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Improving the performance of the 
PLB index for ligand-binding site 
prediction using dihedral angles 
and the solvent-accessible surface 
area
Chen Cao1,2 & Shutan Xu3

Protein ligand-binding site prediction is highly important for protein function determination and 
structure-based drug design. Over the past twenty years, dozens of computational methods have 
been developed to address this problem. Soga et al. identified ligand cavities based on the preferences 
of amino acids for the ligand-binding site (RA) and proposed the propensity for ligand binding (PLB) 
index to rank the cavities on the protein surface. However, we found that residues exhibit different 
RAs in response to changes in solvent exposure. Furthermore, previous studies have suggested that 
some dihedral angles of amino acids in specific regions of the Ramachandran plot are preferred at the 
functional sites of proteins. Based on these discoveries, the amino acid solvent-accessible surface 
area and dihedral angles were combined with the RA and PLB to obtain two new indexes, multi-factor 
RA (MF-RA) and multi-factor PLB (MF-PLB). MF-PLB, PLB and other methods were tested using two 
benchmark databases and two particular ligand-binding sites. The results show that MF-PLB can 
improve the success rate of PLB for both ligand-bound and ligand-unbound structures, particularly for 
top choice prediction.

Proteins perform their biological functions by interacting with other molecules (ligands), such as DNA, antigens, 
drugs or even other proteins. Identifying the residues participating in the interaction site and characterizing 
the geometric features of the site are important steps for identifying these regions and understanding protein 
functions. Protein-DNA binding sites show the most obvious amino acid preferences because positively charged 
residues, such as arginine and lysine, likely face the negatively charged phosphate backbone of DNA1.

In this manuscript, we focus on the detection of small molecule ligand-binding sites because it is a prerequisite 
for protein-ligand docking and the first step of structure-based drug discovery2,3. Many protein ligand-binding 
site prediction methods have been developed over the past 20 years. These methods can be generally categorized 
into four classes: geometry-based methods, energy-based methods, sequence-based methods, and combined 
methods.

Geometry-based methods apply a grid or sphere to detect all cavities on the target protein surface (e.g., Ligsite, 
Surfnet, PASS, PocketFinder and CAST)4–8, and most of these methods assume that the ligand-binding site coin-
cides with the largest cavity. Energy-based methods search for energetically favourably pockets for ligand bind-
ing by calculating the interaction energy between the chemical probe and protein atoms (e.g., SITEHOUND, 
Q-SiteFinder and FTMap)9–11; in these methods, the probe can be a methyl group or atoms, such as carbon 
and phosphorus. Sequence-based methods employ information from sequence conservation or homologous 
structures (e.g., TargetS, LigandRF and Multi-RELIEF)12–14, and homologous-based methods have been found 
to the most accurate by far but require structure data for close ligand-binding homologs. Most combined meth-
ods predict the ligand-binding site through two steps: First, all potential ligand-binding sites are detected by 
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geometry-based methods, and then, the predicted ligand-binding site is determined according to the conser-
vation of the residues in the cavity (e.g., Ligsite-csc, Surfnet-ConSurf, GalaxySite, ConCavity, and LISE)15–19. 
Meta-Pocket 1.0 and 2.0 (MPK1 and MPK2) combine the results of many methods to improve the prediction 
result20,21.

To identify a potential ligand-binding site, Soga et al. developed an index known as the propensity for ligand 
binding (PLB), which is calculated by simply summing up the RA (preference factor for an amino acid) of all resi-
dues involved in the site22. The PLB index has also proven to be useful for identifying druggable protein cavities23.  
The RA is derived from a database of high-quality protein-ligand complex structures and has a constant value 
for each type of amino acid; thus, only 20 RA values are provided22. However, we have found that amino acids 
exhibit different propensities under different solvent exposure conditions. In addition, our previous study 
revealed that the dihedral angles of the residues in specific regions of the Ramachandran plot reveal preferences 
for ligand-binding sites24.

In this study, a method that considers the amino acid solvent-accessible surface area (SASA) and dihedral 
angles based on the RA and multi-factor RA (MF-RA) was developed. In addition, similar to the PLB, the pro-
posed MF-PLB sums up all of the amino acid MF-RAs at the ligand site. Two frequently used test datasets were 
applied to compare the prediction abilities of the MF-PLB, PLB, and several popular ligand-binding site predic-
tion methods. Because large ligand-binding sites can be easily identified, we constructed two new databases to 
evaluate the performances of different methods for the identification of small-volume ligand-binding sites and 
protein-protein interface ligand-binding sites.

Methods
Calculating hydrogen bonds and van der Waals (vdW) contacts.  The hydrogen bonds between 
a ligand and residues in a protein were calculated using the HBPLUS programme with default values25. Several 
geometrical criteria of specific atoms, including hydrogen bond donors (D) and acceptors (A), were applied for 
the identification of hydrogen bonds using HBPLUS. The detection of vdW contacts between a ligand and protein 
residues is simple: For a non-hydrogen ligand atom A and a non-hydrogen residue atom B, a vdW contact exists 
between the two atoms if the distance between A and B satisfies dist(AB)-0.5 Å < ​vdW radius(A) +​ vdW radius(B).

