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Abstract: Fetal Heart Quantification (FetalHQ®) is a novel speckle tracking software that permits the
study of global and regional ventricular shape and function from a 2D four-chamber-view loop. The
4D-Spatio Temporal Image Correlation (STIC) modality enables the offline analysis of optimized and
perfectly aligned cardiac planes. We aimed to evaluate the feasibility and reproducibility of 4D-STIC
speckle tracking echocardiography (STE) using FetalHQ® and to compare it to 2D STE. We conducted
a prospective study including 31 low-risk singleton pregnancies between 20 and 40 weeks of gestation.
Four-chamber view volumes and 2D clips were acquired with an apex pointing at 45◦ and with
a frame rate higher than 60 Hz. Morphometric and functional echocardiography was performed
by FetalHQ®. Intra- and interobserver reproducibility were evaluated by the intraclass correlation
coefficient (ICC). Our results showed excellent reproducibility (ICC > 0.900) for morphometric
evaluation (biventricular area, longitudinal and transverse diameters). Reproducibility was also good
(ICC > 0.800) for functional evaluation (biventricular strain, Fractional Area Change, left ventricle
volumes, ejection fraction and cardiac output). On the contrary, the study of the sphericity index and
shortening fraction of the different ventricular segments showed lower reproducibility (ICC < 0.800).
To conclude, 4D-STIC is feasible, reproducible and comparable to 2D echocardiography for the
assessment of cardiac morphometry and function.

Keywords: fetal echocardiography; speckle tracking echocardiography; STIC; strain; fetal cardiac
function; prenatal ultrasound

1. Introduction

Fetal echocardiography has dramatically improved in recent decades. The 2D modal-
ity has been mainly used for congenital heart disease (CHD) diagnosis [1–3]. However,
advances in fetal imaging and technology, with the incorporation of new modalities such as
M-mode [4], tissue Doppler [5], 4D-Spatio-Temporal Image Correlation (4D-STIC) [6,7] and,
more recently, speckle tracking echocardiography (STE) [8–10] have led to an improvement
in fetal cardiac evaluation, not only in CHD detection, but also to carry out a comprehen-
sive evaluation of cardiac morphometry and function [11]. By tracking the endocardial
border, STE allows one to evaluate myocardial deformation and global and segmental
biventricular morphometry and function. Although STE has been widely used in pediatric
and adult cardiology [12–14], its application in fetal life is scarce [15–22], probably due to
the difficulty in adapting adult-designed software to prenatal cardiac evaluation [23]. On
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the one hand, fetal echocardiography has its own constraints including limited access and
small size of the fetal heart, fetal movements, high heart rate and technical aspects in image
acquisition. On the other hand, STE has specific and inherent limitations such as variability
of reference values when using different equipment, nonsystematic image settings and
processing (spatial resolution, frame rate), and the use of different software’s [24,25].

In this context, fetal specific STE software Fetal Heart Quantification (FetalHQ®)
was recently developed as a promising offline tool that permits the study of global and
regional (24-segment) ventricular shape and function [26–33]. Some groups have reported
the application of this novel technology to the study of CHD [34,35], and fetal cardiac
adaptation to different fetal conditions (fetal growth restriction [36], diabetes mellitus [37],
twin-to-twin transfusion syndrome [38]). Despite its potential for further studying the fetal
heart, its applicability is limited given the requirement of a high resolution four-chamber
view in a specific angle of insonation. The use of 4D-fetal echocardiography (4D-STIC)
permits the acquisition of cardiac volumes for offline analysis, also with high frame rate and
good resolution and the possibility of postprocessing modification of parameters such as
the angle of insonation, the cardiac plane, and the frame for evaluation [7,23,39]. However,
no previous studies have specifically compared 2D- and 4D-STIC STE using FetalHQ® for
morphometric and functional assessment of the fetal heart.

The aim of this study was to evaluate the feasibility and reproducibility of 4D-STIC
STE by FetalHQ® for morphometric and functional parameters in healthy fetuses and to
compare it to 2D STE.

