well
as to ATV,SUVmax,MTV,TLG,and the shape features to
increase the size of the feature set, account for skewed
distributions, and allow for more flexibility for the mod-
eling. We finally built M1ʹ by training a logistic model
with the predicted output of M1 as a target, following the
same machine learning procedure but using only these
features. All the new features are listed in Table S3 with
their definition.

As a result, three features were automatically selected
to approximate the M1 predictions: log10(SUVmax),
log10(HYPODENSE20 HU ∪ INACTIVEFDG V), and
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F IGURE 5 Joint scatter and kernel density estimation plot
comparing M1ʹ and M1 probabilistic outputs on the whole dataset.
The color of the dots represents the true label of the corresponding
patients (blue: no lung metastasis occurrence, red: lung metastasis
occurrence)

SHAPEELONGATION. The bagging linear decision func-
tion of M1ʹ, DM1′ , is reported in Equation (18) with the
SD associated with these features across the 1000
bootstrap samples. A comparison of the outputs of
models M1 and M1ʹ is shown in Figure 5.

DM1′ = 3.243 (±1.251) × log10 (SUVmax)

+ 2.070 (±0.745) × log10

(HYPODENSE20 HU ∪ INACTIVEFDG V)

+ 0.940 (±0.907) × SHAPEELONGATION

− 0.468 (±0.482) (18)

4 DISCUSSION

In this study,we proposed a method to identify and char-
acterize the tumor sub-regions that drive the predictions
of models built using engineered features. Indeed, even
if engineered radiomic features are mathematically well
defined, their interpretation often remains challenging.
Their combination in a multivariate model further compli-
cates this interpretation task. Our approach is based on
engineered features calculated at the voxel level using a
sliding window, followed by the averaging of voxel-based
feature values over the ROI to get one feature value per
ROI for subsequent modeling. When using generalized
linear models such as logistic regression, the backpro-

jection of the model coefficients in the voxel space yields
a decision map for each patient. These maps preserve
the probabilistic information that is captured in the ROI
space. The logistic activation of the mean voxel deci-
sion value within the ROI, added to the linear combi-
nation of the features that cannot be mapped, is equal
to the modeled probability of belonging to class 1 for
each patient. As such, the resulting decision maps are
directly related to the models they are mapping,and par-
tially show the marginal contribution of each and every
voxel in the patient ROI to their modeled risk of metasta-
sis occurrence. In the case of the combination of voxel-
level features with features with no local counterpart
such as shape features, the decision maps only explain
part of the model. Nevertheless, by exhibiting the most
locally contributing voxels and analyzing this jointly with
the input images, the proposed RDMs increase the inter-
pretability of the models.

Technically, our approach is comparable to the class
activation map (CAM) associated with deep learning
models.7 Indeed, the principle of CAM is to use the
global average pooling in a convolutional neural network
architecture to compute the average of all voxels in the
last feature maps in order to produce the output based
on a unique fully connected layer. Once the network is
trained, the backprojection of the linear coefficients of
this layer yields the CAMs. In case of binary classifica-
tions, a fully connected layer with a sigmoid activation
corresponds to a logistic regression,making our method
close to the deep learning CAM approach. The use of
the average feature value across voxels in the (last) fea-
ture maps enables training the models on images or
ROI of different size, and also makes the classification
models invariant by translation. This is a key difference
compared to other saliency approaches that do not use
global average pooling and connect one or several lay-
ers to all the voxels of the last feature maps. Besides,
when using several classification layers, the use of the
backpropagated gradients is not without risk when inter-
preting them as the importance of the voxels.13,14

Our approach uses a sliding window of chosen
dimensions to compute the local features for each and
every voxel in the input images to obtain decision maps
of relatively fine resolution, directly comparable to the
input images for joint analysis and allowing the identi-
fication of sub-regions within the tumor ROI. The iden-
tification of sub-regions might be useful in the context
of dose painting in radiation therapy for instance. This
contrasts with most of the fully downsampling strate-
gies used in deep learning that yield sparse or coarse
saliency maps. In terms of interpretability, selecting the
receptive field of the model by setting the size of the
sliding window defines how far the model captures infor-
mation around each voxel.

