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Abstract

MRI has a vital role in the assessment of intracranial lesions. Conventional MRI has limited specificity and
multiparametric MRI using diffusion-weighted imaging, perfusion-weighted imaging and magnetic resonance
spectroscopy allows more accurate assessment of the tissue microenvironment. The purpose of this educational
pictorial review is to demonstrate the role of multiparametric MRI for diagnosis, treatment planning and for
assessing treatment response, as well as providing a practical approach for performing and interpreting
multiparametric MRI in the clinical setting. A variety of cases are presented to demonstrate how multiparametric
MRI can help differentiate neoplastic from non-neoplastic lesions compared to conventional MRI alone.
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Key points

� Conventional MRI has a limited role in
differentiating tumours from various non-tumoural
lesions.

� Multiparametric MRI using diffusion-weighted im-
aging, perfusion-weighted imaging and magnetic res-
onance spectroscopy allows more accurate
assessment of intracranial lesions.

� Apparent diffusion coefficient, relative cerebral
blood volume and choline:creatine ratio are the
main multiparametric MRI parameters which are
useful for distinguishing between different entities.

� Multiparametric MRI is also helpful for grading and
treatment response assessment of brain tumours,
due to its ability to assess the tissue
microenvironment.

Introduction
MRI plays a major role in the diagnosis, grading, treat-
ment and treatment response assessment of brain tu-
mours and other intracranial lesions. Conventional MRI
provides the anatomical and structural details of lesions
in the neuraxis; however, its specificity is limited. Even
with recent improvements in contrast resolution, higher
magnetic field strengths and improved contrast agents,
tissue characterisation remains limited using conven-
tional imaging acquisitions. As a result of diagnostic un-
certainties, patients will undergo invasive biopsy of brain
lesions, which is not without risk [1]. Several adjunct
MR imaging techniques have been developed to quanti-
tatively measure a number of biophysical properties of

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: Vijay.Sawlani@uhb.nhs.uk
1University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth
Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, UK
2University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
Full list of author information is available at the end of the article

Insights into ImagingSawlani et al. Insights into Imaging           (2020) 11:84 
https://doi.org/10.1186/s13244-020-00888-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13244-020-00888-1&domain=pdf
http://orcid.org/0000-0001-6779-1255
http://creativecommons.org/licenses/by/4.0/
mailto:Vijay.Sawlani@uhb.nhs.uk


Fig. 1 Multiparametric MRI protocol for intracranial lesions

Fig. 2 Lymphoma. Conventional MRI Findings: a, b Axial T2W and post-contrast T1W sequences show a large homogenously enhancing lesion in
the left occipital lobe. c ADC map shows very low ADC (< 600 × 10−6 mm2 s−1) throughout the lesion. d PWI shows low perfusion throughout
the lesion compared to normal-appearing contralateral white matter. e, f MRS shows very high Cho/Cr ratio (> 6, thick arrow) and very high lipid
peaks in a non-necrotic appearing lesion (TE 30 ms and 135 ms, thin arrows). The low perfusion, very low ADC, very high lipid peak in a non-
necrotic appearing lesion and high choline peak are characteristic of lymphoma. Histopathology confirmed a diffuse large B cell PCNSL
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brain tissue in vivo, allowing regional changes in the tis-
sue microstructural environment to be better charac-
terised. These techniques include diffusion-weighted
imaging (DWI), perfusion-weighted imaging (PWI) and
magnetic resonance spectroscopy (MRS). DWI provides
information about cellularity and water movement, PWI
provides information about angiogenesis and vascularity
and MRS provides information about the composition of
various metabolites within the tissue. These quantitative
methods provide information about tumour cellularity,
proliferation, vascularity, vessel permeability and cell
membrane turnover. Changes in physiological processes
due to the nature of the underlying lesion are reflected
in the information obtained. There have been a number
of studies demonstrating that these techniques in com-
bination can help improve differentiation of neoplastic
from non-neoplastic lesions (for example, tumefactive
demyelination, tumefactive vasculitis and other inflam-
matory disorders) [2, 3], grading of brain tumours [4],
differentiation of glioblastoma pseudoprogression from
true progression [5] and response of brain metastases to

stereotactic radiosurgery (SRS) treatment [6]. Over time,
there has been development of these adjunct advanced
MRI techniques in isolation, beginning with MRS, DWI
and then PWI. In clinical practice and throughout the
literature, usually these techniques were compared with
each other; however, recent studies show that the infor-
mation gained from each of these techniques are com-
plementary. In this pictorial review, we illustrate the use
of a multiparametric MRI approach consisting of DWI,
PWI and MRS in clinical neuro-oncology practice to
help with the diagnosis of intracranial lesions, treatment
planning and assessing response to treatment.

