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Abstract

Background: MicroRNAs (miRNAs) are short non-coding RNA molecules which are proved to be involved in mammalian
spermatogenesis. Their expression and function in the porcine germ cells are not fully understood.

Methodology: We employed a miRNA microarray containing 1260 unique miRNA probes to evaluate the miRNA expression
patterns between sexually immature (60-day) and mature (180-day) pig testes. One hundred and twenty nine miRNAs
representing 164 reporter miRNAs were expressed differently (p,0.1). Fifty one miRNAs were significantly up-regulated and
78 miRNAs were down-regulated in mature testes. Nine of these differentially expressed miRNAs were validated using
quantitative RT-PCR assay. Totally 15919 putative miRNA-target sites were detected by using RNA22 method to align 445
NCBI pig cDNA sequences with these 129 differentially expressed miRNAs, and seven putative target genes involved in
spermatogenesis including DAZL, RNF4 gene were simply confirmed by quantitative RT-PCR.

Conclusions: Overall, the results of this study indicated specific miRNAs expression in porcine testes and suggested that
miRNAs had a role in regulating spermatogenesis.
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Introduction

microRNAs (miRNAs) are small non-coding RNAs (typically

19–23 nucleotides) that play important roles in regulating

posttranscriptional translation. The first discovered miRNA, lin-

4, is involved in developmental timing in the nematode C. elegans [1].

To date, 10883 miRNA sequences have been published on the

Sanger miRNA Registry (http://www.sanger.ac.uk/software/

Rfam/mirna, miRbase Release 14.0). They are increasingly being

shown to play vital roles in spermatogenesis, muscle development,

feed intake and other important physiological process [2–4]. Such

as the myostatin allele in muscle mass QTL interval is

characterized by a G to A transition in the 39 un-translated

region (UTR) that creates a target site for miR-1 and miR-206

which are highly expressed in skeletal muscle. This causes

translational inhibition of the myostatin gene and hence

contributes to the muscular hypertrophy of Texel sheep [5].

Spermatogenesis is a complex process through which diploid

germ cells proliferate and differentiate into haploid spermatozoa

[6]. It is estimated that about 1000 genes involved in spermato-

genesis, and 351 of these genes appear to be expressed only in the

male germs [7]. A large number of genes are expressed at grossly

higher levels in meiotic and/or early haploid spermatogenic cells

than in somatic cells, yet they too are translated inefficiently [8].

Such repression could be reached by ribosomal protein binding

with target genes or by some translational control elements which

could be bound at 39 UTRs of target genes [9]. miRNAs are a

large family of small regulatory elements that direct messenger

RNA degradation or disrupt mRNA translation by binding the

UTRs and coding sequences (CDS) of target mRNAs [10,11]. For

example, miR-122a was suggested targeting a reporter mRNA

containing sequences from the 39-UTR of the transition protein 2

(TNP2), a post-transcriptionally regulated testis-specific gene

involved in chromatin remodeling during mouse spermatogenesis

[2]. The over-expression of miR-34c in HeLa cells led to a shift of

the expression profile toward the germinal lineage, and miR-34c

could play a role in the late steps of spermatogenesis [12].

Presently many efforts have been made to the discovery of

gonad-expressed miRNAs. By using a new small RNA cloning

method, 141 mouse testis miRNAs were isolated, of which 28

miRNAs showed the highest expression levels in meiotic

(pachytene spermatocytes), or haploid (round and elongated
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spermatocytes) germ cells, suggesting that late meiotic and haploid

germ cells are the main source of miRNA production during

spermatogenesis [13]. About 54 porcine miRNAs have been

identified, however their expression and function in the porcine

germ cells are still poorly understood [14–16]. In addition, it is

necessary to study porcine miRNAs due to the increasing interest

in pig genetics and the benefits of using the domestic pigs as a

model for the study of human male infertility. Therefore, we

investigated differentially expressed miRNAs between immature

and mature testis tissues of Large White boars by miRNAs

array analysis, and predicted target genes of these miRNA and

analyzed the relationship between those putative genes and

spermatogenesis.