2. Materials and Methods
2.1. Study Design and Participants

Prospective study including 31 singleton pregnancies from 20 + 0 to 40 + 0 weeks
of gestation attended at the Maternal-Fetal Medicine Department of BCNatal (Hospital
Clínic and Hospital Sant Joan de Déu) between September 2020 and January 2021. Low-
risk pregnant women were eligible and invited to participate in the study. Exclusion
criteria were age <18 years old, ultrasound or chromosomal anomalies and maternal and
fetal conditions with known cardiovascular impairment such as diabetes or hypertension,
antiretroviral treatment and fetal growth restriction (fetal growth <10th centile according
to local standards [40]). Baseline and perinatal data were obtained from the medical
records. Gestational age (GA) was calculated according to crown-rump length in first-
trimester ultrasound. All participants underwent a single fetal standard ultrasound and
echocardiography, performed by two expert sonographers (L.N. and O.G.), to exclude
cardiac or extracardiac anomalies following recommended guidelines [41,42]. Estimated
fetal weight was calculated according to Hadlock et al. [43], in cases in which it was
not available in the two weeks prior to the fetal echocardiography. Fetal weight centile
was calculated according to local references adjusted by GA and fetal gender. Doppler
pulsatility indices of umbilical, middle cerebral artery and ductus venosus, as well as
maximum systolic peak velocity of the middle cerebral artery, were also evaluated.

Study protocol was approved by the Ethical Committee of the institution (Reg. HCB/
2019/0540), and written consent was obtained from all participants.

2.2. Fetal Echocardiography

Fetal cardiac 2D clips and 4D-STIC volumes were acquired using a Voluson E10 (GE
Healthcare Ultrasound, Milwaukee, WI, USA) with a C2-9D convex probe (3–9 MHz) and
RM6C convex matrix-array volume probe (2–6 MHz), respectively. All cardiac images were
acquired using Speckle Reduction Imaging (SRI) 3 and Compound Resolution Imaging
(CRI) 2 and stored in 4D View (GE Medical Systems, Milwaukee, WI, USA) for offline STE
analysis.

Two-dimensional 4-chamber clips were obtained at an apical 4-chamber plane with
an angle of insonation between the ultrasound beam and the interventricular septum
of 45◦ ± 20◦, including at least three complete heart cycles without maternal and fetal
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movements. Acquisition was made with a frame rate higher than 60 Hz and adequate
zoom so that the thorax filled most of the ultrasound screen [20].

Cardiac volumes were acquired preferably in the same projection as 2D clips. The
acquisition of 4D-STIC volumes was standardized as follows: acquisition time of 7.5 s,
angle range of 20–30◦ and no fetal or maternal movements. Prior to STE evaluation, 4D-
STIC volume was adjusted to obtain a perfectly aligned 4-chamber view according to the
following steps: 1. The reference dot was placed at the crux cordis in the A plane of a
multiplanar view. 2. The Z-axis was rotated until the apex was placed at 0◦. 3. The X and Y
axes were rotated to systematically obtain an improved 4-chamber view (Figure 1).
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Figure 1. Multiplanar display of a 4D-Spatio Temporal Image Correlation (STIC) volume. In plane A,
the reference dot (red dot) is placed at the crux cordis and Z axis rotated until apex is placed at 0◦.

2.3. Speckle Tracking Analysis

Two dimensional 4-chamber clips and 4D-STIC cardiac volumes were loaded onto
FetalHQ (BT20, GE, Medical Systems). M-mode trace obtained across lateral right ventricle
wall at the level of tricuspid annulus was used to define a single cardiac cycle by identifying
end-systole and end-diastole, as previously described [20]. The septal, the lateral atrioven-
tricular (AV) valve annulus and the apex of each ventricle were manually identified in the
previously defined end-systole frame. Endocardial border was tracked semi-automatically,
obtaining a speckle-tracking algorithm, along the cardiac cycle (Figure 2). End-diastolic
endocardial tracking was then adjusted if necessary, especially the RV, so that the endo-
cardium, the muscular trabeculations and the moderator band were considered the RV
cavity [44]. Both ventricles were divided into 24 segments automatically [27] to allow anal-
ysis of the base (segments 1–8), mid ventricle (segments 9–16) and apex (segments 17–24).



J. Clin. Med. 2022, 11, 1414 4 of 17

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 4 of 17 
 

 

to allow analysis of the base (segments 1–8), mid ventricle (segments 9–16) and apex (seg-
ments 17–24).  

2D 4D-STIC 

  

  
Figure 2. Speckle tracking analysis in a 2-Dimensional (2D) (left) and 4D-Spatio Temporal Image 
Correlation (4D-STIC) volume (right) using Fetal Heart Quantification (FetalHQ®). Four chamber 
view in the end systole with the tree reference dots at the septal and lateral mitral valve annulus 
and at the apex, and tracking of the endocardial border (superior). Tracking of the left ventricle 
endocardial border at the end diastole (inferior). 

Biventricular global longitudinal strain (GLS) and area derivate as a function of time 
derivate graphs after the analysis are displayed (Figure 3). The end-systolic frame was 
adjusted in the area derivate as a function of the time derivate graph at the time the func-
tion crossed 0 on the Y axis.  

