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Fault rock heterogeneity can produce fault
weakness and reduce fault stability
John D. Bedford 1✉, Daniel R. Faulkner 1 & Nadia Lapusta 2,3

Geological heterogeneity is abundant in crustal fault zones; however, its role in controlling the

mechanical behaviour of faults is poorly constrained. Here, we present laboratory friction

experiments on laterally heterogeneous faults, with patches of strong, rate-weakening quartz

gouge and weak, rate-strengthening clay gouge. The experiments show that the hetero-

geneity leads to a significant reduction in strength and frictional stability in comparison to

compositionally identical faults with homogeneously mixed gouges. We identify a combi-

nation of weakening effects, including smearing of the weak clay; differential compaction of

the two gouges redistributing normal stress; and shear localization producing stress con-

centrations in the strong quartz patches. The results demonstrate that geological hetero-

geneity and its evolution can have pronounced effects on fault strength and stability and, by

extension, on the occurrence of slow-slip transients versus earthquake ruptures and the

characteristics of the resulting events, and should be further studied in lab experiments and

earthquake source modelling.
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Many large crustal faults have been shown to be fric-
tionally weak1–6 when compared to laboratory mea-
surements of quasi-static fault friction. The coefficient

of friction μ ¼ τ= �σn, where τ is the shear stress during slip and �σn
is the effective normal stress, of most geological materials is
typically measured in the laboratory to be between 0.6 and 0.85 at
slow slip speeds, independent of rock type7, with the exception of
a few weak minerals, predominantly phyllosilicates7,8. Possible
explanations for weak faults in nature, where the apparent μ at
which faults operate is often <0.5, include localization of weak
minerals along structural foliations9–13, dynamic weakening
during seismic slip14, and elevated pore fluid pressure interpreted
as lower friction coefficients15,16. As well as being apparently
weak, many crustal faults also exhibit a spectrum of slip beha-
viour, with earthquake slip and aseismic creep often occurring on
the same fault17,18 and slow slip phenomena being prevalent at all
crustal depths19. While the apparent weakness of faults and
spectrum of slip behaviour can be attributed to the effects of
spatially varying and temporally evolving confinement, tem-
perature, and pore fluid pressure, it is clear that heterogeneity in
fault zone rocks (Fig. 1a) can also play an important20,21, if not
dominant, role.

Geological investigations have shown that heterogeneity in
fault zone rocks occurs over many different scales, from
submillimetre-scale structural foliations9,10, centimetre- to meter-
scale blocks within a shear zone mélange22, hundreds-of-meters
scale where lenses of damaged protolith can be entrapped within
the core of wide (km-scale) fault zones23,24 (e.g. Fig. 1a), to tens-
of-kilometers scale variations in rock types10,25. The role of large-
scale fault rock heterogeneity has been highlighted in a number of
studies; for example, it has been suggested that heterogeneities
such as seamounts can act as earthquake nucleation sites and
control the seismogenic behaviour of subduction zone megathrust
faults26,27. However, the importance of small-scale fault rock
heterogeneity in controlling fault slip behaviour, average fault
strength, and fault stability is still uncertain.