Results and Discussion

miRNA microarray analysis
A custom-made mammalian miRNA microarray was used to

evaluate the expression of porcine miRNAs. At the design time

of the microarray, there were 2522 mammal mature miRNAs

including 711 human, 658 mice, 348 rat and 54 porcine mature

miRNAs. After removing the redundant sequences, there

remained 1260 unique mature miRNA sequences (See probe

list of the microarray in Table S1). The microarray contained

1260 probes complementary to these sequences, and all probes

were repeated triplicate in one microarray. Microarray

hybridization with RNA samples prepared from three 60-day

(sexually immature) porcine testes and three 180-day (mature)

porcine testes detected expression of 704 miRNAs, with

449.676102.66 miRNAs per sample (Table S2). Of the 704

detectable miRNAs, miRNAs count present in all six samples

was 261 (20.71%), which was a little lower than previously

reported (28.3%) [17]. Thirty of 54 porcine miRNAs in

miRbase release 10.0, were detected (25 in 60-day testes and

27 in 180-day testes).

The microarray data showed that several microRNAs including

let-7, miR-923, miR-202, miR-21 and miR-145 were highly

expressed in the porcine testes (Table S2). Pairwise significance

analysis indicated 129 expressed miRNAs representing 164

miRNAs probes had changed expression profiles between 60-day

and 180-day testis samples (p#0.1), and in 180-day (mature)

porcine testes down-regulated expression appeared in 78 miRNAs

while up-regulated expression appeared in other 51 miRNAs

(Table S3). Among 129 differentially expressed miRNAs in pig

testes, 8 miRNAs including mmu-let-7e and mmu-miR-181b

shared the same expression profile as the previous study in sexually

immature/mature mouse testes [18], and 10 miRNAs including

hsa-miR-1 and mmu-miR-709 had the same expression profile in

the immature/mature rhesus monkey testes [19]. Five miRNAs

(mmu-miR-449, rno-miR-34b, mmu-miR-34c hsa-miR-181d,

mmu-miR-214) appeared to be differentially expressed in two

independent reports [18,19]. Another four miRNAs (mmu-miR-

34b, mmu-miR-122a, mmu-miR-16 and mmu-miR-101) were

confirmed to be differentially expressed in mouse testes by using

conventional Northern blot analysis [2].

Mature miRNA sequences are highly conserved in different

animal species and only 1–3 nucleotide differences. For example,

there are only 1–2 nucleotide differences in the miR-181b

respectively from Monodelphis domestica, Gorilla, Bos taurus and three

members from Homo sapiens. Thus, cross-hybridization among

members from the same family and among orthologs across

species could explain these microarray results. All above four

orthologs of miR-181b (m, g, b, and h) were up-regulated in the

60-day testis (Table S2).

microRNA expression validation
In order to validate the DNA microarray results, real-time RT-

PCR with commercially available primers (Table S4) was carried

out separately to investigate the differential expression pattern of 9

miRNAs - miR-663, miR-1, miR-762, miR-143, miR-638, miR-

145, miR-542-3p, miR-155 and miR-705. Our results showed a

high level of concordance between these two methods in 8 of the 9

comparisons (Pearson correlation coefficient $0.52, Figure 1).

miR-705 has a high Pearson correlation coefficient of 0.52, but a

significant difference between immature and mature testes has not

been observed using qRT-PCR. And a contradiction expression

profile was detected in miR-145. The expression levels varied

dramatically, and the variance probably came from biological

differences between the samples.

Differentially expressed miRNA character analysis
Using a homology search based on genomic survey sequence

analysis and microRNA (miRNA) secondary structure, a total of

72 porcine differentially expressed miRNAs were identified and

then were located in pig genome covering all chromosomes except

SSC14 and SSCY, and 14 (19.44%) miRNAs were mapped to

SSCX (Table S5). One reason is that SSCY sequences have not

been released yet, and the other is that miRNAs are scarcely

located to SSCY. No miRNA was found on the Y chromosome in

any species and the densities were greater than twofold those on

autosomes in seven of eight mammalian species (p,0.01) [20].