MRI protocol
Our multiparametric studies are performed on a 3 T
scanner (Magnetom Verio; Siemens, Erlangen, Germany)
with a 32-channel phased-array head coil, although
such studies can also be performed on other similar
scanners and coils. Acquisition parameters are sum-
marised in Fig. 1. Axial T2-weighted (T2W) images,
T2W FLAIR and DWI (b value 1000) of the whole

Fig. 3 Low-grade glioma. Conventional MRI: (a) FLAIR, (b) T2W and (c) post-contrast T1W sequences show a diffuse abnormality in the left
temporal lobe without contrast enhancement. d ADC map shows high ADC throughout the lesion (1300 × 10−6mm2s−1). e PWI shows low
perfusion throughout the lesion (arrow) compared to normal-appearing white matter, and (f, g) MRS (TE 30 ms) shows slightly raised Cho/Cr ratio
(1.0), slightly low NAA/Cr (1.1) and very high mI/Cr ratio (0.9, arrow). Lipid or lactate peaks are not significantly elevated. Multiparametric MRI
appearances suggest no evidence of dedifferentiation. Stable appearances have been seen on follow-up imaging for over five years, confirming
the lesion’s low-grade nature
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brain are generally obtained first. This is followed by
dynamic susceptibility contrast-enhanced (DSC) perfu-
sion imaging using gradient-echo echo-planar imaging
(GE-EPI) during the first pass of a standard dose (7.5
mmol) bolus of gadolinium-based contrast agent
(Gadovist, Bayer Schering Pharma, Berlin, Germany)
administered intravenously at a flow rate of 6 ml/s. A
total of 80 imaging volumes are acquired at a tem-
poral resolution of 2.1 s with the bolus typically arriv-
ing between the 10th and 15th volume. This is
followed by post-contrast 3D T1-weighted (T1W)
magnetisation-prepared rapid acquisition with gradient
echo (MPRAGE) sequence acquired in the axial plane
with sagittal and coronal reformats.
MRS is performed using a combination of multi-voxel

(for tumoural and peri-tumoural regions) and single-
voxel point resolved spectroscopy PRESS sequences with
short echo (TE = 30 ms) and intermediate echo (TE =
135 ms). TE 135 ms is usually performed to show lactate

inversion at 1.3 ppm (J-coupling effect). Typically, 2D or
3D MR spectroscopic imaging (MRSI) is first performed
in the axial plane choosing a slice or slab with the largest
contrast-enhancing lesion area (or FLAIR if non-
enhancing), area with restricted diffusion, or high perfu-
sion. This is followed by single-voxel MRS with place-
ment of the volume-of-interest further guided by the
metabolic profiles estimated by MRSI. The single voxel
method is used to maximise diagnostic yield by combin-
ing information from contrast-enhancement, DWI, DSC
and MRSI to sample the most relevant part of the lesion
likely to provide the highest quality spectra.

MRI post-processing and analysis
Apparent diffusion coefficient (ADC) maps are calcu-
lated from the DWI on the MR scanner software (Mag-
netom VB17; Siemens, Erlangen, Germany). DSC data
are post-processed on a Siemens Leonardo workstation
(software version VB17; Siemens, Erlangen, Germany)

Fig. 4 Malignant transformation of low-grade glioma. a–c T2W, FLAIR and post-contrast T1W sequences demonstrate non-enhancing signal
abnormality in the left temporal lobe. Multiparametric MRI: d Heterogeneous ADC values throughout the lesion with focal areas of low ADC
(lowest observed 940 × 10−6 mm2 s−1, arrow). e High rCBV throughout the lesion (arrow) compared to normal-appearing white matter (3.5). f
Single-voxel spectroscopy shows very high Cho/Cr (2.3, arrow) and Cho/NAA ratios (3.1). g Histopathology from biopsy of the lesion shows low-
grade diffuse astrocytoma with mild to moderately pleomorphic astrocytic cells in a fibrillary background. There was discrepancy of histological
and genetic classification with morphological features of a low-grade glial neoplasm, but a convincing genetic profile of glioblastoma, overriding
the morphological appearances. h Follow-up imaging 6 months later shows contrast enhancement indicating malignant transformation on
conventional MRI
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using a global arterial input function (AIF) without leak-
age correction, producing maps of relative cerebral
blood volume (rCBV) and relative cerebral blood flow
(rCBF). MRS data are processed and fitted using the MR
scanner software (Magnetom VB17; Siemens, Erlangen,
Germany) to include peak integral values for N-acetylas-
partate (NAA), creatine (Cr), choline (Cho), myo-
inositol (mI) + glycine (Gly), glutamine + glutamate
(Glx) and lipids. ADC and rCBV values are measured
using a 3 mm region-of-interest (ROI). MRS data are
used to determine the maximum observed ratio of Cho/
Cr.