SASA calculation.  We applied the NACCESS programme to calculate the SASA and relative SASA for all 
residues26. NACCESS scans a probe over the vdW surface of the protein and calculates the SASA for each residue 
according to the β-centre trace of the probe. The default probe radius (1.4 Å) and behaviours (water molecules, 
hydrogen atoms, and HET groups are excluded from the protein structure) are used. The relative SASA describes 
the relative accessibility of residue X and was calculated by expressing the actual SASA of X as a percentage of the 
residue in an extended tripeptide: ALA-X-ALA.

Databases.  Set N: We constructed a non-redundant database, set N, consisting of 6,635 ligand-bound struc-
tures obtained from the Binding MOAD released in 2014 27 to derive the MF-RA. Binding MOAD groups struc-
tures at the 90% sequence identity level, and all of the structures in Binding MOAD having more than 70% 
sequence identity with any protein in set T or set S were excluded from set N.

Set T and set S: Set T and set S are two benchmark protein structure databases that were used to evalu-
ate the performances of the different ligand-binding site prediction methods. The two test databases have 
been widely used in previous studies of ligand-binding site prediction methods15,19,20,28. Set T consists of 210 
ligand-bound protein structures, whereas set S includes 96 structures that can be grouped into two classes, spe-
cifically 48 ligand-unbound protein structures and their corresponding ligand-bound forms. To obtain the actual 
ligand-binding sites of the 48 ligand-unbound structures, the ligand-bound structures were aligned with their 
ligand-unbound forms using the PyMOL align function, and the ligands’ coordinates and connectivity informa-
tion were obtained from the ligand-bound structures29.

Set L: The average molecular weight of the ligands in set S is as high as 269 dalton, whereas that of some 
ligands, such as “NAD” and “HEM”, exceeds 500 dalton. Additionally, large ligand-binding sites can be easily 
identified by geometry-based methods or even by eye based on the three-dimensional (3D) protein structures. 
Set L was constructed to evaluate the performances of different methods for small-volume ligand-binding site 
prediction and consists of 169 ligand-bound structure chains downloaded from the Protein Data Bank (PDB)30. 
In the PBD, each structure chain has only one ligand, and the molecular weight of the ligand should be less than 
150 dalton. Inorganic molecules and metals in protein structures are ignored, the ligand should not be completely 
exposed to the solvent, and the ligand-binding site is formed by the only chain in the structure. In set L, no two 
structures have more than 70% sequence identity. Detailed information for set L is provided in Table S6.

Set P: Set P was derived from a database of dimeric protein complexes that consists of 1,611 structures 
obtained in previous studies31,32. No two chains from different protein complexes share a sequence identity of 35% 
or higher. In addition, all ligands in proteins should be located at protein-protein interfaces: the distance between 
a ligand and both protein chains, defined as the shortest distance between any ligand atom and any residue atom 
that belongs to the protein chains, is less than 5 Å. After refinement, set P includes 149 protein structures and 
was constructed to evaluate the accuracy of the prediction of ligand-binding sites on protein-protein interaction 
region. Detailed information for set P is provided in Table S7.

Ligsite-csc, Surfnet, ConCavity, MPK2, Q-SiteFinder and LISE prediction results.  To compare 
the MF-PLB with other prediction methods, we downloaded the prediction results obtained with Ligsite-csc from 
http://projects.biotec.tu-dresden.de/pocket/15, those obtained using Surfnet, ConCavity, MPK2, and Q-SiteFinder 
from http://projects.biotec.tu-dresden.de/metapocket/20, and those obtained using SiteHound from http://scbx.
mssm.edu/sitehound/ (using methyl carbon as the probe)9. We used three Python scripts, which are shown in  
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Tables S1, S2, and S3, to upload the pdb files, set the parameters from the three above-mentioned web servers and down-
load the prediction results automatically. The LISE Perl script was obtained from http://lise.ibms.sinica.edu.tw19,  
and PSI-BLAST was used to compute the PSSM files33. The newest non-redundant protein sequence databases 
(04/23/2016) required by PSI-BLAST were downloaded directly from ftp://ftp.ncbi.nlm.nih.gov/blast/db/ 34. The 
files of pocket grids calculated by Ligsite-cs were also downloaded from http://projects.biotec.tu-dresden.de/
metapocket15.

The residues show different preferences for ligand-binding sites, as determined by dividing the residues into 
two groups, namely high-accessibility residues (relative SASA >13.1%) and low-accessibility residues (1% < rela-
tive SASA ≤ 13.1%; please note that 13.1% is the median of the relative SASA values of all ligand-binding site 
residues in set N). As shown in Fig. 1, with the exception of Gly, Ser and Thr, the amino acids have significantly 
different RA values (preference factor, defined by Soga et al.). For instance, Cys has a constant RA of 1.65 accord-
ing to Soga et al.22, whereas the RA values for high-accessibility and low-accessibility Cys residues are 3.01 and 
0.69, respectively. As a result, dividing amino acids into two groups according to their solvent exposure can better 
reflect their ligand-binding site preferences.