These X-linked miRNAs were expressed in a testis-preferential or

testis-specific pattern, suggesting that they have functional roles

during spermatogenesis, including the possibility that they

contribute to the process of meiotic sex chromosome inactivation,

or that they may be essential for post-transcriptional regulation of

autosomal mRNAs during the late meiotic and early postmeiotic

stages of spermatogenesis [21].

Putative miRNA target gene prediction and expression
array of target genes

To gain insight into the function of these microRNAs, 445

cDNA sequences were obtained from NCBI GenBank database

(Accession numbers were listed in Table S6). Totally 15919

miRNA-mRNA interaction sites for 129 differentially expressed

miRNAs had found within the full-length cDNA sequences, and

787, 12250, 2882 were located in 59UTR, CDS and 39UTR,

respectively (Table S6). Most (76.95%) of these binding sites were

located to CDS because the UTR sequences had not been fully

identified. It is estimated that there is about 19977 genes (http://

www.ensembl.org/Sus_scrofa/) and at least 1200 porcine miR-

NAs which was deduced from the number of human (1240 mature

human miRNAs in miRbase Release 15.0), and there will be 6.65

million, 0.33 million, 5.11 million, 1.20 million miRNA-target sites

in full-length, 59UTR, CDS and 39UTR, respectively. Averagely,

each gene has 35.66 miRNA-target sites and 25.28 target

miRNAs. Three genes, NOTCH4, C4, NCOA2, assigned the

highest number of miRNA interaction sites. NOTCH4 is a unique

member of the NOTCH family, which can affect the implemen-

tation of differentiation, proliferation, and apoptotic programs,

influencing organ formation and morphogenesis [22]. Comple-

ment component 4 (C4) is the only component coded for by 2

nearly isotypic genes, C4A and C4B. C4 genes are located near

MHC region and expected to play a key role in immunity [23].

NCOA2 gene was previously identified as a transcriptional activator

for steriod receptors and nuclear receptors [24]. GO and KEGG

analysis showed that these genes are involved in the life process

including multi-organism process, reproductive process and
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reproduction, and play important roles in 17 pathways (Table S7).

Amony 129 differentially expressed miRNAs, miR-762, miR-149*

and miR-663 were the top 3 highest number of miRNA

interaction sites.

Real-time RT-PCR was used to validate the target genes which

are associated with mammalian testis development and sper-

matogenesis. The results showed that in mature testes: AQN-1,

HAS3, RNF4 gene were down regulated while SMCP and SPAM1

gene were up regulated (p#0.05); DAZL and SPAG1 had a

tendency to be down-regulated, and up-regulated, respectively

(Figure 2, DDCt value has a negative relationship with the gene

expression level). By comparing the expression profiling of

miRNAs and target genes, only about half of these putative

target genes remained due to the negative relationship of the

expression patterns between miRNA and its target mRNA

(Table 1). One of these putative target genes is deleted in

azoospermia like gene (DAZL), targeted by miR-34b, miR-34c etc.

In mice, disruption of the DAZL gene leads to loss of germ cells

and complete absence of gamete production [25]. An A386G

(T54A) mutation occurring in the RNA-binding domain of

the DAZL protein has been associated with susceptibility to

spermatogenic failure in the Taiwanese [26], and it was

associated with the female reproductive traits in pigs [27].