FetalHQ® analysis automatically calculated the global and segmental cardiac mor-
phometric parameters, which included biventricular end-diastolic areas and lengths and 
LV volumes, as well as the transverse and longitudinal diameters and sphericity indices 
(SI), for 24 defined segments of both ventricles as described by DeVore et al. [27,32]. Global 
cardiac function was also assessed by calculating biventricular fractional area change 
(FAC) [30] and LV ejection fraction (EF), stroke volume (SV) and cardiac output (CO) 
[28,45]. Since the measurement of estimated fetal weight in the same scan is necessary to 
obtain the result for CO, CO was only assessed in 24 fetuses, unlike the other the param-
eters, which were assessed in 31 fetuses. Additionally, biventricular GLS [31,46] and the 
fractional shortening of the 24 previously defined ventricular segments were also calcu-
lated to evaluate biventricular longitudinal and radial function [26], respectively. The re-
sults of the analysis were exported as a comma-separated values (CVS) file and converted 
to an Excel spreadsheet (Microsoft Corp., Redmond, WA, USA). 

All measurements were performed offline by three expert Fetal Medicine operators 
(LN, MB and OG) for interobserver reproducibility and to compare 2D- and 4D-STIC mo-
dalities. A second analysis by a single observer (LN) was performed at least 1 month after 
the first measurement for the intraobserver reproducibility. All operators had a learning 
curve of more than 20 fetuses prior to the study. 

Additionally, new FetalHQ® software (BT21, GE, Medical Systems) with the intro-
duction of Quiver [47], a new tool specially designed to enhance the identification of the 

Figure 2. Speckle tracking analysis in a 2-Dimensional (2D) (left) and 4D-Spatio Temporal Image
Correlation (4D-STIC) volume (right) using Fetal Heart Quantification (FetalHQ®). Four chamber
view in the end systole with the tree reference dots at the septal and lateral mitral valve annulus
and at the apex, and tracking of the endocardial border (superior). Tracking of the left ventricle
endocardial border at the end diastole (inferior).

Biventricular global longitudinal strain (GLS) and area derivate as a function of time
derivate graphs after the analysis are displayed (Figure 3). The end-systolic frame was
adjusted in the area derivate as a function of the time derivate graph at the time the function
crossed 0 on the Y axis.

FetalHQ® analysis automatically calculated the global and segmental cardiac morpho-
metric parameters, which included biventricular end-diastolic areas and lengths and LV
volumes, as well as the transverse and longitudinal diameters and sphericity indices (SI), for
24 defined segments of both ventricles as described by DeVore et al. [27,32]. Global cardiac
function was also assessed by calculating biventricular fractional area change (FAC) [30]
and LV ejection fraction (EF), stroke volume (SV) and cardiac output (CO) [28,45]. Since the
measurement of estimated fetal weight in the same scan is necessary to obtain the result
for CO, CO was only assessed in 24 fetuses, unlike the other the parameters, which were
assessed in 31 fetuses. Additionally, biventricular GLS [31,46] and the fractional shortening
of the 24 previously defined ventricular segments were also calculated to evaluate biven-
tricular longitudinal and radial function [26], respectively. The results of the analysis were
exported as a comma-separated values (CVS) file and converted to an Excel spreadsheet
(Microsoft Corp., Redmond, WA, USA).

All measurements were performed offline by three expert Fetal Medicine operators
(LN, MB and OG) for interobserver reproducibility and to compare 2D- and 4D-STIC
modalities. A second analysis by a single observer (LN) was performed at least 1 month
after the first measurement for the intraobserver reproducibility. All operators had a
learning curve of more than 20 fetuses prior to the study.

Additionally, new FetalHQ® software (BT21, GE, Medical Systems) with the introduc-
tion of Quiver [47], a new tool specially designed to enhance the identification of the septal
and lateral atrioventricular annulus was used to reanalyze 10 cases and to compare with
no Quiver tool.
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Figure 3. FetalHQ® graphic display. (a) Graphic display of left ventricle (LV) global longitudinal
strain (GLS) (red line) and right ventricle (RV) GLS (light blue line) with superimposed anatomic
M-mode representing tricuspid annulus; (b) graphic display of the derivative of the area (dA/dt) of
the LV (green line) and the RV (pink line), LV and RV area (red and blue lines, respectively). Systolic
frame (eS) is adjusted in the area derivate as a function of the time derivate graph at the time the
function crosses 0 (yellow arrow).

2.4. Sample Size Calculation

The sample size required for reproducibility analysis (30 fetuses) was calculated
following Bonnet’s et al. formula [48].