The amino acid SASA and the dihedral angles of the amino acid backbone influence the ligand-binding site 
preferences. Thus, these two factors were considered, and the MF-PLB was defined as

∑− = −
=

PLB MF RA x r SASAMF ( , , ),
(1)x

n

1

For each cavity, the MF-PLB can be obtained by simply summing the MF-RA(x, r, SASA) of all of the residues 
involved in the cavity. Here, x is the amino acid type, r is the Ramachandran plot region where the dihedral angle 
of the residue’ backbone lies (the classification of the dihedral angles is shown in Table S4), and SASA indicates 
the accessibility of the residue, i.e., high or low. −MF RA x r SASA( , , ) was calculated by taking the ratio of the 
frequency of the amino acid x in the protein ligand-binding site to its frequency on the protein surface. The 
detailed formula for the calculation of MF-RA(x, r, SASA) is shown below:

− =MF RA x r SASA CA x r SA x r SASA( , , ) ( , )/ ( , , ), (2)

In this equation, CA x r( , ) is the frequency of amino acid x observed at the ligand-binding site and is calculated as

∑=
=

CA x r N x r N y r( , ) ( , )/ ( , ),
(3)y 1

20

where N(x, r) and N(y, r) denote the numbers of amino acids x and y detected in the ligand-binding site, respec-
tively; additionally, the dihedral angles of both amino acids are in the same Ramachandran region r. Similarly,

∑=
=

SA x r SASA N x r SASA N y r SASA( , , ) ( , , )/ ( , , ),
(4)y 1

20

where N(x, r, SASA) and N(y, r, SASA) are the number of amino acids x and y, respectively, and the dihedral 
angles of both amino acids x and y should be located in the same region r and have the same accessibility state. 
In conclusion, CA is the rate of occurrence of amino acid x in the ligand-binding site, whereas SA is the rate of 
occurrence of amino acid x on the protein surface.

Each type of amino acid can have 40 MF-RAs according to its dihedral angles and SASA, and detailed infor-
mation for the MF-RAs of the 20 amino acids is shown in Table 1.

Protein cavity calculation and protein-ligand binding site prediction.  Soga et al. used the Alpha 
Site Finder to identify and catalogue protein cavities, and all cavities were re-ranked according to the sums of the 
RA values of the residues involved in the cavities (PLB). The top three clusters were retained, and the top clus-
ter was selected as the predicted ligand-binding site. Our protein cavity calculation consists of two steps. First, 

Figure 1.  MF-RA for 20 amino acids. 
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RES 11 2 3 4 5 6 7 8 9 10