Here, the effect of fault rock heterogeneity on fault strength and
slip behaviour is investigated by a series of laboratory friction
experiments on simulated laterally heterogeneous faults. The faults
consist of different sized patches of strong, rate-weakening quartz,
and weak, rate-strengthening clay fault gouges. Until now, the
majority of previous experimental investigations have been per-
formed using mixtures of different fault gouge materials with
varying frictional properties, where the materials are homo-
geneously mixed together28–31; intact wafers of natural gouge have
also been used9,10. In this work, experiments are performed on both
homogeneously mixed and spatially heterogeneous gouge layers
consisting of quartz, frictionally strong and rate-weakening, and
kaolinite clay powder, frictionally weak and rate-strengthening. The
fault gouge layers (50mm long, 20mm wide, with a thickness of
~1mm at the onset of shear, after initial pressurization) are sheared
in a direct-shear arrangement (Fig. 1b, see also Supplementary
Fig. 1) within a triaxial deformation apparatus (see “Methods”). The
heterogeneous gouge layers are constructed by placing different
sized patches of fine-grained quartz and clay powder (both <5 µm
grain size) adjacent to each other in a symmetrical pattern, with a
central quartz patch being bound by two clay patches (Fig. 1b). This
symmetrical arrangement ensures that no misalignment between
the direct-shear forcing blocks would occur as a result of any dif-
ferential compaction between the different materials; furthermore,
the amount of gouge material used (measured by weight prior to
the experiment) was calculated so that the thickness of the quartz
and clay gouges were the same after initial pressurization and a
small amount of shear (Supplementary Fig. 2). The normal stress is
applied by the confining pressure (Pc) in the triaxial apparatus, held
constant at 60MPa for all tests in this study, and the pore fluid

pressure (Pf) within the gouge is servo-controlled at a constant value
of 20MPa, resulting in the effective normal stress �σn = 40MPa
(�σn ¼ Pc � Pf ). The gouge layers are sheared up to a maximum
displacement of 8.5mm (shear strain ≈ 10, given the final layer
thickness of ~0.85mm). Monitoring the evolution of shear stress
while applying velocity steps from 0.3 to 3 µm·s−1 and back allows
the experiments to quantify the rate-and-state friction parameters
that determine the stability of fault slip32. These sliding velocities
are sufficiently slow, given the gouge permeability, to ensure that
pore pressure transients do not build up within the gouge layer
during shearing33. The sizes of the strong yet unstable quartz and
weak but stable clay patches are varied to investigate the role of
different scales of heterogeneity on the magnitude and stability of
fault friction.

Results
Fault strength evolution. The experimental results indicate
pronounced differences between the behaviour of laterally het-
erogeneous faults compared to the laterally homogeneous faults
with mixed gouge (Fig. 1). All experiments are characterised by
an initially rapid increase in shear stress during the loading phase,
before the samples clearly yield—i.e., shear inelastically—after
~1 mm of displacement. After that, the friction coefficient μ of the
homogeneously mixed gouge layers remains relatively constant
(Fig. 1d), with rate-and-state effects consistent with results from
previous experimental studies29–31. In contrast, the hetero-
geneous gouge layers all show ubiquitous weakening (Fig. 1c),
with μ evolving towards the value of the weaker clay phase. To
ensure that the observed weakening was not caused by the
arrangement of the different gouge patches in the experiments,
tests were performed where the symmetry of the heterogeneous
layers was reversed (i.e. a central clay patch bound by two quartz
patches). These tests also exhibit similar weakening (Supple-
mentary Fig. 3) suggesting that it is the heterogeneity itself, not
the arrangement of the different materials, that causes the
weakening. Stable sliding is observed for all homogeneously
mixed faults and the majority of heterogeneous faults. However,
when the quartz patch in the heterogeneous layers comprises
≥80% of the total sliding area, unstable stick-slip sliding emerges,
typically triggered by up-steps in the sliding velocity (Fig. 1c).

The observed weakening of the heterogeneous faults is greater
than can be explained by the observed smearing of the clay
patches. Microstructural analysis of a heterogeneous layer
recovered at the end of an experiment (Fig. 2a) shows smearing
of clay into localized boundary Y-shears that propagate into the
quartz patch. With progressive smearing and localization of the
clay phase (Fig. 2b), the strength of the layer overall is expected to
decrease as a greater proportion of the slipping surface can be
located within the weak clay phase34. As the frictional strength of
the endmember gouge compositions is known (i.e. 100% quartz
and 100% clay in Fig. 1c), the predicted weakening due to
smearing can be calculated (Fig. 2c) by assuming that the overall
strength is determined by the strength of the two gouges acting in
series, based on their relative proportions (the arithmetic mean of
μ, based on the proportions of clay and quartz within the layer).
The predicted weakening, associated with the relative increase in
length of the clay patches, is considerably less than the observed
weakening in the experiments (Fig. 2c), suggesting that clay
smearing alone is not responsible for the progressive weakening
of heterogeneous faults.

