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Aptazyme and CRISPR/Cas gene editing system were widely used for regulating gene
expression in various diseases, including cancer. This work aimed to reconstruct CRISPR/
Cas13d tool for sensing hTERT exclusively based on the new device OFF-switch hTERT
aptazyme that was inserted into the 3’ UTR of the Cas13d. In bladder cancer cells, hTERT
ligand bound to aptamer in OFF-switch hTERT aptazyme to inhibit the degradation of
Cas13d. Results showed that engineered CRISPR/Cas13d sensing hTERT suppressed
cell proliferation, migration, invasion and induced cell apoptosis in bladder cancer 5637
and T24 cells without affecting normal HFF cells. In short, we constructed engineered
CRISPR/Cas13d sensing hTERT selectively inhibited the progression of bladder cancer
cells significantly. It may serve as a promising specifically effective therapy for bladder
cancer cells.
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INTRODUCTION

Bladder cancer is one of the most common urologic neoplasms all over the world (Siegel et al., 2020).
About 50% of bladder cancer patients will develop metastases within two years after diagnosis of
bladder cancer (Sternberg et al., 2013). For bladder cancer patients with advanced metastasis,
chemotherapy is the main treatment (Lenis et al., 2020). However, severe adverse reactions are
caused due to poor specificity of chemotherapy drugs (Lenis et al., 2020). Thus, finding a highly
specific targeted therapy for bladder cancer is of great value for bladder cancer patients.

Gene expression can be controlled by various tools including ligand-dependent small self-cleaving
ribozymes (Lee et al., 2016). These ribozymes are named as aptazymes with properties of small,
modular and no need of regulatory protein factors and have promising use in clinical applications
(Felletti et al., 2016). Ribozyme platform, a communicationmodule and aptamer are three main parts
of the aptazymes (Nomura et al., 2012). The hammerhead ribozyme (HHR) is the common ribozyme
platform (Zhong et al., 2016). When aptamer combines with ligand, the induced conformational
change will be transferred to HHR via the communication module, generating cleavage activity
(Spöring et al., 2020). OFF-switch and ON-switch are two types of aptazymes (Nomura et al., 2013;
Beilstein et al., 2015; Yokobayashi, 2019). OFF-switch represents that gene expression is suppressed
without corresponding ligand (Yokobayashi, 2019).

CRISPR/Cas13 is the class II type VI CRISPR (clustered regularly interspaced short palindromic
repeats) gene editing tool (Huynh et al., 2020). A guide RNA (CRISPR-RNA, crRNA) and Cas13 are
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two components in this system (Huynh et al., 2020). It can target
RNA substrate instead of DNA (Makarova et al., 2020). There are
four subtypes of Cas13, including Cas13a, Cas13b, Cas13c and
Cas13d and Cas13d is the smallest protein (Makarova et al.,
2020). Compared with RNA interference (RNAi), CRISPR/Cas13
shows high efficiencies and on-target effects (O’Connell, 2019).
CRISPR/Cas13 has been used in various fields. For example,
Gootenberg et al. (2017) . had created a CRISPR/Cas13a-based
molecular detection platform to distinguish genotype human
DNA, pathogenic bacteria and identify mutations in cell-free
tumor DNA (Gootenberg et al., 2017). Wang et al. (2019).
reported that the formation of glioma intracranial tumors in
mice was inhibited significantly using the collateral effect of
CRISPR/Cas13a (Wang et al., 2019). A recent study showed
that lung cancer cell viability was decreased significantly via
CRISPR/Cas13a targeting EML4-ALK (Saifullah et al., 2020).

In our previous studies, we have shown that compared with
normal cells, hTERT only existed in bladder cancer cells and it
may be regarded as a specific ligand in bladder cancer (Liu et al.,
2014; Huang et al., 2017). In this study, engineered CRISPR/
Cas13d was constructed to selectively suppress the progression of
bladder cancer via sensing hTERT ligand. The hTERT OFF-
switch aptazyme was synthesized and inserted into the 3’UTR of
Cas13d. MYC is an oncogene in bladder cancer and crRNA was
designed to target MYC. As we expected, engineered CRISPR/
Cas13d inhibited the mRNA and protein levels of MYC, and thus
suppressed cell proliferation, migration, invasion and induced
apoptosis of bladder cancer cells in vitro. However, there was no
effects in normal human foreskin fibroblast (HFF) cells. In short,
engineered CRISPR/Cas13d sensing hTERT may be another
highly effective approach for kill bladder cancer cells specifically.