A2 1.32 1.33 1.3 1.87 1.02 1.93 1.62 1.74 1.34 0.91

a2 0.53 0.58 0.55 0.85 0.68 0.88 0.78 0.82 0.71 0.61

C 1.78 2.28 3.98 2.56 2.2 4.42 2.74 2.9 3.39 2.76

c 0.65 0.63 0.81 0.86 0.61 0.71 0.34 0.69 0.65 0.71

D 1.46 1.29 0.83 0.76 0.8 0.61 0.42 0.46 0.62 0.53

d 3.26 2.48 3.61 2.65 1.68 2.36 1.58 2.27 1.49 1.73

E 0.5 0.49 0.83 0.56 0.74 0.88 0.74 0.54 0.53 0.34

e 1.96 2.21 2.61 2.87 2.95 2.13 2.36 1.72 1.62 1.37

F 1.43 1.84 1.65 1.67 2.03 1.95 2.86 1.75 1.69 2.49

f 0.68 0.83 0.92 0.89 0.87 0.88 0.95 0.57 0.8 0.85

G 2.12 2.05 2.31 3.25 2.24 1.62 1.85 1.54 3.27 1.6

g 0.9 0.83 0.98 0.99 1.27 1.11 1.04 1.04 1.76 0.92

H 1.47 1.56 1.08 1.17 1.58 1.16 1.98 1.29 0.93 1.45

h 2.14 2.49 2.37 2.48 1.77 2.68 3.31 2.43 1.49 1.87

I 1.41 1.43 1.69 1.34 1.61 2.52 1.33 2.21 2.16 2.07

i 0.61 0.66 0.51 0.58 0.6 0.61 0.38 0.7 0.89 0.65

K 0.51 0.39 0.33 0.56 0.47 0.39 0.43 0.44 0.39 0.43

k 3.46 3.39 2.35 5.73 3.83 2.61 3.02 3.96 3.61 3.92

L 1.46 1.63 1.46 1.41 1.23 1.88 1.6 1.53 1.48 1.2

l 0.65 0.93 0.55 0.61 0.54 0.46 0.49 0.48 0.59 0.45

M 1.77 2.45 1.94 2.15 1.68 2.08 2.26 2.27 2.24 1.48

m 0.74 1.36 0.83 1.15 0.78 0.69 0.89 0.98 0.83 0.61

N 1.01 1.27 0.76 0.87 1.16 0.41 0.73 0.78 0.91 0.75

n 1.71 1.92 1.63 2.11 1.57 0.99 1.48 1.31 1.66 1.48

P 1.53 0.42 1.5 0.78 0.54 1.5 0.51 0.62 0.48 0.78

p 1.5 0.44 1.5 1.16 0.68 1.5 0.55 0.66 0.27 0.8

Q 0.53 0.57 0.46 0.58 0.85 0.46 0.75 0.68 0.5 0.63

q 1.45 1.98 1.17 1.96 1.88 1.09 1.56 1.47 1.47 1.7

R 0.71 0.66 0.78 0.68 0.97 0.86 1.08 0.93 0.87 1.03

r 2.88 2.71 3.05 3.74 2.59 2.39 2.75 2.43 2.52 2.94

S 0.79 0.84 1.47 0.92 1.31 1.11 1.51 1.05 0.94 0.99

s 1.13 0.84 1.53 1.36 1.13 1.08 1.24 1.07 0.95 1.2

T 0.78 0.68 0.68 0.54 0.96 0.9 1.46 1.03 0.68 1.42

t 0.89 1.03 0.73 1.05 1.12 0.82 1.13 1.03 0.9 1.4

V 1.06 1.05 0.9 1.14 1.47 1.92 1.47 1.8 1.1 2.03

v 0.48 0.53 0.37 0.57 0.67 0.6 0.57 0.67 0.58 0.67

W 1.77 1.9 1.71 2.03 2.59 1.69 3.89 3.8 2.75 3.12

w 1.6 1.28 1.33 1.6 1.44 0.98 1.25 1.2 1.4 1.2

Y 1.12 1.17 1.26 1.33 1.97 1.34 2.13 1.66 1.09 2.03

y 1.2 1.07 1.43 1.5 1.65 1.28 1.59 1.23 0.96 1.14

RES 11 12 13 14 15 16 17 18 19 204

A 0.82 1.43 0.77 1.58 1 0.81 2.47 0.32 0.91 1.54

a 0.63 0.84 0.45 0.86 0.75 1.25 1.01 0.56 0.72 0.89

C 3.08 2.01 3.73 2.96 3.3 1.5 4.62 3.11 2.54 3.07

c 0.72 0.96 0.75 1.29 0.58 1.5 0.63 2.82 0.71 1.35

D 0.76 0.58 0.52 0.57 0.31 2.7 1.12 3.55 0.83 0.7

d 2.16 1.08 1.92 1.87 0.6 0.91 2.3 2.62 1.88 1.41

E 0.45 0.57 0.31 2.11 0.35 1.5 1.33 0.63 0.44 0.4

e 1.72 2.6 1.69 4.78 0.93 1.5 2.64 1.01 1.96 0.77

F 2.94 1.73 2.75 2.51 2.9 3.38 3.45 1.56 1.44 1.85

f 0.87 0.83 1.01 1.31 1.52 1.87 1.03 1.3 0.74 0.89

G 1.88 3.96 2.79 1.26 1.45 0.96 1.33 0.34 1.62 1.51

g 1.07 2.37 1.32 0.69 1.29 0.98 0.73 0.49 0.95 1.48

H 1.59 0.97 1.45 2.74 3.65 1.5 2.73 6.98 1.27 1.22

h 1.75 1.19 2.18 2.65 1.72 1.5 3.05 3.33 1.98 3.64

I 2.23 1.19 1.86 1.07 0.68 1.5 5.84 1.2 1.02 0.9

i 0.65 0.6 0.64 0.39 0.24 1.5 1.87 0.94 0.65 0.55

Continued
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Ligiste-cs was employed to detect solvent grids. Ligiste-cs divides all grids projected from the protein into three 
groups: protein grids, surface grids and solvent grids15. A surface-solvent-surface event occurs when a sequence 
of grids starts and ends with surface grids and contains solvent grids (exceeding the minimal threshold of six 
grids) in the middle. Solvent grids in the surface-solvent-surface event are labelled pocket grids. Second, the 
depth-first search algorithm clusters all pocket grids because the web server does not provide clustering infor-
mation. In this study, the clustering result should satisfy the following condition: The distance between any two 
pocket grids from different clusters must exceed 3.0 Å.

Before predicting the protein-ligand binding site, we defined the residues involved in the cavities: For each 
pocket grid cluster, the involved residue needs to have at least one non-hydrogen atom located within 4.5 Å of 
any grid in the cluster. All cavities were then re-ranked by their MF-PLB, which was calculated by summing the 
MF-RA values of all of the residues in the cavity. The cavities with the top three MF-PLB values were retained.

Comparison measures.  All cavities calculated by Ligsite-cs were re-ranked based on the MF-PLB, PLB and 
Ligsite-csc. Ligsite-csc re-ranks cavities according to the degree of conservation of the residues in the cavity15,37.  
Based on this approach, the protein-ligand binding site cavity has at least one pocket grid within 4.0 Å of any 
atom of the actual ligand. This method successfully predicted whether the top-scoring cavity was the actual 
ligand-binding site (top 1) or whether any one of the top three cavities is the actual ligand-binding site (top 3).

Results
We evaluated the ligand-binding site prediction performances of the PLB, MF-PLB, Ligsite-csc and other meth-
ods. Two benchmark databases (set T and set S) and two evaluation criteria (top 1 and top 3) were employed. 
Table 2 shows a detailed comparison of the methods based on an analysis of 210 ligand-bound structures, and 
Table 3 shows the results of a detailed comparison of the methods based on an analysis of 48 ligand-bound and 
48 ligand-unbound structures. The tables also list the prediction success rates of several other methods, namely 
MPK1, MPK2, Q-SiteFinder, LISE, PASS, SURFACE and SiteHound. Overall, the performance of the PLB for the 
analysis of 210 ligand-bound structures was found to be similar to that of Ligsite-csc, whereas the PLB achieved 
better performance in the prediction of the top choice from the analysis of the database of 48 ligand-bound and 
48 ligand-unbound structures. The MF-PLB showed improved success rates of up to 5% (210 ligand-bound struc-
tures), 4% (48 ligand-bound structures), and 8% (48 ligand-unbound structures) for the top choice prediction 
compared with the PLB. When the top 3 predicted choices were used, the MF-PLB and PLB exhibited similar 