An additional cause of the weakening could be differential
compaction between the different gouge materials resulting in a
redistribution of normal stress (see Supplementary Note 1 for full
discussion of this effect). The volumetric strain data from the
endmember quartz and clay gouge experiments show that the
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quartz gouge experiences a greater layer thickness reduction of
about 20 μm than the clay gouge during slip (Supplementary
Fig. 2). In the heterogeneous layer experiments this would result
in an increase of normal stress on the weaker clay patches leading
to a progressive reduction in shear resistance, as observed in our
experiments. The magnitude of this effect is dependent on the
bulk (K) and shear (G) moduli35, which are poorly constrained
for the gouge materials in this study. Using plausible values for
the moduli (Supplementary Note 1) indicates that this differential
compaction effect could potentially explain a large component of
the weakening we observe in our experiments (Fig. 2d).

Frictional stability. The velocity steps from Fig. 1c, d are used to
calculate the evolution in the rate-and-state friction36–38 para-
meter (a—b), which determines the frictional stability of the
fault39–41. When (a–b) > 0, the sliding behaviour is rate-
strengthening, suppressing instabilities and promoting stable
sliding, whereas when (a–b) < 0, the sliding behaviour is rate-
weakening which promotes unstable slip behaviour and the
occurrence of stick-slips in the laboratory. The values of (a–b) are

consistently lower (i.e. less rate-strengthening) in the hetero-
geneous faults throughout the experiments (Fig. 3a–c). This
finding indicates that the heterogeneous faults are closer to the
potentially unstable, rate-weakening regime than their homo-
geneous counterparts.

For the homogeneous faults with the pure quartz gouge and the
heterogeneous faults where the quartz patch comprises ≥80% of
the total sliding area, only the first velocity step can be used to
determine the rate dependence due to the occurrence of stick-slip
instabilities triggered by subsequent velocity steps. However, this
initial velocity step at 1.5 mm displacement does show negative
values of (a–b) associated with rate-weakening behaviour (Fig. 3a),
which is consistent with the occurrence of stick-slip instabilities
later in the experiment. All of the calculated rate-and state
friction data are presented in Supplementary Table 1.

Discussion
Our experiments show that laterally heterogeneous fault gouge
layers weaken significantly in comparison to homogeneous layers,
pointing to heterogeneity-induced weakening effects. We
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hypothesize that the weakening occurs due to a combination of
mechanisms, all of which can affect natural faults. The mechan-
ical smearing of the weak phase with slip can reduce the overall
shear resistance as shear is likely to localize within the weak
phase34, although this mechanism by itself can explain only part
of the observed weakening (Fig. 2c, see also Supplementary
Fig. 4). Another contributing mechanism can be differential
compaction of the weak and strong phases during shear (Sup-
plementary Fig. 2) which would result in a redistribution of
normal stress along the shearing layer, with the weaker phase
supporting higher normal stresses (see Supplementary Note 1 for
further discussion of this effect). The differential compaction can
produce significant weakening effects (Fig. 2d) but it is poorly
constrained, with the conclusions based on end-member tests of
pure quartz and clay samples under constant normal stress,
highlighting the need to better capture and characterise the
compaction/dilation effects in gouge experiments. Finally, addi-
tional weakening can be due to shear occurring in the weaker clay
gouge that produces stress concentrations along localized Y-shear
bands that propagate through the stronger quartz patches leading
to enhanced weakening. Similar shear stress concentrations have
also been suggested to promote slip events in strong, rate-
weakening gouge patches in recent low normal stress experiments
on decimeter-scale heterogeneous faults42. Due to difficulty
keeping the gouge layer intact during recovery at the end of our
experiments, we were unable to acquire detailed microstructural
images of the tips of the propagating shear bands to look for
evidence of shear/damage zones in the quartz patch. We do,
however, observe R1 Riedel shears in the quartz patch (Fig. 2a)
which may help facilitate weakening by connecting the smeared
clay on opposite sides of the layer.