Clinical interpretation
Normal brain ADC values for cortical grey and white
matter are 833 × 10−6 mm2 s−1 and 701 × 10−6 mm2 s−1

respectively [7]. Mean ADC values in high-grade neo-
plastic lesions such as glioblastoma, anaplastic astrocy-
toma, and metastases have shown to be 700–780 × 10−6

mm2 s−1, lymphoma has shown to be 510 × 10−6 mm2

s−1 and low-grade tumours have shown to be 1090 ×
10−6 mm2 s−1 [8]. To calculate the rCBV ratio, the ROI
is generally compared with the normal-appearing
contralateral white matter. The mean rCBV ratios in
high-grade neoplastic lesions have shown to be 1.9, com-
pared to 1.3 in low-grade neoplastic lesions [9]. Norma-
tive values for Cho/Cr at TE 135 ms range from 0.7–1.0
in grey matter and 1.2–1.4 in white matter, with slightly
higher values seen in the brainstem and cerebellum [10].
Short TE (30 ms) shows more metabolites and is primar-
ily used for assessing tumoural and non-tumoural le-
sions. Normal Cho/Cr ratios using short TE MRS are 0.6
in grey matter and 1.0 in white matter [11]. High-grade
neoplastic lesions have shown to demonstrate a mean
Cho/Cr ratio of 2.4 on short TE MRS, compared with a
mean Cho/Cr ratio of 1.5 for low-grade neoplastic le-
sions [12]. As there is a wide variability of cut-off values
for each parameter in the literature, based on the results
of a number of studies, we defined high-grade neoplastic
lesions to have cut-off values of ADC < 1000 × 10−6

Fig. 5 Targeting biopsy for a non-enhancing tumour. Conventional MRI: a, b Post-contrast T1W and T2W sequences demonstrate a large non-
enhancing space occupying mass lesion without significant oedema. Multiparametric MRI: c, d Heterogeneous ADC and rCBV values throughout
the lesion. e Multi-voxel MRS clearly shows focal area of very high Cho/Cr (3.1) and very small lactate peak. f Targeted biopsy taken from the area
of highest choline peak (arrow). Histopathology shows anaplastic astrocytoma with moderately atypical astrocytic cells in a fibrillary background
with a few abnormal mitoses (WHO grade III).
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mm2 s−1, rCBV ratio > 2.0 and Cho/Cr ratio > 1.8 [12–
15]. We utilised these parameters semi-quantitatively by
defining the lowest ADC, highest rCBV and highest cho-
line values within the lesion. This multiparametric infor-
mation was read in combination with conventional
imaging, clinical findings and other investigations.

Neoplastic lesions
Lymphoma
Primary central nervous system lymphoma (PCNSL) is a
form of extranodal non-Hodgkin’s lymphoma and unlike
other brain neoplasms, resection of PCNSL rarely pro-
vides benefit, instead chemotherapy and radiotherapy
are preferred treatment choices [16]. Hence, it is import-
ant to differentiate lymphoma from high-grade glioma.
Conventional imaging appearances for PCNSL are an
avidly homogenously enhancing mass, which is T1
hypointense and T2 iso- to hypointense. There is little
mass effect for size and limited surrounding vasogenic
oedema. Multiparametric MRI in PCNSL demonstrates
a very low ADC suggesting dense cellular packing, lower

perfusion due to lack of angiogenesis, very high Cho/Cr
ratio due to high membrane turnover, high lipid peak at
1.3 ppm due to infiltration by macrophages even without
necrosis [17] and very low NAA levels [18]. Imaging fea-
tures of typical PCNSL is demonstrated in Fig. 2. How-
ever, it is important to note that PCNSL in
immunocompromised patients may be more heteroge-
neous, with central necrosis and haemorrhage.