RES 11 2 3 4 5 6 7 8 9 10

K 0.54 0.32 0.54 0.42 0.44 1.5 1.18 0.38 0.38 0.81

k 4.73 3.27 5.08 8.1 3.5 1.5 9.31 2.11 3.11 3.6

L 1.26 1.36 1.42 0.3 0.72 4.16 2.28 1.43 0.89 0.76

l 0.45 0.68 0.53 0.16 0.41 2.5 0.6 0.49 0.57 0.52

M 2.02 1.59 2.38 1.94 0.68 1.5 2.2 1.11 0.6 0.89

m 0.78 0.79 0.91 1.45 0.67 1.5 0.63 0.7 0.81 0.36

N 1.01 1.28 1 0.3 0.54 1.5 1.28 0.56 1.08 0.5

n 1.63 2.74 1.99 0.68 0.87 1.5 1.08 1.21 1.45 0.63

P 0.54 1.5 0.51 1.5 0.52 1.5 1.5 1.5 0.47 0.33

p 0.81 1.5 1.15 1.5 0.43 1.5 1.5 1.5 0.87 5.51

Q 0.66 0.48 0.48 1.1 0.53 1.5 0.7 0.75 0.52 0.15

q 1.58 1.44 1.5 1.76 1.23 1.5 1.4 1.06 1.4 0.41

R 1.07 0.78 0.77 1.26 0.38 2.25 1.18 0.61 0.7 0.8

r 2.92 2.27 3.37 5.06 2.67 3.75 1.68 1.13 2.62 1.89

S 0.87 1.27 1.23 0.61 1.15 3.49 1.79 1.07 0.95 0.93

s 1.14 1.33 1.33 0.82 0.9 1.67 1.38 0.79 1.09 0.58

T 1.16 0.79 1.69 0.94 1.01 1.02 2.01 2.03 0.77 0.54

t 1.05 1.1 1.63 0.68 0.63 1.56 0.82 0.65 0.82 0.4

V 2.1 0.84 1.39 0.79 1.3 1.5 4.87 1.11 0.61 0.85

v 0.73 0.56 0.55 0.52 0.26 1.5 1.34 0.66 0.47 0.53

W 2.72 1.92 2.59 3.9 2.04 1.5 6.06 1.95 2.41 1.11

w 1.19 1.17 1.32 4.49 2.67 1.5 1.66 1.21 1.35 1.1

Y 2.18 1.92 1.89 2.59 2.32 1.35 2.4 2.31 1.64 0.85

y 1.11 1.33 1.45 2.09 2.05 0.62 1.05 1.13 1.35 0.69

Table 1.  MF-RA for 20 amino acids. 1Region in the Ramachandran plot. 2Capital letters indicate high-
accessibility amino acids (relative SASA > 13.1%), whereas lowercase letters indicate low-accessibility amino 
acids (relativeSASA ≤ 13.1%). 3The backbone conformation is considered rare if fewer than 20 residues are 
located in the region, and the MF-RA value of rare-conformation amino acids is 1.5 based on Petock et al., who 
reported that these residues are likely to be located at the functional site35. 4DISICL divided the Ramachandran 
plot into 19 regions, and the rest of the area in the Ramachandran plot was considered the 20th region36.
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prediction success rates. This finding suggests that the MF-PLB can re-rank the cavities more accurately and 
reflect the amino acid ligand-binding site preferences better than the PLB.

MF-PLB is superior to MPK1, Q-SiteFinder, Ligsite-cs, Pass, Surface and SiteHound for both set T and set S,  
particularly with respect to its top 1 prediction. In general, combined ligand-binding site prediction methods 
show better success rates than those that utilize only geometrical information. MPK2 and LISE have higher suc-
cess rates than MF-PLB for the set of 210 ligand-bound structures and the set of 48 ligand-bound structures 
because these two methods are meta-predictors, whereas the MF-PLB exhibited the best top-1-prediction per-
formance in the analysis of the set of 48 ligand-unbound structures. The use of ligand-unbound structures for 
the accurate prediction of ligand-binding sites is more important than the use of the ligand-bound forms because 
the ligand coordinates in the protein structure are unknown in practical applications. A detailed comparison of 
the performances of Ligsite-csc, PLB and MF-PLB in the analysis of the set of 48 ligand-unbound structures is 
shown in Table 4.

Discussion
In this study, we show that MF-PLB exhibits good performance in ligand-binding site identification. We divided 
the residues into two types: low-accessibility and high-accessibility residues. Thus, it was interesting to assess the 
interactions between a ligand and these types of residues. Figure 2a details the average number of hydrogen bonds 
formed between a ligands and low-accessibility and high-accessibility residues. Approximately half of the residues 
establish similar numbers of hydrogen bonds in both their low- and high-accessibility states. Cys, Asp, Gly, Ser, 
and Thr form more hydrogen bonds in their high-accessibility states than in their low-accessibility states. The 
only residues that show significantly more hydrogen bonds with a ligand in their low-accessibility state compared 
with their high-accessibility state are the two positively charged amino acids: Lys and Arg.