2.5. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics for Windows statistical
package (version 25, IBM Corp., Armonk, NY, USA).

Inter- and intraobserver reproducibility of STE using 4D-STIC was assessed using
Intraclass Correlation Coefficients (ICC) and their 95% confidence intervals using a two-
way random model. In addition, ICC was used to assess reproducibility of STE using 2D
vs. 4D-STIC. Inter- and intraobserver reproducibility of the 4D-STIC STE using Quiver tool
was calculated using ICC. Agreement between operators was studied with the Student t
test. Limits of agreement, standard error and 95% limit of agreement were calculated and
Bland–Altman plots were obtained.

3. Results
3.1. Characteristics of the Study Population

Maternal and perinatal characteristics of the study population are described in Table 1.
Median GA at ultrasound was 28.3 weeks (20.3–39.3 weeks) (20 patients between 20–30 weeks
and 11 between 30–40). Fetal ultrasound showed a mean estimated fetal weight of
1428 ± 663 g with a mean centile of 51 ± 31.3. Normal umbilical and fetal Doppler
parameters were confirmed in all cases.
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Table 1. Maternal and perinatal characteristics of the study population.

Variable Result

MATERNAL BASELINE CHARACTERISTICS

Maternal age, years 33.3 ± 6.16

Body mass index, kg/m2 22.1 ± 2.5

Chronic diseases (hypothyroidism, ulcerative colitis) 2 (6.4%)

Race
White 28 (80%)

Latin American 2 (5.7%)
Asian 1 (2.9%)

Smoking habit 1 (3.2%)

Nulliparity 18 (58.1%)

Use of artificial reproductive technologies 2 (6.5 %)

PERINATAL RESULTS

Gestational age at birth, weeks 39.5 ± 1.1

Cesarean section 3 (9.7%)

Birthweight, g 3513 ± 417

Birthweight centile 53.7 ± 28

Five minutes APGAR score below 7 0 (0%)

Data expressed as mean ± standard deviation, median (range) or n (%)

3.2. Feasibility

Adequate speckle tracking analysis was achieved in all 4D-STIC volumes and in all
except one 2D clip due to the poor delimitation of the right ventricular cavity. A frame rate
above 60 Hz was achieved in all cases with a mean frame rate of 80 Hz in 2D clips and
107 Hz in 4D-STIC.

3.3. Reproducibility

The 4D-STIC intraobserver and interobserver reproducibility ICC for the most relevant
FetalHQ® parameters is detailed in Table 2, Figure S1 and Table 3, Figure 4, respectively.
Our results show excellent reproducibility (ICC > 0.900) for global morphometric param-
eters, including biventricular areas, longitudinal, midventricular and apical diameters.
Reproducibility was also good (ICC > 0.800) for biventricular basal diameters. On the con-
trary, the study of the SI of the different ventricular segments showed poor reproducibility.
The repeatability of global functional parameters was also good. LV GLS and LV volumes
showed excellent intraobserver reproducibility, while RV GLS, biventricular FAC and LV
EF and cardiac output demonstrated good intra, and interobserver reliability. Nevertheless,
biventricular FS showed a lower reproducibility, especially FS of the basal segments of both
ventricles. No statistically significant differences between operators were observed neither
systematic bias for the studied parameters.
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Table 2. Intraobserver reproducibility of the fetal heart speckle tracking analysis results using
4D-STIC.

Variable ICC
95%

Confidence
Interval

p-Value ICC
95%

Confidence
Interval

p-Value

FETAL CARDIAC MORPHOMETRY

Left Ventricle Right Ventricle

Ventricular Area 0.976 0.950 to 0.988 <0.001 0.970 0.936 to 0.986 <0.001

Longitudinal diameter 0.933 0.862 to 0.968 <0.001 0.970 0.938 to 0.9585 <0.001

Basal diameter (segment 1) 0.853 0.696 to 0.929 <0.001 0.855 0.702 to 0.930 <0.001

Mid-ventricular diameter (segment 9) 0.924 0.841 to 0.964 <0.001 0.936 0.867 to 0.969 <0.001

Apical diameter (segment 17) 0.912 0.818 to 0.958 <0.001 0.943 0.881 to 0.972 <0.001

Basal sphericity index (segment 1) 0.440 −0.201 to 0.736 0.067 0.526 −0.042 to 0.872 0.061

Mid-ventricular sphericity index (segment 9) 0.702 0.392 to 0.855 <0.001 0.665 0.298 to 0.840 0.002

Apical sphericity index (segment 17) 0.787 0.561 to 0.897 <0.001 0.609 0.129 to 0.812 0.006