Low-grade glioma
Low-grade gliomas are primary neoplasms of the brain
which are generally slow-growing and are typically diag-
nosed in young adults between ages 20 and 45 [19, 20],
but most will transform to a high-grade lesion, with the
median time being 56 months for grade II gliomas [21].
Low-grade gliomas are usually detected incidentally and
appear as an area of focal signal abnormality with no en-
hancement on conventional MRI. Multiparametric MRI
features of a low-grade glioma are a relatively high ADC
(> 1000 × 10−6 mm2 s−1) [14], low rCBV (< 2) [14], low
Cho/Cr ratio (< 1.8), high NAA and absence of lactate

Fig. 6 High-grade glioma. Conventional MRI: a, b Axial and coronal post-contrast T1W sequences, showing a well-defined lesion at the ponto-
medullary junction. Multiparametric MRI: c ADC map demonstrates low ADC (590 × 10−6 mm2 s−1). d PWI shows high perfusion (rCBV 2.8, arrow).
e, f MRS shows a high Cho/Cr ratio (2.9, arrow), low NAA/Cr ratio and presence of lipid peaks. MRI findings of a low ADC (< 1000 × 10−6 mm2

s−1), high rCBV (> 2) and high Cho/Cr ratio (> 1.8) are consistent with a high-grade glioma rather than a granuloma or abscess. The presence of
high choline levels in the perilesional area (not shown) favour high-grade glioma over a metastatic lesion. In this patient, an initial biopsy was
inconclusive and as a result of the multiparametric MRI findings, a decision to undergo further biopsy was overturned. The patient underwent
radiotherapy for presumed glioblastoma
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and lipids on MRS [22]. Imaging features of typical low-
grade glioma is demonstrated in Fig. 3.

Malignant transformation of low-grade glioma
The presence of contrast enhancement in a brain tumour
is often regarded as a sign of malignancy; however, non-
enhancing gliomas are malignant in approximately one
third of cases [23]. This has an impact upon treatment,
patient outcome and overall survival, as conventional MRI
has limitations for the grading of brain tumours. Trans-
forming low-grade gliomas can show changes in multi-
parametric features before contrast enhancement is seen
on conventional imaging. In the case of perfusion imaging,
a significant increase in rCBV can be seen up to 12
months before transformation is seen on conventional im-
aging [24]. Multiparametric MRI features of a transform-
ing low-grade glioma are focal low ADC (< 1000 × 10−6

mm2 s−1) [14], high rCBV (> 2) [14], high Cho/Cr ratio (>

1.8), low NAA and presence of lactate and lipids on MRS
[22, 25]. In the early stages of malignant transformation,
only one or two of the above parameters may be abnormal
focally within the tumour, and any longitudinal changes in
multiparametric information can suggest a transforming
tumour. Early detection of malignant transformation, be-
fore contrast enhancement is seen on conventional MRI,
will allow early initiation of appropriate treatment, which
will ultimately have an effect on improving the patient’s
overall survival. Typical multiparametric MRI features of a
transforming low-grade glioma is demonstrated in Fig. 4.

Targeting biopsy for a non-enhancing tumour
There is substantial risk of inaccuracy in stereotactic bi-
opsy, with under-grading of WHO grade III tumours re-
ported in 28% of cases [26]. The successful stereotactic
biopsy diagnosis rate utilising multiparametric MRI tech-
niques has shown to be more than 93% [27]. To get a

Fig. 7 Gliomatosis cerebri. Conventional MRI: a, b Axial FLAIR and post-contrast T1W sequences, showing diffuse infiltrative non-enhancing deep
white matter lesion. Multiparametric MRI: c ADC map demonstrates no areas of low ADC. d However, PWI shows a focal area of slightly raised
perfusion in the right frontal centrum semiovale (arrow) compared to normal-appearing white matter. e, f MRS shows high mI/Cr ratio, slightly
raised Cho/Cr ratio (1.2) and slightly low NAA/Cr ratio. Focal raised perfusion and choline area was chosen for the optimal site of biopsy
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better biopsy yield and to avoid sampling error for non-
enhancing tumours, the target of biopsy can be selected
from a high choline, high rCBV or low ADC location. A
case demonstrating the use of choline map produced by
multi-voxel spectroscopy for choosing the highest choline
peak to target biopsy in a non-enhancing tumour is shown
in Fig. 5.

High-grade glioma
Rim-enhancing lesions have a wide differential diagnosis
on conventional MRI, with various treatment strategies.
The differential diagnoses of thick rim and nodular en-
hancing lesion include a chronic infective lesion, a
granulomatous lesion, metastasis and primary high grade
glioma. High-grade glioma is an aggressive neoplasm
which requires early diagnosis and neurosurgical
intervention.
Typical multiparametric MRI appearances of a high-

grade glioma are demonstrated in Fig. 6, which given the
difficult location for biopsy had significant implications
for changing the course of patient management.

Gliomatosis cerebri
Gliomatosis cerebri is a rare growth pattern of infiltra-
tive diffuse glioma with an incidence of 0.1 per million
[28], containing areas of WHO grade II, III tumours and
rarely grade IV tumours. It has relatively non-specific
findings on conventional MRI and sometimes difficult to
appreciate on histopathology unless used in combination
with radiological findings. Multiparametric MRI can help
in making the tumour diagnosis, identifying areas of
early transformation and a suitable biopsy target, given
the widespread changes [29]. A case of gliomatosis cere-
bri is shown in Fig. 7.