MATERIALS AND METHODS

Cell Culture
Human foreskin fibroblast (HFF) was purchased from the Type
Culture Collection of the Chinese Academy of Sciences, Shanghai,
China. Human bladder cancer cell lines T24 and 5637 were
purchased from the American Type Culture Collection
(ATCC, Manassas, VA). T24 and 5637 were cultured from
bladder cancer tissues with the histological grade of G3 and
G2, respectively. These cells were cultured according to the
manufacturer’s protocol.

Cell Transfection
HFF or bladder cancer cells were seeded in plates. The
corresponding plasmids were transfected into cells with
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, United States)
according to the manufacturer’s instructions.

RT-qPCR
TRIzol reagent was used to isolate total RNA from cells. A
PrimeScript RT Reagent Kit with gDNA Eraser (Takara,
Dalian, China) was utilized to synthesize the first strand of
cDNA for detection of MYC and GAPDH. Quantitative PCR
was then performed using the SYBR Premix Ex TaqTM kit

(Takara, Dalian, China) on the Roche lightcycler 480 Real-
Time PCR System. The comparative 2−ΔΔCT method was used
to analyze the expression levels.

Vector Construction
Inactivated aptazyme sensing hTERT included hTERT aptamer
and hammerhead ribozyme. The sequence of hTERT aptamer or
hammerhead ribozyme was shown in the previous studies (Chen
et al., 2010; Varshney et al., 2017). The sequence of hTERT
aptamer is 5’-AGACAAGAAUAAAACGCUCAAUAUUGG
GCUUUUAGCUUCUUGGUUGGAUAAUAGAUACACAUU
CGACAGGAGGCUCACAACAGGC-3’. The inactivated
aptazyme sensing hTERT was inserted into 3’ UTR of the
Cas13d (Addgene 109049) or downstream of the Renilla
luciferase cassette in psiCHECK-2 (Promega). The crRNA
targeting MYC mRNA was designed according to a previous
study (Zhu et al., 2018). The sequence of crRNA used in this study
was 5’-ACUCGCUGUAGUAAUUCCAGCGAGAGGCA-3’.

Luciferase Reporter Assay
The psiCHECK-2 vectors with inactivated aptazyme sensing
hTERT were transfected into HFF or bladder cancer cells.
Renilla and firefly luciferase activities were tested with the
dual-luciferase reporter assay system (Promega, Madison, WI,
United States) according to the user manuals.

Cell Proliferation Assays
Cell Counting Kit-8 (CCK-8) assay and colony formation assay
were used to detect engineered CRISPR/Cas13d on cell
proliferation. For CCK-8 assay, 2,000 cells/well were cultured
in 96-well plates. 10 μl CCK-8 reagent was added to each well for
0.5 h. The absorbance wasmeasured at 450 nm using amicroplate
reader. For colony formation assay, 1,000 cells/well were plated
onto six-well plates, and were incubated at 37°C and 5% CO2.
After about 2°weeks, colonies were fixed using 0.05% crystal violet
in 4% paraformaldehyde and counted using Image J program.

Cell Apoptosis Assay
The FITC Annexin V Apoptosis Detection Kit (TransGen, Peking,
China) was utilized to double stain cells with FITC-Annexin V and
PI according to the manufacturer’s instructions. Right lower
quadrant represents the percentage of early apoptosis cells.

Cell Migration and Invasion Assays
100% confluence of bladder cancer/normal cells were scratched
via a sterile 200 μl pipette tip. Images were taken from per well at
0 and 24 h. The migration distance between 0 and 24 h in each
group was calculated. For cell invasion assay, cells were seeded to
the upper chambers of the Transwell (Millicell, Merk KGaA).
After 24 h, cells on the underside chambers were fixed in 4%
paraformaldehyde for 30 min and stained with 0.1% crystal violet
for 30 min and captured using a microscope. Quantification of
the migrated cells was performed by counting cell numbers.

Western Blot
RIPA Lysis Buffer (#P0013B; Beyotime) was used to extract
protein. Protein concentrations were measured using
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Bicinchoninic Acid Kit (Sigma-Aldrich) according to the
manufacturer’s protocol. Cell lysates were resolved by SDS-
PAGE and transferred onto PVDF membranes. Membranes
were blocked for 1 h with 5% non-fat milk in TBST and
incubated overnight at 4°C with primary antibodies and
required secondary antibodies conjugated to horseradish
peroxidase and developed by chemiluminescent substrates.

Statistical Analysis
All the above experiments were performed at least three times in
this study. SPSS software version 22.0 (SPSS Inc., Chicago, IL,
United States) was used to analyze all statistical analysis. All data
are presented as the mean ± standard error (SD). Student’s t-test,
was used to analyze the group difference. A p-value < 0.05 (two-
sided) was regarded as statistical significance.