We then examined the number of vdW contacts between a ligand and each residue involved in the 
ligand-binding site in both their low-accessibility and high-accessibility states (Fig. 2b). The results show that on 
average, high-accessibility residues form more vdW contacts with a ligand than low-accessibility residues with 
the exception of Glu and Lys. The analysis of the three amino acids with electrically charged side chains (Asp, Arg 
and His) showed that Asp and Arg have similar vdW contacts with ligands in both their high-accessibility and 
low-accessibility states, whereas the imidazole ring allows the high-accessibility His to establish many more vdW 
contacts with a ligand.

Method Top 1 (%) Top 3 (%)

MF-PLB 80 93

PLB 75 92

MPK21 81 95

MPK12 75 93

Q-SiteFinder2 70 90

LISE3 83 94

Ligsite-csc4 75 —

Ligsite-cs4 70 86

PASS4 51 80

SURFACE4 42 57

SiteHound 65 81

Table 2.  Comparison of the performance of different methods in the analysis of 210 ligand-bound 
structures. 1Data from20. 2Data from21. 3Data from19. 4Data from15.

Method

Bound Protein Unbound Protein

Top 1 (%) Top 3 (%) Top 1 (%) Top 3 (%)

MF-PLB 85 96 83 92

PLB 81 94 75 90

MPK21 85 96 80 94

MPK12 83 96 75 90

Q-SiteFinder2 75 90 52 75

LISE3 92 96 81 92

Ligsite-csc4 79 — 71 —

Ligsite-cs4 81 92 71 85

PASS4 63 81 60 71

SURFNET4 54 78 52 75

SiteHound 71 90 63 81

Table 3.  Comparison of the performance of different methods in the analysis of 48 ligand-bound/unbound 
structures. 1Data from20. 2Data from21. 3Data from19. 4Data from15.
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The average numbers of vdW contacts for every atom in each type of amino acid are listed in Table S5. 
Most atoms in the high-accessibility residues can provide more vdW contacts with a ligand than those in the 
low-accessibility residues. This finding is expected because the high-accessibility residues are more exposed on 
the protein surface, whereas the low-accessibility residues are relatively buried in the protein core. However, the 

Bound Prot Unbound Prot

Hit1

Dnear(Å)2Ligsite-csc MF-PLB PLB

1bid 3tms 1 1 1 3.4

1cdo 8adh 1 1 1 0.8

1dwd 1hxf 1 1 1 1.7

1fbp 2fbp 1 1 1 0.5

1gca 1gcg 1 1 1 0.8

1hew 1hel 1 1 1 1.8

1hyt 1npc 1 1 1 1.2

1inc 1esa 1 3 5 2.9

1rbp 1brq 1 1 1 0.9

1rob 8rat 1 1 1 0.9

1stp 1swb 1 1 1 0.6

1ulb 1ula — — — —

2ifb 1ifb 1 1 1 2.2

3ptb 3ptn 2 1 2 1.1

2ypi 1ypi — 1 1 3.0

4dfr 5dfr 1 1 1 1.9

4phv 3phv 1 6 7 2.7

5cna 2ctv 11 3 3 1.0

7cpa 5cpa 1 1 1 1.0

1a6w 1a6u 3 5 3 0.5

1acj 1qif — 1 1 3.5.

1apu 3app — 1 1 1.2

1blh 1djb 1 1 1 0.7

1byb 1bya 1 1 1 2.5

1hfc 1cge 1 1 1 0.7

1ida 1hsi 1 1 2 3.4

1igj 1a4j 4 8 7 0.8

1imb 1ime 1 1 1 1.7

1ivd 1nna 1 1 1 1.4

1mrg 1ahc 1 1 1 1.9

1mtw 2tga 5 1 4 2.8

1okm 4ca2 1 1 1

1pdz 1pdy 1 1 1 2.6

1phd 1phc 1 1 1 0.7

1pso 1psn 1 1 1 0.8

1qpe 3lck 1 1 1 1.5

1rne 1bbs 1 1 1 1.0

1snc 1stn 1 1 1 1.5

1srf 1pts 1 1 1 1.5

2ctc 2ctb 1 1 1 0.6

2h4n 2cba 2 1 1 1.0

2pk4 1krn 2 1 1 0.7

2sim 2sil 2 2 2 0.7

2tmn 1l3f — 1 1 2.1

3gch 1chg 1 2 3 2.2

3mth 6ins 1 1 1 3.8

5p2p 3p2p 1 1 1 1.3

6rsa 7rat 4 1 3 0.9

Table 4.  Comparison of the performances of Ligsite-csc, PLB and MF-PLB in the analysis of ligand-
unbound structures. 1Best ranking of ligand-binding site. 2Distance between the ligand and the central pocket 
grid of the ligand-binding site.
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atoms in an electrically charged side chain of a low-accessibility residue form many more vdW contacts with a 
ligand: for instance, “NZ” in low-accessibility Lys forms an average of 3.09 vdW contacts with a ligand, whereas 
“NZ” in high-accessibility Lys forms only 1.72 vdW contacts with a ligand. The hydrogen bonds between a ligand 
and high-accessibility and low-accessibility residues are shown in Fig. 2.