Glioblastoma—treatment response
Results from a recent meta-analysis show that following
chemo-radiotherapy treatment of glioblastoma, 36%
demonstrate pseudoprogression [30]. This is defined as
an increase in enhancement on the first scan after treat-
ment that subsequently resolves on its own without fur-
ther treatment. Conventional MRI cannot differentiate
between pseudoprogression and true tumour

Fig. 8 Glioblastoma—pseudoprogression. a Pre-operative T1-weighted image shows a right deep parietal region glioblastoma. b Conventional
post-contrast T1-weighted image approximately 4 weeks after chemoradiotherapy treatment demonstrates a significant increase in the contrast-
enhancing area (arrow). Multiparametric MRI at this timepoint demonstrates: c, d areas of high ADC (1186 × 10−6 mm2 s−1), (e) a low rCBV ratio
(1.4, arrow) on PWI, (f, g) a low Cho/Cr ratio (1.4), a low Cho/NAA ratio and presence of lipid and lactate on MRS. Combination of parameters
suggest pseudoprogression. h Clinical follow-up and conventional post-contrast T1W sequence at six months confirms a decrease in the amount
of enhancing disease, indicating pseudoprogression
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progression. Multiparametric MRI techniques probing
the physiological and metabolic characteristics provide a
more accurate assessment of changes following treat-
ment than conventional MRI alone [31–37]. The typical
multiparametric MRI appearances in pseudoprogression
are high ADC (> 1000 × 10−6 mm2 s−1), low rCBV ratio
(< 2) and a low Cho/Cr ratio (< 1.8) as demonstrated in
the case shown in Fig. 8. On the contrary, typical multi-
parametric MRI appearances in true progression are
general/focal low ADC (< 1000 × 10−6 mm2 s−1), high
rCBV ratio (> 2) and a high Cho/Cr ratio (> 1.8) as
shown in the case shown in Fig. 9.

Metastasis—treatment response
Stereotactic radiosurgery (SRS) has become increasingly
important in the management of brain metastases [38].
Following SRS, one-third of brain metastases increase in
size, suggesting treatment failure [39]. Conventional
MRI cannot differentiate between SRS-induced changes
and tumour recurrence; however, combining multipara-
metric MRI techniques has shown promise in answering

this clinical question [6]. The typical appearances in
SRS-related treatment effect are high ADC (> 1000 ×
10−6 mm2s−1), low rCBV ratio (< 2.1) and a low Cho/Cr
ratio (< 1.8) and presence of lipid suggesting necrosis as
demonstrated in the case shown in Fig. 10. On the con-
trary, typical multiparametric MRI appearances in recur-
rent tumour are general/focal low ADC (< 1000 × 10−6

mm2 s−1), high rCBV ratio (> 2.1) and a high Cho/Cr ra-
tio (> 1.8) suggesting cellularity and membrane turnover
as shown in the case shown in Fig. 11.

Non-neoplastic lesions
Abscess
Cerebral abscesses account for 1–8% of intracranial mass
lesions [40]. Diagnosis can be challenging as abscesses
on conventional imaging can mimic primary necrotic tu-
mours and metastases. By using MRS and DWI, the sen-
sitivity/specificity for diagnosis is up to 100% [41, 42].
Multiparametric MRI features of abscess are uniformly
low ADC due to the higher viscosity of fluid. The ADC
values are typically less than 700 × 10−6 mm2 s−1 [43],

Fig. 9 Glioblastoma—true progression. a Immediate post-operative contrast-enhanced T1-weighted scan following resection of a right fronto-
parietal glioblastoma. b Conventional post-contrast T1-weighted image one month after chemoradiotherapy treatment demonstrates increase in
the enhancing lesion size with associated oedema. Multiparametric MRI at this timepoint demonstrates: c, d areas of low ADC (903 × 10−6 mm2

s−1, arrow), (e) a high rCBV ratio (3.0, arrow) on PWI, (f, g) a high Cho/Cr ratio (2.3, arrow), high Cho/NAA ratio and presence of lipid/lactate on
MRS. All parameters suggest a poor response and disease progression. h Six-month follow-up conventional post-contrast T1W sequence confirms
an increase in enhancing disease, indicating true progression
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which is lower than expected to be seen in high-grade
tumours or metastases (700–780 × 10−6 mm2 s−1). Per-
fusion at the margins and centre of the lesion is usually
low. MRS features of abscess are different from tumours
and show predominantly protein breakdown products
on the right side of the ppm scale, including amino acid,
acetate and succinate peaks as well as the presence of a
lactate peak. Typical multiparametric appearances of an
abscess are shown in Fig. 12.