FETAL CARDIAC FUNCTION

Left Ventricle Right Ventricle

Global longitudinal strain 0.906 0.807 to 0.955 <0.001 0.732 0.437 to 0.873 <0.001

Fractional area change 0.845 0.665 to 0.926 <0.001 0.746 0.482 to 0.877 <0.001

Basal shortening fraction (segment 1) 0.302 −0.561 to 0.684 0.188 0.775 0.526 to 0.895 <0.001

Mid-ventricular shortening fraction (Segment 9) 0.748 0.472 to 0.879 <0.001 0.801 0.579 to 0.906 <0.001

Apical shortening fraction (segment 17) 0.805 0.599 to 0.906 <0.001 0.619 0.188 to 0.820 0.007

End-diastolic volume 0.968 0.933 to 0.985 <0.001

End-systolic volume 0.936 0.866 to 0.969 <0.001

Ejection fraction 0.760 0.501 to 0.885 <0.001

Cardiac Output 0.782 0.500 to 0.904 <0.001

ICC: Intraclass Correlation Coefficient.

Table 3. Interobserver reproducibility of the fetal heart speckle tracking analysis results using
4D-STIC.

Variable ICC
95%

Confidence
Interval

p-Value ICC
95%

Confidence
Interval

p-Value

FETAL CARDIAC MORPHOMETRY

Left Ventricle Right Ventricle

Ventricular area 0.931 0.857 to 0.967 <0.001 0.966 0.930 to 0.984 <0.001

Longitudinal diameter 0.756 0.483 to 0.885 <0.001 0.909 0.797 to 0.958 <0.001

Basal diameter (segment 1) 0.746 0.464 to 0.881 <0.001 0.891 0.751 to 0.950 <0.001

Mid-ventricular diameter (segment 9) 0.841 0.666 to 0.924 <0.001 0.921 0.835 to 0.962 <0.001

Apical diameter (segment 17) 0.884 0.675 to 0.925 <0.001 0.882 0.745 to 0.994 <0.001

Basal sphericity index (segment 1) 0.390 −0.161 to 0.694 0.064 0.333 −0.227 to 0.659 0.095

Mid-ventricular sphericity index (segment 9) 0.495 −0.11 to 0.754 0.027 0.683 0.329 to 0.850 0.001

Apical sphericity index (segment 17) 0.445 −0.101 to 0.728 0.047 0.628 0.212 to 0.823 0.005
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Table 3. Cont.

Variable ICC
95%

Confidence
Interval

p-Value ICC
95%

Confidence
Interval

p-Value

FETAL CARDIAC FUNCTION

Left Ventricle Right Ventricle

Global longitudinal strain 0.825 0.634 to 0.916 <0.001 0.767 0.508 to 0.889 <0.001

Fractional area change 0.831 0.646 to 0.920 <0.001 0.843 0.671 to 0.925 <0.001

Basal shortening fraction (segment 1) 0.116 −0.951 to 0.595 0.378 0.506 −0.055 to 0.772 0.036

Mid-ventricular shortening fraction (Segment 9) 0.742 0.466 to 0.875 <0.001 0.666 0.303 to 0.839 0.002

Apical shortening fraction (segment 17) 0.782 0.554 to 0.894 <0.001 0.745 0.476 to 0.876 <0.001

End-diastolic volume 0.872 0.718 to 0.942 <0.001

End-systolic volume 0.773 0.497 to 0.898 <0.001

Ejection fraction 0.769 0.516 to 0.890 <0.001

Cardiac Output 0.602 0.082 to 0.828 0.016

ICC: Intraclass Correlation Coefficient.
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Figure 4. Bland–Altman plots for interobserver reproducibility of fetal heart speckle tracking analysis
of morphometric and functional parameters using 4D-Spatio Temporal Image Correlation (4D-STIC).
Upper figures: left ventricle basal diameter (segment 1) (left) and right ventricle basal diameter
(segment 1) (right). Middle upper figures: left ventricle longitudinal diameter (left) and right
ventricle longitudinal diameter (right). Middle bottom figures: left ventricle global longitudinal
strain (left) and right ventricle global longitudinal strain (right). Bottom figures: left ventricle ejection
fraction (left) and right ventricle fractional area change (right).

Comparison between 2D- and 4D-STIC echocardiographic modalities showed similar
data (Table 4, Figure 5). The repeatability was good for global biventricular morphometric
and functional parameters and poor for the SI and SF of the different ventricular seg-
ments, especially for the segments corresponding to the base of both ventricles. The best
concordance was found for biventricular areas and LV volume. Again, no statistically
significant differences between operators were observed neither systematic bias for the
studied parameters.