Set L consists of 169 structures and was used to evaluate the performances of different methods for 
small-volume ligand-binding site prediction because large-volume ligand sites can be easily detected. As shown 
in Table 5, almost all methods showed significantly worse performance for small-volume ligand-binding site 
prediction; in fact, the prediction success rates achieved with the small-volume ligand-binding site database were 
more than 20% lower than those achieved with the 210 ligand-bound structure database. Detailed information of 
the comparison can be found in Table S6. The results suggest that small-volume ligand-binding sites are relatively 
difficult to detect using the currently available methods. Although ConCavity shows improved performance in 
drug-binding site prediction18, it provides the fewest candidate cavities (average of 2.4 cavities) and achieves suc-
cess rates of 49.1% and 67.4% for the top 1 and top 3 hits. In contrast, Surfnet supplies as many as 47.4 candidate 
cavities but shows the worst performance for both the top 1 and top 3 hits. LISE exhibits the highest success rate, 
followed by our MF-PLB index, for both benchmarks. MF-PLB performed better in small-volume ligand-binding 
site identification than both PLB and Ligsite-csc, with success rates that were approximately 5% higher than those 
of PLB for both the top 1 and top 3 hits and approximately 10% higher than that of Ligsite-csc for the top 1 hits. 
In conclusion, although the MF-PLB, PLB and Ligsite-csc methods show worse performance in small-volume 
ligand-binding site prediction, MF-PLB achieves the highest success rate among the three methods.

Another particular ligand-binding site, namely a ligand site that binds to a protein-protein interface, was 
taken for comparing methods prediction ability38. Most protein-protein interfaces are planar in shape, whereas 
the majority of ligand-binding sites are concave. As a result, residues in the ligand-binding sites can create more 
contacts with ligands. Although both protein-protein interaction and protein-ligand interaction play key roles in 
biological processes39, few studies have focused on the ligand-binding sites located at the protein-protein inter-
face. The analysis of set P revealed that LISE exhibited the best performance, followed by MF-PLB and ConCavity 
(shown in Table 6). Two energy-based prediction methods, Q-SiteFinder and SiteHound, achieved lower suc-
cess rates than the other combined methods. Detailed information of the comparison can be found in Table S7.  
Although various methods, such as MF-PLB, ConCavity, MPK2, exhibit good performance in the predic-
tion of regular ligand-binding sites, the accurate identification of some particular sites, such as small-volume 
ligand-binding sites and ligand-binding sites on protein-protein interfaces, remains a challenging problem in the 
field. In the future, more physicochemical properties should be incorporated to address this problem.

Three typical examples, two from set S and one from set L, are provided in Fig. 3 (id: 2tga), Fig. 4 (id: 2sil) 
and Fig. 5 (id: 1chg) to illustrate the procedure underlying the prediction of a ligand-binding site by the MF-PLB.

The MF-PLB re-ranks all of the cavities calculated by Ligsite-cs; thus, a prerequisite for an accurate prediction 
using the MF-PLB is that Ligsite-cs successfully finds the ligand-binding sites. The ability of Ligsite-cs to detect 
ligand-binding sites directly influences the prediction results of the MF-PLB approach. The MF-PLB shows lower 
prediction success rates with sets L and P compared with those obtained using sets T and S for the following three 

Figure 2.  Average number of hydrogen bonds (a) and vdW contacts (b) formed between a ligand and a low-
accessibility or a high-accessibility residue.

Method MF-PLB PLB Ligsite-csc

Top 1 (%) 58.6 52.6 47.9

Top 3 (%) 76.9 71.5 69.8

Method ConCavity Surfnet Q-SiteFinder

Top 1 (%) 49.1 21.9 31.9

Top 3 (%) 67.4 38.5 59.7

Method MPK2 LISE Site-Hound

Top 1 (%) 44.3 62.1 30.2

Top 3 (%) 66.2 79.9 55.0

Table 5.  Comparison of the performance of different methods in the analysis of 169 small-volume ligand-
binding site structures.
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reasons. First, Ligsite-cs shows a lower ability to detecting ligand-binding sites in sets L and P. The success rates 
for the detection of ligand sites in sets T and S using Ligsite-cs are 98.1% and 97.9%, respectively, whereas the 
corresponding values for sets L and P are 94.6% and 85.8%. Furthermore, the MF-PLB of one cavity is calculated 
by summing up the MF-RA values of all residues surrounding the cavity; thus, larger cavities with more residues 
tend to have a higher MF-PLB. The average molecular weight of the ligands in sets T and S are 327 and 269 
dalton, whereas that of the ligands in set L is only 126 dalton. In addition, the residues located at two particular 
ligand-binding sites, namely small-volume sites and protein-protein interface sites, are buried more than they are 
in sets L and P: the average relative SASA of the ligand-binding site residues in sets L and P is 16.1% and 17.6%, 
respectively, whereas that of the ligand site residues in sets T and S is 25.7% (shown in Fig. 6). The MF-PLB might 
not accurately reflect the residue preference for ligand-binding sites in sets L or P because the exposure status 
of the ligand-binding site residues in sets T and S are different from the typical status. The ligand sites in set L 
are buried and have a small volume, whereas the ligand-binding sites on protein-protein interfaces are planar in 
shape and are also buried in the protein. These reasons could explain why MF-PLB do not exhibit good perfor-
mance in the analysis of sets L and P.