Tuberculoma
Intracranial tuberculoma is a rare cause of a space-
occupying lesion composed of caseating granuloma from
systemic spread of tuberculosis infection, but potentially
lethal as it can rupture and cause tuberculous meningi-
tis. Conventional MRI appearances of tuberculoma in-
clude a T2W hypointense lesion with rim and ring
enhancement. The differential diagnoses with this ap-
pearance are between tumour, abscess or granuloma.
Multiparametric MRI usually demonstrates an inter-
mediate level of ADC, elevated perfusion and high lipids
on MRS, with a normal spectroscopic pattern in the

perilesional area. ADC can be variable according to the
stage of disease, degree of cellular infiltration and lique-
factive necrosis [44]. Elevated rCBV is seen in tubercu-
loma, secondary to angiogenesis and inflammation. The
lipids at 1.3 ppm seen on MRS in tuberculoma reflect
the mycobacterium wall and moderately high choline is
present due to inflammatory activity [45]. High-grade
tumour has shown to demonstrate a higher mean Cho/
Cr ratio compared to tuberculoma, 2.1 and 1.3 respect-
ively on short TE MRS [46]. A case of tuberculoma is
shown in Fig. 13.

Neurosarcoidosis
Sarcoidosis is an idiopathic systemic disease with non-
caeseating granuloma. It typically presents as multiple
enhancing parenchymal and/or meningeal lesions and
can be extremely difficult to differentiate from high-
grade glioma and metastases. In our experience, multi-
parametric MRI usually shows focal areas of low ADC,
low perfusion, moderately high Cho/Cr ratio, presence
of glutamate and glutamine peak at 2.4–2.6 ppm, large
lipid peaks at 0.9 and 1.3 ppm with an absence of a

Fig. 10 Brain metastasis—treatment effect. Melanoma metastasis. a Enhancing lesion in the right basal ganglion on axial T1 post-contrast MRI. b,
c Post-SRS T2W and post-contrast T1W images shows increase in lesion size and oedema. Multiparametric MRI demonstrates: (d) an intermediate
rCBV ratio (< 2.1) on PWI, (e) a high ADC (1159 × 10−6 mm2 s−1) and (f) low Cho/Cr ratio (1.6) and very high lipids (arrow) suggesting necrosis. g
Three-month follow-up post-contrast T1W scan showed regression of the lesion
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lactate peak suggesting necrosis. A case of neurosarcoi-
dosis is demonstrated in Fig. 14a–h. Follow-up MRI
shows near complete resolution of the lesion (Fig. 14i–l).
A response to steroid treatment is usually helpful in
making diagnosis.

Encephalitis
Bickerstaff’s Brainstem encephalitis is a rare disorder
characterised by acute ophthalmoplegia, ataxia and al-
tered sensorium [47]. It is now increasingly being recog-
nised as anti-GQ1b syndrome or spectrum disorder [48].
Brainstem signal abnormality has a wide differential of
imaging appearances on conventional MRI and may
mimic glial tumour. The treatment options of these en-
tities vary significantly. A case of Bickerstaff brainstem
encephalitis is shown in Fig. 15a–h. In this case, the lack
of enhancement, low rCBV, high ADC, normal choline
as well as presence of glutamine and glutamate at 2.3
and 2.4 ppm excluded glioma. Following treatment with
intravenous methylprednisolone, follow-up MRI shows
complete resolution (Fig. 15i–k).

Tumefactive demyelination
Multiple sclerosis is a chronic inflammatory disease of
the central nervous system. ‘Tumefactive demyelination’
is the term given when clinical and imaging findings are
indistinguishable from those of a neoplastic mass lesion.
This is estimated to occur in about 1–2 out of every
1000 cases of multiple sclerosis [49]. Acute tumefactive
lesions can have ill-defined borders, mass effect, sur-
rounding oedema, central necrosis and contrast en-
hancement, which mimic tumour [50]. They usually
demonstrate central high ADC, a thin rim of low ADC
(representing the active zone of demyelination), gener-
ally low rCBV, high Cho/Cr ratio, high glutamate and
glutamine (demonstrating inflammatory activity) and
presence of lipid and lactate. The metabolic profile from
the adjacent perilesional area usually shows a similarly
abnormal spectral pattern. MRS should not be read in
isolation as it can mimic tumoural spectrum; however,
the combination of parameters will lead to the correct
diagnosis of tumefactive demyelination. A case of tume-
factive demyelination is shown in Fig. 16a–f. The patient