Table 4. Comparison of Interobserver reproducibility of the fetal heart speckle tracking analysis
results using 2D- vs. 4D-STIC.

Variable ICC
95%

Confidence
Interval

p-Value ICC
95%

Confidence
Interval

p-Value

CARDIAC MORPHOMETRY

Left Ventricle Right Ventricle

Ventricular area 0.930 0.817 to 0.970 <0.001 0.949 0.895 to 0.975 <0.001

Longitudinal diameter 0.745 0.480 to 0.876 <0.001 0.907 0.806 to 0.955 <0.001

Basal diameter (segment 1) 0.833 0.529 to 0.930 <0.001 0.912 0.803 to 0.959 <0.001

Mid-ventricular diameter (segment 9) 0.858 0.461 to 0.947 <0.001 0.825 0.638 to 0.915 <0.001
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Table 4. Cont.

Variable ICC
95%

Confidence
Interval

p-Value ICC
95%

Confidence
Interval

p-Value

Apical diameter (segment 17) 0.871 0.661 to 0.944 <0.001 0.871 0.753 to 0.938 <0.001

Basal sphericity index (segment 1) 0.222 −0.401 to 0.601 0.211 0.637 0.226 to 0.823 0.003

Mid-ventricular sphericity index (segment 9) 0.463 −0.062 to 0.737 0.018 0.738 0.457 to 0.873 <0.001

Apical sphericity index (segment 17) 0.589 0.172 to 0.799 0.005 0.698 0.370 to 0.855 0.001

CARDIAC FUNCTION

Left Ventricle Right Ventricle

Global longitudinal strain 0.898 0.779 to 0.952 <0.001 0.878 0.746 to 0.941 <0.001

Fractional area change 0.682 0.350 to 0.846 0.001 0.667 0.307 to 0.842 0.002

Basal shortening fraction (segment 1) 0.643 0.227 to 0.838 0.003 0.339 −0.521 to 0.710 0.163

Mid-ventricular shortening fraction (Segment 9) 0.387 −0.196 to 0,695 0.078 −0.05 −1.1 to 0.493 0.553

Apical shortening fraction (segment 17) 0.501 −0.021 to 0.758 0.030 0.480 −0.091 to 0.752 0.043

End-diastolic volume 0.936 0.669 to 0.978 <0.001

End-systolic volume 0.896 0.774 to 0.952 <0.001

Ejection fraction 0.628 0.243 to 0.819 0.004

Cardiac Output 0.562 −0.149 to 0.826 0.001

ICC: Intraclass Correlation Coefficient.
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Figure 5. Bland–Altman plots for interobserver reproducibility of fetal heart speckle tracking analysis
of morphometric parameters with 2D- versus 4D-Spatio Temporal Image Correlation (4D-STIC).
Upper figures: left ventricle basal diameter (segment 1) (left) and right ventricle basal diameter
(segment 1) (right). Middle upper figures: left ventricle longitudinal diameter (left) and right
ventricle longitudinal diameter (right). Middle bottom figures: left ventricle global longitudinal
strain (left) and right ventricle global longitudinal strain (right). Bottom figures: left ventricle ejection
fraction (left) and right ventricle fractional area change (right).

3.4. Subanalysis Using Quiver Tool

The subanalysis performed in 10 cases using the Quiver tool demonstrated a slightly
better reproducibility for most global morphometric and functional parameters but again
low reproducibility for the SI and SF of the different biventricular segments, both using 2D-
and 4D-STIC. Additionally, ICC and 95% confidence intervals of the Quiver tool analysis
as well as the comprehensive study of the 24 biventricular segments are provided in the
Supplemental Material.

4. Discussion

This study first demonstrates that 4D-STIC STE is feasible, reproducible and compara-
ble to 2D STE when assessing global cardiac morphometry and function using FetalHQ®.
Our results show excellent reproducibility for most of the global cardiac morphometry and
function variables evaluated, but worse results for segmental analysis of SI and SF.