Conclusion
The accurate identification of ligand-binding sites in proteins is a very important step in protein function 
determination and structure-based drug design. Soga et al. suggested that the amino acid compositions at the 
ligand-binding site are markedly different from those on the protein surface. These researchers created the PLB 
index based on the amino acid preferences for the ligand-binding site. We found that amino acids show dif-
ferent preferences for ligand-binding sites depending on their SASA and dihedral angles. Based on these find-
ings, we successfully developed the MF-PLB index and applied it to the identification of ligand-binding sites in 

Method MF-PLB PLB Ligsite-csc

Top 1 (%) 57.7 53.0 51.6

Top 3 (%) 71.8 69.1 66.4

Method ConCavity Surfnet Q-SiteFinder

Top 1 (%) 55.0 21.5 48.3

Top 3 (%) 73.2 32.9 65.7

Method MPK2 LISE Site-Hound

Top 1 (%) 48.9 63.8 43.0

Top 3 (%) 67.1 81.9 65.1

Table 6.  Comparison of the performance of different methods in the analysis of 149 structures of ligand-
binding sites on protein-protein interface.

Figure 3.  Comparison of the performance of different methods in predicting the ligand-binding site of a 
protein (ID: 2TGA). (a) illustrates how ligand coordinates and atomic connectivity information for ligand-
unbound structures can be obtained from their corresponding ligand-bound proteins: A ligand-bound protein, 
1MTW.pdb (red model), is aligned to the ligand-unbound protein, 2TGA.pdb (green model), using PyMOL, 
and the coordinates of the ligand DX9 (stick model) are then saved in the pdb file of 2TGA.pdb. The actual 
ligand-binding sites are the first, fourth, and fifth cavities after re-ranking by MF-PLB, PLB, and Ligsite-csc, 
respectively; thus, only MF-PLB successfully identifies the ligand-binding site as the top 1 hit. The MF-PLB 
for the actual ligand-binding site is 13.74, whereas the PLB for the actual ligand-binding site is only 11.36. The 
MF-PLB value of the first cavity re-ranked by the PLB (yellow ball; this cavity is also the first cavity re-ranked 
by Ligsite-csc) is 13.22, whereas the PLB of the cavity is 12.7. The other three cavities in the top 5 hits after re-
ranking by Ligsite-csc are shown as purple balls, and all pocket grids calculated by Ligsite-cs are shown as cyan 
grids.
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Figure 4.  Comparison of the ligand-binding sites on a protein ((a) ID: 1CHG) predicted using different 
methods and alignment of the ligand-unbound structure with the ligand-bound structure to obtain missing 
Cα backbone atoms (b). The actual ligand-binding site (yellow ball) was the second cavity after re-ranking by 
the MF-PLB, whereas the first cavity (red ball) assigned by the MF-PLB is 16.63 Å away from the ligand (OAC). 
After examining the protein pdb file, we found that some residues were missing (red part in b) and that the 
presence of these missing residues would result in an abnormal cavity (red ball in a). We added these missing 
residues to protein 1CHG by aligning 1CHG to its ligand-bound form (3GCH) using PyMOL. The red-ball 
binding site was not obtained after the pocket grids were calculated by Ligsite-cs, and the first cavity assigned 
by the MF-PLB after the addition of the missing residues was the actual ligand-binding site. The MF-PLB values 
for the red-ball cavity and the yellow-ball cavity are 23.93 and 20.55, respectively. All pocket grids calculated by 
Ligsite-cs are shown as cyan grids.

Figure 5.  Comparison of the ligand-binding sites of a protein (ID: 1O9P) predicted using different 
methods. The top predictions obtained using Ligsite-csc (green ball), PLB (purple ball), MPK2 (red ball), 
Q-SiteFinder (orange ball), SiteHound (blue) and LISE (pink ball) are distant from the actual ligand-binding 
site (MLA, red stick model), and only MF-PLB (yellow ball) and ConCavity (cyan ball) were capable of correctly 
identifying the ligand-binding site. The MF-PLB values for the yellow-ball (residues involved: 111, 112, 113, 130, 
131, 152, 155, 158, 183, 277, 356, and 359; shown in green lines) and purple-ball cavities are 18.74 and 14.58, 
respectively. All pocket grids calculated by Ligsite-cs are shown as cyan grids.

Figure 6.  Distribution of the relative SASA of the residues in the ligand-binding site. The x axis is the range 
of relative SASA values, whereas the y axis is the frequency.
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proteins. The obtained results showed that the MF-PLB can significantly improve the performance of the PLB for 
ligand-binding site prediction in both ligand-bound and ligand-unbound structures; therefore, the MF-PLB can 
better reflect the amino acid preferences for the ligand-binding site. The currently available methods, including 
the MF-PLB, show lower success rates in the prediction of small-volume ligand-binding sites and ligand-binding 
sites on protein-protein interfaces, but the MF-PLB still exhibits the best performance among the MF-PLB, PLB, 
and Ligsite-csc methods. Additionally, the performance of the MF-PLB was better than those of the other meth-
ods, with the exception of LISE. The calculation of the MF-PLB is simple, and clearly, this index could be a useful 
tool for ligand-binding site prediction and other aspects of drug discovery.
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