Fig. 11 Brain metastasis—recurrent tumour. Brain metastasis from primary breast carcinoma. a Brain metastasis in the right mesial frontal lobe
motor area on axial T1-weighted post-contrast MRI. b Post-SRS scan at 29 weeks demonstrates increase in the lesion size with oedema.
Multiparametric MRI demonstrates: (c) a borderline ADC (999 × 10−6 mm2/s), (d) a borderline rCBV ratio (1.9, arrow) on PWI and (e) highest Cho/
Cr ratio of 3.6 (arrow) on multi-voxel MRS (TE = 30 ms). Two of the three parameters (DWI and MRS) suggest poor response and disease
progression. f Surgical decision was taken to operate on the motor cortex and excision of right frontal tumour was performed. Histopathology
demonstrates poorly differentiated metastatic adenocarcinoma with discernible focal ductal structures and tumour well demarcated from
adjacent brain tissue
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avoided biopsy and follow-up imaging shows significant
improvement (Fig. 16g–i).

Corpus callosum—epidermoid-like lesion
The main differential diagnosis for a mass lesion involv-
ing the corpus callosum lesion is between glioblastoma
and lymphoma. On conventional imaging, it is some-
times difficult to differentiate between these two entities
and other less common lesions. Multiparametric MRI
provides additional information to help in distinguishing
benign from malignant lesions of the corpus callosum
and tumoural from non-tumoural lesions. A case of a
benign epidermoid-like lesion of the corpus callosum is
shown in Fig. 17.

Opportunities and challenges
There are some inherent challenges for adoption of multi-
parametric techniques in routine clinical practice, such as
brain regions affected by susceptibility, small lesions and
non-enhancing lesions. However, the adoption and wide-
spread clinical use of multiparametric MRI protocols is
improving with the use of higher magnetic field strength

magnets, specialised coils and readily available vendor
post-processing tools. We have incorporated a multipara-
metric MRI protocol consisting of DWI, PWI and MRS
into our routine clinical practice for neuroimaging and
our single-centre experience shows that these techniques
clearly make a positive difference for individual patient
management. It helps make more informed decisions at
the tumour board (multi-disciplinary team) meetings, re-
moving some uncertainty and leading to patients starting
appropriate treatment earlier, which improves the overall
survival rate and outcome. It is imperative that multipara-
metric information is read in combination with structural
MR sequences, such as T1W, T2W, FLAIR, SWI, GRE to
further characterise lesions. These semi-quantitative mul-
tiparametric parameters (ADC, rCBV, Cho) should be
evaluated comprehensively and in conjunction with each
other, rather than in isolation to narrow the differential
diagnosis. With advances in these techniques, neuroradi-
ology is in a unique position to evaluate the whole tumour
and peri-tumoural environment, which could be a big
limitation for histopathology, as commonly noticed in bi-
opsy sampling error [26]. It is not uncommon for

Fig. 12 Abscess. Conventional MRI: a, b T2W and post-contrast T1W sequences demonstrate a ring-enhancing mass lesion in the left frontal lobe
with surrounding oedema. c, d DWI and ADC sequences show low ADC (600 × 10−6 mm2 s−1, arrow) throughout the lesion. e PWI demonstrates
significantly lower perfusion (arrow) than the contralateral white matter. f, g MRS shows high lipid as well as the presence of amino acid (0.9–1.0
ppm), acetate (1.92 ppm) and succinate peaks (2.42 ppm). These characteristic MRS findings in combination with the very low ADC and low
perfusion are diagnostic of abscess. Diagnosis was confirmed on aspiration which revealed colonies of gram-positive cocci
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histopathology results to be re-reviewed following incorp-
oration of these adjunct techniques in clinical practice,
leading to a change in patient management.
There has been improvement in the standardisation of

acquisition techniques over time, particularly with the
publication of white papers on imaging [51, 52]. How-
ever, the cross-site and cross-vendor standardisation is
still difficult to address, as there is some variability of
threshold values and limited understanding of combin-
ing the parametric information. However, this will fur-
ther improve with routine incorporation of these
techniques in clinical practice with larger datasets and
multi-centre studies.

Conclusion
Through this educational pictorial review, we have pre-
sented a variety of cases to demonstrate that multipara-
metric MRI using DWI, PWI and MRS in conjunction
with conventional MRI is helpful for differentiating neo-
plastic from non-neoplastic lesions in the brain. It also
helps in the grading of tumours, selecting biopsy targets
particularly in non-enhancing lesions and assessing
treatment response. We have also presented a practical
approach to perform multiparametric MRI protocol in
routine clinical practice.