4.1. Speckle Tracking Echocardiography Using 2D- and 4D-STIC

Since the first use of 2D STE in fetal cardiology in 2008, only a few publications have
focused on the analysis of biventricular GLS on healthy fetuses, reporting a good repro-
ducibility [49,50]. However, there are still limited data on GLS normality ranges throughout
the pregnancy [16,22,31,51–54] and its application in different clinical scenarios. In fact,
more recent studies, which have incorporated the latest technological advances, point to
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the need to better evaluate STE reproducibility and its correlation with other morphometric
and functional echocardiographic parameters before introducing STE into clinical practice.
In recent years, FetalHQ® has shown excellent reproducibility for the analysis of mor-
phometric and functional cardiac parameters [26,27,30,32,55–58]. FetalHQ® automatically
defines 24 segments of the ventricles and provides information of the shape (SI) and radial
systolic function (SF) by the calculation of the longitudinal and transverse diameter of each
segment. Although the reproducibility of this segmental analysis was initially reported to
be very good [26,27], more recent studies have reported worse data [55,57]. Additionally,
none of the previous studies have reported results on the reproducibility conducting a
comprehensive study of global and regional cardiac morphometric and functional data.

Focusing on 4D-STIC, the only group that had applied 4D-STIC for STE study in
fetal life was Dodaro et al. The authors analyzed the feasibility and reproducibility of LV
function evaluation in a cohort of fetuses between 20 and 40 weeks of gestation, reporting
moderate interobserver (0.562) and good intraobserver (0.857) agreement for LV GLS and
moderate interobserver (0.544) and intraobserver (0.647) repeatability for LV EF [59]. Our
data showed better results on LV GLS and EF reproducibility using 4D-STIC STE (Tables 2
and 3) which could be explained for different reasons. First, we defined a standardized
protocol both for the acquisition of cardiac volumes and for the subsequent processing in
order to always carry out the offline cardiac evaluation in the same way. Second, this strict
protocol allowed us to obtain all cardiac volumes with a very high FR (mean of 107 Hz),
which was even higher than that achieved with 2D STE (80 Hz). Third, our study was
conducted by experienced fetal medicine specialists with previous expertise in 4D-STIC,
while e-STIC evaluations were performed by less experienced sonographers with only three
weeks training on FetalHQ®. Finally, we evaluated a greater cardiac morphometric and
functional parameters comparing 4D-STIC and 2D STE, being able to demonstrate that both
techniques are reproducible, with the best performance for global cardiac morphometric
and functional parameters and the worst for segmental cardiac shape analysis (SI) and
radial function (FS).

4.2. Fetal Cardiac Morphometric and Functional Assessment Using 4D-STIC STE

To our knowledge, this is the first study to assess 4D-STIC STE feasibility for a compre-
hensive morphometric and functional cardiac evaluation and to compare its reproducibility
to 2D STE. Our 4D-STIC results showing a good reproducibility for global cardiac mor-
phometric evaluation are in accordance to most previously 2D STE published data, which
supports the use of FetalHQ® with both modalities. On the contrary, the available studies
on 2D STE reproducibility for segmental cardiac morphometric evaluation show discrepant
data. While some recent studies [55] have reported a good reproducibility for biventricular
SI (ICC > 0.758), other studies such as ours have shown poorer results, especially for assess-
ing the shape of the basal segments of both ventricles [57]. We hypothesize that manual
adjustment applied for improving the delineation of both ventricles, especially the RV, led
to differences in the endocardial delineation, in particular variations of transverse diameters
that compute for the SI and FS segmental analysis. In our study, we performed a manual
adjustment of the semi-automatic tracking of both ventricles in most of our cases, especially
for the RV, considering the endocardium and moderator band as part of the ventricular
cavity [44]. Furthermore, SI and FS are calculated by a mathematical formula (SI: end-
diastolic longitudinal diameter/end-diastolic transverse diameter, for each segment; FS:
(end-diastolic transverse diameter-end-systolic transverse diameter)/end-diastolic trans-
verse diameter, for each of the 24 segments), which may increase the error of both measures
and explain the poorer reproducibility compared to other parameters that do not apply
formulas. Finally, different orientation of the four-chamber view acquisition (apical vs.
transverse) between studies could also explain discrepant results. It is important to note
that due to lateral resolution echographic properties, some of the echoes of the lateral
walls and the upper part of the septum can be missed when analyzing an apical compared
to a transverse four-chamber view. Further studies are necessary to better define these
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methodological issues and their impact on STE reproducibility of biventricular segmental
morphometric evaluation [23].

With respect to functional heart assessment, our study is the first one that has so far
included the most extensive analysis of the reproducibility of a large number of cardiac
functional parameters using both 4D-STIC and 2D STE. We demonstrate a good 4D-STIC
STE reliability for biventricular systolic function assessment, with better performance for
LV systolic evaluation, including both GLS and FAC, in comparison with the RV. This
can be explained by the more complex 3D structure of the RV. Regarding LV systolic
parameters (LV volumes, EF and CO), we also report good reproducibility. CO ICC
was the lowest regarding LV systolic function, but we only included 24 cases to assess
the reproducibility of this parameter, since evaluation of the estimated fetal weight in
the same exploration is necessary to calculate CO. On the other hand, biventricular SF
showed a poor reproducibility, a finding that has also been reported by other groups [55,56]
and that correlates with the poorer reproducibility that we also found for the SI of the
different segments of both ventricles. Again, differences in four-chamber-view orientation,
methodology and manual tracking could explain our poorer reproducibility results.