RESULTS

The Expression of Renilla Luciferase Was
Stable in Bladder Cancer Cells
The hTERT OFF-switch aptazyme was constructed as described
in the Materials and Methods section. The hTERT aptazyme was
synthesized and inserted into the 3’UTR of Renilla luciferase gene
in psiCHECK-2 vector (Figure 1A). As shown in Figure 1B,

compared with the NC aptazyme group, the relative luciferase
activities of hTERT aptazyme group were no difference in HFF.
However, the relative luciferase activities of hTERT aptazyme
group was increased significantly in bladder cancer 5637 and T24
cells. It represents that hTERT ligand bound to OFF-switch
aptazyme and restrained the degradation of Renilla luciferase.

Engineered CRISPR/Cas13d Sensing
hTERT Selectively Suppressed the mRNA
and Protein Levels of MYC
As shown in schematic diagram in Figure 2A, the sequence of
hTERT OFF-switch aptazyme was inserted into the 3’UTR of
Cas13d. The crRNA targeting oncogene MYC mRNA was
designed. In HFF, the expression of hTERT ligand was very
low or loss, and induces the degradation of Cas13d. However,
Cas13d is highly expressed in cancer cells and with the guidance
of crRNA targeting MYC mRNA, Cas13d binds to MYC mRNA
results in degradation of MYC expression at mRNA and protein
levels. Finally, the progression of bladder cancer is suppressed. In
order to validate this mechanism of engineered CRISPR/Cas13d
sensing hTERT, we detected the mRNA and protein expression
levels of MYC. TheMYCmRNA expression levels were decreased
significantly between NC aptazyme and hTERT aptazyme group
in bladder cancer 5637 and T24 cells. However, it was no
difference in HFF (Figure 2B). Similarly, the MYC protein
levels were selectively inhibited markedly in bladder cancer
5637 and T24 cells except HFF. In short, the mRNA and
protein levels of MYC were restrained selectively in bladder
cancer without affecting normal cells via engineered CRISPR/
Cas13d sensing hTERT.

Bladder Cancer Cell Proliferation Was
Selectively Inhibited by Engineered
CRISPR/Cas13d Sensing hTERT
Next, the effects of engineered CRISPR/Cas13d sensing hTERT
were detected in bladder cancer cells using CCK-8 and colony
formation assay. Cell growth was not changed in HFF between
NC aptazyme and hTERT aptazyme group (Figure 3A).
However, compared with NC aptazyme set, cell proliferation
of bladder cancer 5637 and T24 cells was suppressed significantly
(Figures 3B,C). Analogously, colony formation was no difference
between these two objects. Nonetheless, bladder cancer 5637 and
T24 cell colony was inhibited dramatically between NC aptazyme
and hTERT aptazyme group (Figure 3D). All in all, these results
demonstrated that engineered CRISPR/Cas13d sensing hTERT
selectively restrained bladder cancer cell proliferation.

Bladder Cancer Cell Apoptosis Was
Selectively Promoted by Engineered
CRISPR/Cas13d Sensing hTERT
The FITC Annexin V Apoptosis Detection Kit was used to
measure the effects of engineered CRISPR/Cas13d on cell
apoptosis in bladder cancer cells. As shown in Figure 4A, cell
apoptosis was not changed between NC aptazyme and hTERT

FIGURE 1 | Relative luciferase activities were stable expressed in hTERT
aptazyme group compared with NC aptazyme (A) The hTERT aptazyme was
inserted into the 3’ UTR of Renilla luciferase gene and the schematic diagram
of the hTERT aptazyme mode (B) Relative luciferase activities were
stable expressed in hTERT aptazyme group in bladder cancer 5637 and T24
cells. However, Renilla luciferase was degraded significantly in normal cell
HFF. *** represents p < 0.001.
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aptazyme group. However, the cell apoptosis of hTERT aptazyme
group was increased significantly compared with NC aptazyme
object in bladder cancer 5637 cells (Figure 4B). Homoplastically,
engineered CRISPR/Cas13d sensing hTERT promoted apoptosis
obviously in bladder cancer T24 cells compared with the negative
control (Figure 4C). In short, the above results illustrated that
engineered CRISPR/Cas13d sensing hTERT selectively promoted
bladder cancer cell apoptosis.

Bladder Cancer Cell Migration and Invasion
Were Selectively Suppressed by Engineered
CRISPR/Cas13d Sensing hTERT
Engineered CRISPR/Cas13d sensing hTERT had no effects on cell
migration and invasion in HFF and bladder cancer cells (Figures
5A,D–F). However, cell migration and invasion were inhibited
significantly via engineered CRISPR/Cas13d in bladder cancer
5637 and T24 cells (Figures 5B–F). These results demonstrated
that engineered CRISPR/Cas13d sensing hTERT could selectively
inhibit bladder cancer cell migration and invasion.