Competency contrasts between strong and weak materials in
shear zone mélanges have been suggested previously to be
important in controlling the average fault strength and rheology43,
with only a small amount of well-connected weak material needed
to reduce fault strength when structural foliations are well
developed9. In our experiments, if the gouge layers could be taken
to greater shear displacements, the clay smearing we observe along
the edges of the quartz patch (Fig. 2a) would ultimately form a
through-going layer of interconnected weak material after a few
centimetres of slip. Previous work has shown that such through-
going layers can lead to a reduction in the frictional strength at
slow slip velocities11 and also increase the efficiency of dynamic
weakening at seismic slip velocities (1 m/s)44. Although weak
phase smearing would, to some extent, homogenize the fault in the
overall direction of shear, heterogeneity would likely always be
prevalent in natural faults, particularly perpendicular to the slip
direction and also at scales larger than investigated in this study, as
observed in natural fault zones25,45. Our results show that the
average frictional strength of laterally heterogeneous faults is not
just an average of the respective friction properties (Fig. 2c), and
that competency contrasts can substantially reduce the fault
strength, even when structural foliations are in their infancy and
unconnected (Fig. 2a). They also highlight the need to investigate
further how different types of fault heterogeneity, including fault-
parallel and fault-normal heterogeneity, and its evolution, affect
the frictional behaviour of faults.

Contrasting material properties within fault zones have also
been suggested to give rise to mixed fault slip behaviour46 and
exert an important control on earthquake rupture dynamics47,48.
Heterogeneities are also thought to strongly influence the sliding
behaviour of other types of frictional interface, such as at the base
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of glaciers49. Our experiments show that heterogeneity produces
an overall reduction in stability when compared to homogeneous
faults (Fig. 3). It should be noted that a sufficient amount of rate-
weakening material is still required to promote unstable slip. In
our experiments, when the proportion of the rate-weakening
material is ≤70%, the heterogeneous faults are stable overall, with
positive (a–b) values, although the values are closer to zero (and
hence rate-neutral behaviour) than those of their homogeneous
counterparts (Fig. 3); however, the behaviour remains rate-
strengthening, instabilities do not initiate and aseismic slip pre-
vails. Only when the strong rate-weakening patch comprises
≥80% of the layer do stick-slip instabilities occur (Fig. 1c). As

shown previously in experimental studies on rate-weakening
quartz gouges, microstructural evolution and deformation loca-
lization into discrete shear bands is a prerequisite for unstable
stick-slip behaviour50–52. Therefore, in the heterogeneous faults,
slip behaviour would be dictated by the competing processes of
fault stabilization via deformation in weak rate-strengthening
materials, versus destabilization caused by localization within the
strong rate-weakening patches. When the strong rate-weakening
patches are large enough for their internal structure to evolve
independently, stick-slip instability may occur.

The role of heterogeneity is summarized in Fig. 4, where, for a
given clay-quartz mixture, heterogeneous faults are weaker and
less stable relative to their homogeneous equivalents. Although it
is often invoked that large-scale heterogeneities are responsible
for the spectrum of slip behaviour observed on natural faults17,18,
the results presented here highlight the potential of small-scale
heterogeneities, which are also abundant in natural fault
zones9,10,22, to exert a significant control on fault zone strength
and stability. There are similarities between the slip behaviour we
observe in our small-scale heterogeneous experiments and how
large-scale heterogeneities are thought to control the behaviour of
natural faults. For example, decreasing the size of the rate-
weakening patch makes the response more stable in both our
experiments and numerical modelling53, as can be intuitively
expected and consistent with stability studies of rate-and-state
faults that slip instability can only result from large enough rate-
weakening patches39. At the same time, small-scale fault zone
heterogeneity would more readily evolve with shear, and hence
may depend on the fault maturity, healing processes, and spatio-
temporal history of fault slip.