Predictions associated small nuclear RING finger protein RNF4

(SNURF) gene with miR-638, miR-705 and miR-762 etc. RNF4

possesses a C-terminal RING finger and acts as a transcription

regulator. RNF4 expressed more abundantly in murine adult

testis [28]. In adult rat testis, RNF4 mRNA and protein

accumulate in postmeiotic round and elongating spermatids,

suggesting that this protein is involved in the regulation of

processes required for late steps of spermatid maturation, during

which vast amount of protein degradation and chromatin

Figure 1. Validation of the microarray results using qRT-PCR method. The X-axis represents the miRNAs and the Y-axis shows the relative
expression levels of miRNAs (-DCt values for qRT-PCR; Log(sample signal, 2) for microarray). The number of biological replicates is three for both
assays. R represents the Pearson correlation coefficient. The significance of differences for the expression between 60-d (immature, 60-day) and 180-d
(mature, 180-day) testes was calculated using two-tailed T-test. *, p#0.05; **, p#0.01 (left for qRT-PCR, and right for microarray).
doi:10.1371/journal.pone.0011744.g001

Figure 2. miRNA putative target genes expression in porcine testis was identified by qRT-PCR. The X-axis represents the specific gene
and the Y-axis shows the DDCt values of genes. DDCt value has a negative relationship with the gene expression level, so the smaller DDCt value has a
higher expression level. The number of biological replicates is three. The significance of differences for the expression between 60-d (immature, 60-
day) and 180-d (mature, 180-day) testes was calculated using two-tailed T-test. *, p#0.05; **, p#0.01.
doi:10.1371/journal.pone.0011744.g002
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compaction take place [29], and it was associated with the female

reproductive traits in pigs [30].

Recently, a novel class of 26–30 nt RNAs (piRNAs) has been

described in the testis, where they bind a spermatogenesis-specific

protein belonging to the Argonaute protein family called PIWI. Like

termed germline small RNAs (gsRNAs), miRNA and short

interference RNA and other small RNAs expressed in testes, piRNAs

are thought to be involved in gene silencing [31,32]. However,

piRNAs are apparently present at low levels in mature spermatozoa,

and piRNA sequences are not conserved between species [31,32]

The majority of piRNAs are antisense to transposon sequences,

suggesting that transposons are the piRNA target [33], but its

expression profiles, and function of piRNAs are still poorly

understood.

Materials and Methods

Ethics statement
All research involving animals were conducted according to the

regulation (No. 5 proclaim of the Standing Committee of Hubei

People’s Congress) approved by the Standing Committee of Hubei

People’s Congress, P. R. China. Sample collection was approved

by the ethics committee of Huazhong Agricultural University

(No. 30700571 for this study).

Animals and RNA extraction
Three young Large White boars of 60 days (sexually immature)

and 3 of 180 days (sexually mature defined according to the

reference [34]) Large White boars were obtained from the pig

farm of Huazhong Agricultural University (Wuhan, China).

Whole testes were removed from animals and were immediately

snap-frozen in liquid nitrogen and stored at 280uC. Total RNAs

were extracted by Trizol reagent (Invitrogen). All the procedures

were carried out according to manufacturer’s protocols.

mParafloTM microRNA microarray assay
The custom-made microarray contained 1260 unique miRNA

probes generated from 2522 mammalian miRNAs including 711

human, 658 mice, 348 rat and 54 porcine miRNAs (Table S1),

and all of the oligonucleotide probes were repeated triplicate in

one microarray. MicroRNA microarray analysis was performed

by LC Sciences (Houston, TX). Briefly, the assay started from 2 to

5 mg total RNA sample, which was size fractionated using a YM-

100 Microcon centrifugal filter (from Millipore) and the small

RNAs (,300 nt) isolated were 39-extended with a poly(A) tail using

poly(A) polymerase. An oligonucleotide tag was then ligated to the

poly (A) tail for later fluorescent dye staining; two different tags

were used for the two RNA samples in dual-sample experiments.

Hybridization was performed overnight on a mParafloTM micro-

fluidic chip using a micro-circulation pump (Atactic Technologies).

On the microfluidic chip, each detection probe consisted of a

chemically modified nucleotide coding segment complementary

to target microRNA (from miRBase release 10.0, 1260 miRNA

probes in total) or control RNA and a spacer segment of

polyethylene glycol to extend the coding segment away from the

substrate. Multiple control probes including BKG, PUC2PM-20B,

PUC2MM-20B and 5S-rRNA, were used for quality controls of

chip production in each chip.