DISCUSSION

The role of hTERT was in-depth study in recent years and
hTERT involves in the development of diseases including
cancer. The hTERT is highly expressed in all human
cancers except normal human cells (not include embryonic
stem cells and germ cells) (Chen et al., 2020). Studies have
demonstrated that hTERT maintains cancer cell
immortalization and involves closely in cancer growth,
metastasis and transformation (Liu et al., 2017; Chen et al.,
2018b). Lots of studies have reported that hTERT is a
promising cancer biomarker in various kinds of cancer (Shi
et al., 2014; Chen et al., 2017). In our previous studies (Huang
et al., 2017; Zhuang et al., 2017), we have validated that
hTERT was only expressed in bladder cancer cells except
normal cells HFF. The strategy of utilization of hTERT will
be a valuable method to distinguish bladder cancer cells and
normal cells.

Artificial riboswitch (aptazyme) has been used to regulate
gene expression precisely via binding between RNA and

FIGURE 2 | Schematic diagram of engineered CRISPR/Cas13d sensing hTERT in bladder cancer (A) The working mechanism of engineered CRISPR/Cas13d
sensing hTERT in bladder cancer cells (B and C) Engineered CRISPR/Cas13d sensing hTERT selectively suppressed the MYC mRNA and protein expression levels
without affecting HFF. *represents p < 0.05, ** means p < 0.01.
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ligand (Pu et al., 2020). Aptazyme was utilized to control
mRNA cleavage through self-cleavage within the mRNA
(Takahashi and Yokobayashi, 2019; Spöring et al., 2020).
Aptazyme can be inserted into 5’ or 3’ UTR of gene
mRNA for controlling gene expression (Chen et al.,
2018a). A previous study has reported that an optimal
hTERT aptamer was synthesized, screened and can

exclusively bind to hTERT in vitro and in vivo (Varshney
et al., 2017).

Various studies demonstrated that CRISPR/Cas gene
editing tools have been used for gene expression in cancer
(Sharma et al., 2020). Targeting DNA of CRISPR/Cas9
system was widely reconstructed to create new gene
circuits for cancer treatment (Liu et al., 2020). However,

FIGURE 3 | Engineered CRISPR/Cas13d sensing hTERT selectively inhibited bladder cancer cell proliferation (A–C) Cell growth was suppressed by engineered
CRISPR/Cas13d sensing hTERT without affecting HFF through CCK-8 assay (D) Results of colony formation assay illustrated that bladder cancer cell proliferation was
selectively inhibited via engineered CRISPR/Cas13d sensing hTERT.
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high off-target effect is inevitable for CRISPR/Cas9 (Pruett-
Miller, 2020). CRISPR/Cas13d was another gene editing
method to targeting RNA molecules (Lin et al., 2020). It

showed higher efficiencies and on-target effects in cells (Lin
et al., 2020). In this study, we synthesized the OFF-switch
hTERT aptazyme and inserted into 3’UTR of the Cas13d

FIGURE 4 | Engineered CRISPR/Cas13d sensing hTERT selectively induced bladder cancer cell apoptosis. Engineered CRISPR/Cas13d sensing hTERT have no
effects on apoptosis in HFF (A). However, cell apoptosis was significantly increased by engineered CRISPR/Cas13d sensing hTERT in bladder cancer 5637 (B) and
T24 (C) cells.
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according to previous studies. When hTERT existed in cells,
hTERT bound to OFF-switch hTERT aptazyme and
restrained the degradation of Cas13d. On the contrary,
Cas13d was degraded without hTERT in normal cells.
This engineered CRISPR/Cas13d sensing hTERT was
tested in bladder cancer 5637 and T24 cells in this
subject. Results showed that engineered CRISPR/Cas13d
sensing hTERT selectively suppressed the progression of
bladder cancer cells except normal cell HFF. However,

deficiencies of this study still existed. The protein
expression levels of Cas13d were not shown in this study
owing to lack of Cas13d antibody at present. The role of
engineered CRISPR/Cas13d sensing hTERT in vivo is lack.
We will further confirm this in vivo effect in the near future.

In short, engineered CRISPR/Cas13d sensing hTERT was
constructed and selectively suppressed the progression of
bladder cancer cells. It may provide a promising precise
exclusively method for bladder cancer.

FIGURE 5 | Engineered CRISPR/Cas13d sensing hTERT selectively suppressed bladder cancer cell migration and invasion. Engineered CRISPR/Cas13d sensing
hTERT have no effects on cell migration and invasion in HFF (A,E,F). However, cell migration and invasion were significantly suppressed by engineered CRISPR/Cas13d
sensing hTERT in bladder cancer 5637 and T24 cells (B–F).
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