4.3. Subanalysis Using Quiver Tool

To better understand our poor results on the segmental ventricular evaluation using
fetal HQ, we evaluated 10 cases using Quiver technology, which is supposed to facilitate
the identification of the septal and lateral AV valve annulus by displaying two frames
before and after end-systole and end-diastole frame [47]. However, our study failed to
demonstrate a better performance with Quiver. We are aware that the analysis was carried
out in a relatively small number of fetuses, and this technique may need a learning curve
to obtain better results; furthermore, more studies are needed to validate previous studies
on this technology.

4.4. Strengths and Limitations

We report a rigorously defined acquisition protocol both in 2D- and 4D-STIC modali-
ties defining clear anatomic landmarks postprocessing analysis and recommendable frame
rate, which allowed us to obtain a good reproducibility for most of the echocardiographic
parameters studied. We also included fetuses ranging from 20 to 40 weeks of gestation to
validate the results in both second and third trimesters. Moreover, the comprehensive eval-
uations of the fetal heart we perform in our study allow us to compare the reproducibility
between global and segmental cardiac parameters and to identify our worse results for
the segmental analysis. On the other hand, this study also has some limitations. Firstly,
we are aware that the sample size of our study could be a weakness, especially for the
assessment of CO, as we only included 24 fetuses. Secondly, although 2D STE has been
previously validated with normal and abnormal hearts, we have only included in the study
healthy fetuses. Thus, more studies would be necessary in order to confirm our results in
fetuses with cardiac or extracardiac anomalies. Finally, we are aware that all of our 2D clips
and 4D-STIC volumes are in an apical oblique four-chamber view that can be difficult to
achieve in the third trimester, or in other fetal conditions such as oligohidramnios. DeVore
et al. described that apex-down four-chamber views are eligible indistinctly from apical
views for 2D-STE [20], but more studies using basal four-chamber view 4D-STIC volumes
should be carried out in order to validate their results.

5. Conclusions

To conclude, we confirm that 4D-STIC STE is feasible, reproducible and comparable
to 2D echocardiography for the assessment of global cardiac morphometry and systolic
function, including GLS. Although it requires a learning curve, the results of this study
are encouraging in using FetalHQ® in future studies to assess fetal cardiac remodeling in
different maternal and fetal conditions. If our results are confirmed, 4D-STIC would allow
not only structural evaluation of fetal cardiac anatomy but a comprehensive structural and
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functional evaluation by a unique cardiac volume acquired in the four-chamber view. This
would enable the use of FetalHQ® for telemedicine. Future technical improvements in the
semi-automatic tracking of the endocardium—to avoid manual correction—are warranted
to improve reproducibility of segmental fetal cardiac evaluation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11051414/s1, Table S1: Intraobserver reproducibility of the
fetal heart 4D-Spatio Temporal Image Correlation (4D-STIC) speckle tracking analysis results using the
Quiver technique. Table S2: Interobserver reproducibility of the fetal heart 4D-STIC speckle tracking
analysis results using the Quiver technique. Table S3: Comparison of 2D- vs. 4D-STIC Interobserver
reproducibility of the fetal heart speckle tracking analysis results using the Quiver technique. Table S4.
Intraobserver reproducibility of the fetal heart speckle tracking segmental analysis results using
4D-STIC. Table S5. Interobserver reproducibility of the fetal heart speckle tracking segmental analysis
results using 4D-STIC. Table S6. Comparison of interobserver reproducibility of the fetal heart
speckle tracking segmental analysis results using 2D- vs. 4D-STIC. Figure S1. Bland–Altman plots for
intraobserver reproducibility of fetal heart speckle tracking analysis of morphometric and functional
parameters using 4D-Spatio Temporal Image Correlation (4D-STIC). Upper figures: left ventricle
basal diameter (segment 1) (left) and right ventricle basal diameter (segment 1) (right). Middle upper
figures: left ventricle longitudinal diameter (left) and right ventricle longitudinal diameter (right),
Middle bottom: left ventricle global longitudinal strain (left) and right ventricle global longitudinal
strain (right). Bottom figures: left ventricle ejection fraction (left) and right ventricle fractional area
change (right).
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