To summarize, we show that, by introducing a simple het-
erogeneous structure into a fault zone, the fault strength is sub-
stantially reduced and the stability of the experimental fault is
overall decreased in comparison to compositionally identical but
homogeneously mixed gouges. Our data, along with the abun-
dance and complexity of heterogeneity that occurs over many
different scales in nature9,10,22–25, suggest that interactions
between heterogeneously distributed materials with different
frictional properties likely exerts an important control over the
mechanical strength and influences whether tectonic faults
experience aseismic or earthquake slip. The smaller the scale of
heterogeneity, the more likely it is to be intractable in modelling
earthquake source processes and hence ignored. These con-
siderations, together with our findings, necessitate further
laboratory experiments and modelling to study the effects and
evolution of fault rock heterogeneity within complex fault zones,
to enable the quantification and inclusion of the smaller-scale
heterogeneity effects into larger-scale constitutive laws for mod-
elling fault processes of societal interest, such as nucleation of
natural and induced earthquakes.

Methods
Experimental procedure. The gouge layers are deformed in a direct-shear
arrangement (Supplementary Fig. 1) within a triaxial deformation apparatus54. The
layers (~1.3 mm initial thickness prior to pressurization), prepared in either het-
erogeneous patches or as a homogeneous quartz-clay mixture, are placed between
the direct-shear forcing blocks and soft silicone spacers are positioned at each end
so that displacement can be accommodated without supporting any load (Sup-
plementary Fig. 1). To discourage boundary shear at the edges of the gouge layer,
the sliding area (50 × 20 mm) on the forcing blocks contains grooves cut perpen-
dicular to the sliding direction (200 µm deep with 400 µm spacing). Once the gouge
layer is constructed, the direct-shear arrangement is surrounded by a low-friction
polytetrafluoroethylene (PTFE) sleeve (0.25 mm thickness) to minimize jacket
friction in the vicinity of the layer, before being placed into a soft, 3 mm thick, PVC
jacket (Nalgene 180 clear tubing). The jacketed direct-shear arrangement is then
placed in between the platens of the sample assembly which is inserted into the
pressure vessel of the triaxial apparatus. In this geometry, the normal stress (σn) is
applied to the gouge layer by the confining pressure. The pore-fluid pressure is
introduced to the layer through three porous disks, embedded in each direct-shear
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forcing block, which are positioned to ensure an even distribution of pore fluid
throughout the layer. Deionized water is used as the pore fluid. Both the confining
and pore-fluid pressures are held constant throughout the experiments by servo-
controlled pumps on each pressure system, with a resolution better than 0.01 MPa.
Linear variable differential transformers (LVDTs) are attached to the pistons of the
servo-control pumps, meaning that the volume of fluid expelled from the sample as
it compacts during shearing can be monitored as the pressure is held constant. We
therefore use the pore pressure pump as a pore volumometer to track the evolution
of layer thickness during our experiments (Supplementary Fig. 2); we assume that
the sliding area remains constant and that all volumetric strain is accommodated
by a change in layer thickness. The gouge layers are sheared by the axial piston of
the triaxial apparatus and velocity steps are imposed to calculate the rate-and-state
friction parameters. The evolution of shear stress is monitored by an internal force
gauge within the axial piston, with a measurement resolution of better than
0.05 kN.

Data availability
The associated experimental data files for this research can be accessed in National
Geoscience Data Center (NGDC) via the following link: https://webapps.bgs.ac.uk/
services/ngdc/accessions/index.html#item164865.
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