Compared to the classical ROI-based extraction, the
impact of random noise and artefacts or bias on voxel-
wise radiomics has been studied in Bernatowicz et al.41
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The authors concluded that voxel-level feature extrac-
tion is more affected than ROI-level feature calculation.
Indeed, when extracting a global radiomic feature for a
given patient, the voxels within the ROI are aggregated
to yield the scalar value of the feature.As the sliding win-
dow of our approach is smaller than the ROI, the aggre-
gation involves less voxels and is thus more affected by
noise and artifacts. A fair comparison between the two
approaches would need to first average (aggregate) the
voxel-wise feature values over the ROI (as we do for
our modeling step) before being compared with the ROI-
level feature values.Although this remains to be demon-
strated, it is expected that such averaging will smooth
out the impact of random noise and artifacts. Yet, when
backprojecting the decision functions at the voxel level
after modeling,we go back to a space that is more prone
to artifacts and noise. However, this can be an asset: by
highlighting patterns possibly due to noise or bias, the
approach will make them detectable, avoiding mislead-
ing interpretation, while such bias might remain unde-
tected in a complete ROI-based approach.

Our method also presents similarities with multiple
instance learning approaches,42 in which each classified
individual is represented by a “bag of instances.” Here,
the bag corresponds to the patient’s ROI,where the vox-
els inside this ROI represents the multiple instances.

RDMs use engineered features. Despite this can be
seen as a lack of optimization compared to deep learn-
ing approaches,this makes our method more suitable for
small cohorts.More importantly, deep features,although
optimized for a problem and defined locally, do not have
an explicit mathematical definition.12 The associated
mapping methods thus make it possible to locate the
relevant information but they do not explain how the sig-
nal is captured. Thanks to the engineered nature of the
features from which they are made up,RDMs are mathe-
matically well defined for each voxel inside the ROI, facil-
itating their quantitative interpretation.

Our method also handles models relying on features
without any local meaning, such as shape features.
This is thus compatible with models involving even non-
imaging features, such as clinical or genomic features.
Such holistic models could still benefit from our pro-
posed RDMs that characterize the local image patterns
partially contributing to the decision.

More generally, we can see radiomic models as tools
to automate and help physicians in patient manage-
ment. Deploying such models in practice requires high
generalizability, that is ability of being applicable in a
multi-center context43 and built with a sufficient amount
of data representative of the population. Beyond the
objective of deploying a predictive model in practice, we
can use models to generate intuitions and new insights
through their semantic interpretation. This would make
it possible to benefit from the information present in the
images even with small and heterogeneous datasets
incompatible with the deployment of predictive mod-

els, and enhance our understanding of the relationship
between the image content and what we want to predict.
This was the main goal of the present study,as opposed
to building the most accurate model given all informa-
tion available, in which case we would have included
all four imaging modalities in our model. Building trust-
worthy models implies to consider different aspects of
their transparency.44 The “algorithm transparency” cor-
responds to how the algorithm learns a model from
the data. “Global, holistic model interpretability” aims at
understanding how the model make predictions (e.g.,
which features are important, what links do they have
together and with the target, how can we explain the link
between the decision of the model and its inputs).Finally,
“local model interpretability” corresponds to examining
the prediction of the model at the individual scale (e.g.,
what is the output for a given patient and why). These
three aspects are covered by our method based on an
intrinsically fully interpretable logistic regression model.

In terms of prediction performance, the PET/CT
model M1 yielded higher ROC AUC and lower Brier
score loss than the MRI model M2. Nonetheless, M2
yielded higher ROC AUC than SUVmax, which was
the “conventional” biomarker with the highest ranking
performance. The performance of M2 together with
the necrotic sub-regions highlighted by the associated
RDMs underline the importance of necrosis assess-
ment to evaluate the risk of metastasis occurrence in
STS.The necrotic sub-regions were identically observed
in the RDMs of the PET/CT model M1, which also dis-
played high decision values in sub-regions exhibiting
high FDG uptake. This suggests that the combination of
necrosis and highly metabolically active tumor regions
at baseline is highly predictive of the risk of metastasis
occurrence.This interpretation was further supported by
the design of the simpler surrogate model M1ʹ, in which
SUVmax and the hypodense or non-metabolically active
tumor volume were automatically selected to produce
results close to those obtained with M1 (with a common
shape feature measuring the elongation of the tumor).
Due to the small size of the dataset, OOB ROC AUC
distributions have large confidence intervals. The dif-
ferences between the models and the biomarkers thus
have low statistical power and significance (bootstrap p-
value >0.05).