Fig. 13 Tuberculoma. Conventional MRI Findings: a, b Axial T2W and post-contrast T1W sequences show T2W hypointense confluent lesions in
the right frontal lobe with extensive perilesional oedema and enhancement. Multiparametric MRI: c ADC map shows intermediate values (900 ×
10−6 mm2 s−1), (d) PWI shows perfusion higher than the contralateral white matter, (e, f) MRS shows very high levels of lipid at 1.3 ppm (thin
arrows), without any lactate. There is slightly elevated Cho/Cr ratio (1.5) on short TE MRS (thick arrow), moderately low NAA/Cr ratio and absence
of mI. In this case of tuberculoma, the combination of a T2W hypointense lesion, raised rCBV, raised lipids and moderately increased Cho/Cr ratio
helped to make the diagnosis. The patient commenced anti-tuberculosis treatment, and surgical intervention was avoided.
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Fig. 14 Neurosarcoidosis. Known case of systemic sarcoidosis. Conventional MRI Findings: a, b Axial and coronal T2W, (c) axial FLAIR and (d) post-
contrast T1W sequences, showing a diffuse infiltrative lesion with enhancing foci in the right cerebellar peduncle extending to the brainstem,
mimicking tumour. Multiparametric MRI: e DWI shows focal areas of low ADC. f PWI shows low perfusion in comparison to the contralateral side.
g MRS with a short TE (30 ms) shows moderately high Cho/Cr ratio (< 2), near normal NAA/Cr and mI/Cr, presence of glutamate and glutamine
at 2.4–2.6 ppm and large lipid peaks at 0.9 and 1.3 ppm suggesting necrosis. h MRS with a TE 135 ms shows slightly low NAA/creatine ratio and
absence of lactate. In this case, the findings of low perfusion (< 2), absence of a lactate peak and presence of glutamine and glutamate favour an
inflammatory aetiology such as neurosarcoidosis rather than a high-grade glioma. A tapering dose of oral prednisolone was commenced, during
which neurological symptoms improved. Three-month follow-up MRI; (i) axial T2W, (j) post-contrast T1W, (k) FLAIR and (l) ADC sequences show
near complete resolution of the lesion after treatment with steroids
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Fig. 15 Bickerstaff brainstem encephalitis. Conventional MRI Findings: (a) Axial T2W, (b, c) sagittal and coronal FLAIR and (d) axial post-contrast
T1W sequences, show a diffuse high signal lesion in the pons with no enhancement post-contrast. Multiparametric MRI: e, f DWI shows high ADC
throughout the lesion (> 1000 × 10−6 mm2 s−1). g, h MRS shows normal mI/Cr, normal Cho/Cr (arrow) and normal NAA/Cr ratios and minimally
increased glutamine and glutamate peaks (2.3 and 2.4 ppm). PWI (not shown) had low rCBV compared to normal-appearing white matter. The
lack of enhancement, low rCBV, high ADC and normal choline exclude glioma. These multiparametric MRI features in conjunction with an acute
presentation favour an inflammatory lesion. Two-month follow-up imaging: (i) axial T2W, (j) FLAIR and (k) ADC sequences show lesion regression
and normalisation of diffusion. In this case, CSF analysis revealed antiganglioside antibodies consistent with a diagnosis of Bickerstaff
brainstem encephalitis
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Fig. 16 Tumefactive demyelination. Conventional MRI: a, b T2W and post-contrast T1W sequences reveals a large heterogeneous space
occupying mass lesion and diffuse pattern of enhancement. Multiparametric MRI: c, d DWI and ADC images show high ADC centrally (> 1000 ×
10−6 mm2 s−1) and a thin rim of low ADC reflecting advancing edge of demyelination (arrow). e MRS shows a high Cho/Cr ratio (6.4), near
normal NAA/Cr ratio, high glutamate and glutamine (arrow), low mI/Cr ratio and the presence of lipid and lactate at 0.9 ppm and 1.3 ppm
respectively. f The metabolic profile from the adjacent perilesional area also shows a similarly abnormal spectral pattern. PWI (not shown)
demonstrated a low rCBV except in the anterior-superior component. The striking presence of glutamine and glutamate on MRS, the
enhancement pattern and generally low perfusion favour an inflammatory lesion, as opposed to high-grade glioma or lymphoma. The patient
made a recovery on methylprednisolone. One-month follow-up imaging: (g) Axial T2W, (h) post-contrast T1W and (i) ADC map shows significant
improvement in mass effect, midline shift and overall volume of the lesion
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