The detection probes were made by in situ synthesis using PGR

(photogenerated reagent) chemistry. The hybridization melting

temperatures were balanced by chemical modifications of the

detection probes. Hybridization used 100 mL 66 SSPE buffer

(0.90 M NaCl, 60 mM Na2HPO4, 6 mM EDTA, pH 6.8)

containing 25% formamide at 34uC. After hybridization detection

used fluorescence labeling using tag-specific Cy3 and Cy5 dyes.

Microarray experiments were performed three times using

biological samples. Hybridization images were collected using a

laser scanner (GenePix 4000B; Molecular Devices, Sunnyvale,

CA, USA) and digitized using the Array-Pro image analysis

software (Media Cybernetics, Bethesda, MD, USA). Data were

analyzed by first subtracting the background and then normalizing

the signals using a LOWESS filter (Locally-weighted Regression).

A transcript to be listed as detectable must meet at least two

conditions: signal intensity higher than 36 (background standard

deviation) and spot CV ,0.5, and CV was calculated by (standard

deviation)/(signal intensity) [17]. When repeating probes were

present on an array, a transcript was listed as detectable only if the

signals from at least 50% of the repeating probes are above

detection level. Furthermore, ‘‘bad spots’’ that had signal values

deviated more than 50% of average values of repeating spots and/

or spot CV larger than 0.5 were discarded. For two color

experiments, the ratio of the two sets of detected signals (log2

transformed, balanced) and p-values of the t-test were calculated.

Differentially detected signals were those with a slightly relaxed p-

value cutoff of 0.1 [35,36], in case that the true positives were

excluded.

Quantitative real-time RT-PCR to validate miRNA
expression

The microarray findings were validated using quantitative real-

time RT-PCR. Ten nanogram RNAs were 39-extended with a

poly (A) tail using poly (A) polymerase, and then reverse

transcribed to cDNA using the RT-PCR System (Promega). The

expression levels of miRNAs were detected in 60-day porcine

testes and 180-day porcine testes by SYBR Green I assay

(TOYOBO). Each real-time PCR (in 25 mL) included 12.5 mL

SYBR Green Real-time PCR Master Mix, 350–500 ng cDNA,

0.3 mM primers (Table S4). The cycling conditions consisted of 1

cycle at 95uC for 3 min, followed by 40 cycles at 94uC for 20 sec,

58uC for 20 sec, and 72uC for 10 sec, with fluorescence

acquisition at 74uC in single mode. The specific PCR products

were confirmed by the results of melting curve analysis and

agarose gel electrophoresis. cDNAs from three testis samples at

each stage were used as template to detect the expression changes

Table 1. Number of binding miRNAs of seven potential target genes involved in spermatogenesis.

NO. Binding miRNAs AQN-1 DAZL HAS3 RNF4 SMCP SPAG1 SPAM-1 Total

Bioinformatics 25 14 55 20 17 19 29 179

Bioinformatics + Microarray
Array + qPCR

14 10 25 12 7 9 13 90

Positive percentage 0.56 0.714 0.455 0.6 0.412 0.474 0.448 0.503

doi:10.1371/journal.pone.0011744.t001
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of the miRNAs, and all PCRs were performed in triplicate. The

miRNA was considered to be undetectable when its Ct value

exceeded 35 in the sample tissue. miRNA expression levels were

quantified relatively to the expression of 18S RNA using Gene

Expression Macro software (Bio-Rad, Richmond, CA, USA) by

employing DCt value. Student’s t-test was conducted to identify

differentially expressed miRNAs. Due to the negative relationship

between Ct and expression level, an improved method of the

previous report [37] was used to compare the results of qRT-PCR

and microarray by plotting the -DCt values of qRT-PCR versus the

log2 of the microarray signal for each miRNA.