Our findings are consistent with image-based
studies,45–47 as well as with the STS grading sys-
tems based on the biopsy and showing ability to predict
metastasis development and mortality. Indeed, the
National Cancer Institute STS grading system relies
on histology, location, and tumor necrosis. The French
Fédération National des Centres de Lutte Contre le
Cancer grading system is also based on tumor differen-
tiation, mitotic activity, and tumor necrosis.48 In addition
to the necrosis that can be assessed in FDG PET/CT
by identifying hypometabolic and hypodense signal,
Rakheja et al.49 related FDG uptake to histological
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features and mitotic activity and showed a significant
positive correlation between mitotic count and SUVmax.

Our results are also consistent with the interpreta-
tions given by Vallières et al.21 when building models
from the same STS dataset. From their univariate cor-
relation results and their multivariate models, they sug-
gested that the presence of a necrotic sub-region inside
the tumor ROI would be associated with a higher risk of
metastasis. They also suggested that the presence of
sub-regions with high FDG uptake may play an impor-
tant role in the characterization of high-risk tumors.
These interpretations were based on the mathematical
definition of the engineered features.However, the fused
images from which the features were extracted did not
allow us to identify precisely what part of the information
was captured by each modality. In addition, the biological
interpretation of their results was not supported by any
local importance map and was thus limited to a global
interpretation.

Our results are thus consistent with up-to-date knowl-
edge of STS and the proposed method did not yield
any new discovery of predictive image patterns in this
medical context. Yet, this consistency suggests that this
completely data-driven method could be used when lit-
tle is known about the tumor features associated with an
outcome to highlight sub-regional patterns that drive the
model decision, which may facilitate the emergence of
new biological or medical hypotheses.

This study has some limitations. Some of these are
related to the modeling pipeline.First,despite their great
efficiency to find a good subset of features, sequen-
tial feature selection approaches are prone to overfit-
ting due to their intrinsic multiple-comparison mode of
operation. Moreover, although it has been shown that
this is most of the time not critical when using sim-
ple models,50 the evaluation of the performance can
lead to an optimistic bias when carried out simulta-
neously with hyperparameter optimization without per-
forming the so-called nested cross-validation. Unfortu-
nately, the number of available patients is often not suf-
ficient in radiomic studies to perform a nested approach,
as in the cohort of 51 patients analyzed here.As our goal
was to demonstrate how to get informative importance
maps rather than to deploy a predictive model, we used
a permutation test to ensure the patterns that were cap-
tured by the models were not noise.

Another limitation is that the average-aggregated fea-
ture values over the ROI are not necessarily equal to or
even correlated with the feature values directly calcu-
lated from the ROI. This makes our mapping approach
incompatible with already published radiomic signa-
tures, that are almost always calculated directly from
the ROI. In addition, some engineered radiomic fea-
tures remain challenging to interpret despite their pre-
cise mathematical definition and this complexity is only
compensated here by the local identification of the rel-
evant information without any loss in spatial resolution

compared to the original images. It might still be useful to
develop a methodology to easily convert a complicated
radiomic signature into a simpler and more robust one
that even might generalize better.A potential limitation is
also that using a sliding window could miss some global
features in the ROI, for instance features that measure
some joint information between voxels that are at a dis-
tance higher than the maximum distance in the sliding
window. Yet, we empirically observed that most of these
features had values highly correlated with the tumor vol-
ume or shape features (results not shown).Therefore,by
including the tumor volume and shape features in our
model, we do not expect to miss substantial information.

The identification of tumor sub-regions associated
with any classification problem might enable a better
understanding of the spatial components of the pathol-
ogy for each patient. If the identification and the inter-
pretation of these sub-regions can be associated with
causal relationships, one might be able to locally adapt
and personalize the treatment of each patient given the
phenotypic expression of his or her disease, as Reuzé
et al.51 proposed in the context of radiotherapy.

5 CONCLUSION

We have described a generic method based on locally
calculated engineered radiomic features to spatially and
quantitatively characterize the sub-regions and biolog-
ical signal driving the prediction of a radiomic model.
When the number of data is limited, we demonstrate
how that method yields a consistent spatial and quan-
titative interpretation of radiomic models and identi-
fies potential biomarkers useful for patient classifica-
tion or stratification. As being technically applicable to
any problem dealt with using engineered radiomics,
this method could help to increase our understanding
of the relevant information brought by medical images
when little is known about the tumor image-based fea-
tures associated with the question of interest. In addi-
tion, in the future, it could assist in the identification of
sub-regions strongly associated with poor outcome that
should be targeted for improved patient management.
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