Bioinformatics analysis
A homology search based on genomic survey sequence analysis

and human miRNA secondary structure was used to map the

miRNA genes. Human miRNA and its corresponding pri-miRNA

sequences were obtained from the Sanger miRNA Registry

(http://www.sanger.ac.uk/software/Rfam/mirna). To retrieve

homologous pig miRNA genes, the human pri-miRNA sequence

was used as a query sequence to search homology using BLASTN

(Basic Local Alignment Search Tool-nucleotide) on the NCBI pig

sequence database with HTGS or Trace-WGS options. The

porcine miRNAs were predicted to be located in the correspond-

ing target contig or shot-gun sequences, if the similarity was larger

than 80%.

To fully inverstgate the function of the differentially expressed

miRNAs, we collected pig cDNA sequences were randomly

selected from GenBank and performed a GO term and KEGG

pathway annotation using the DAVID gene annotation tool

(http://david.abcc.ncifcrf.gov/). Here the ‘‘Full-Length’’ cDNA

sequences were used to match with the differentially expressed

miRNAs sequence by the RNA22 [38] to predict the putative

target genes and corresponding target sites, since target mRNAs

could be repressed as efficiently by miRNA-binding sites in the 59

UTR and CDS as in the 39 UTR [10,11].

Putative target gene validation
Seven candidate target genes involved in spermatogenesis,

including AQN-1, DAZL, HAS3, RNF4, SMCP, SPAG1 and SPAM1

genes, were confirmed by real time RT-PCR. From each sample,

10 mg of total RNA was incubated with two units of RNase-free

DNase I (New England BioLabs, Inc.) to remove DNA

contamination from RNA. RNAs were 39-extended with a poly

(A) tail, then the first cDNA strand was synthesized and used as

template for quantitative real-time RT-PCR with gene specific

primers (Table S4) and b-actin was selected as the endogenous

reference. All PCRs were performed in triplicate and gene

expression levels were quantified relatively to the expression of

b-actin using Gene Expression Macro software (Bio-Rad, Rich-

mond, CA, USA) by employing an optimized comparative Ct

(DDCt) value method. Student’s t-test was conducted to identify

differentially expressed miRNAs by comparing DDCt value of two

groups [39].

Supporting Information

Table S1 All the miRNAs probes used in this research. 2522

mammal mature miRNAs were included. After removing the

redundant sequences, 1260 unique mature miRNA sequences

remained. The signs (*, 3p, 5p and additional letters) of miRNA

names are explained at http://www.mirbase.org/help/nomenclature.

shtml.

Found at: doi:10.1371/journal.pone.0011744.s001 (0.21 MB

XLS)

Table S2 Average signal of detectable transcripts. Detectable

transcripts must meets at least two conditions: signal intensity

higher than 36 (background standard deviation) and spot CV

,0.5. CV is calculated by (standard deviation)/(signal intensity).

Found at: doi:10.1371/journal.pone.0011744.s002 (0.16 MB

XLS)

Table S3 Differentially expressed miRNAs detected in porcine

sexually immature and muture testes tissues (p,0.1). p-value with

red, yellow and blue means p,0.01, p,0.05 and p,0.1,

respectively.

Found at: doi:10.1371/journal.pone.0011744.s003 (0.04 MB

XLS)

Table S4 Primer pairs used to confirm the differentially

expressed miRNAs and target genes.

Found at: doi:10.1371/journal.pone.0011744.s004 (0.02 MB

XLS)

Table S5 Characteristics analysis of differentially expressed

miRNAs.

Found at: doi:10.1371/journal.pone.0011744.s005 (0.12 MB

XLS)

Table S6 The results of 445 gene cDNA sequence aligned with

129 differentially expressed (DE) miRNAs by RNA22. Part 1:

miRNA-mRNA interaction site counts and binding DE miRNAs

counts of each potential target gene. Part 2: miRNA-mRNA

interaction site counts and target gene counts of each DE miRNA.

Found at: doi:10.1371/journal.pone.0011744.s006 (0.50 MB

XLS)

Table S7 GO Functional Enrichment and KEGG pathway

annotation of the miRNA potential targets.

Found at: doi:10.1371/journal.pone.0011744.s007 (0.03 MB

XLS)
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