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Abstract
Objectives: Because radiotherapy is indispensible for treating cervical cancer,
it is critical to accurately and efficiently delineate the radiation targets. We eval-
uated a deep learning (DL)-based auto-segmentation algorithm for automatic
contouring of clinical target volumes (CTVs) in cervical cancers.
Methods: Computed tomography (CT) datasets from 535 cervical cancers
treated with definitive or postoperative radiotherapy were collected. A DL tool
based on VB-Net was developed to delineate CTVs of the pelvic lymph
drainage area (dCTV1) and parametrial area (dCTV2) in the definitive radiother-
apy group. The training/validation/test number is 157/20/23. CTV of the pelvic
lymph drainage area (pCTV1) was delineated in the postoperative radiotherapy
group. The training/validation/test number is 272/30/33. Dice similarity coeffi-
cient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) were
used to evaluate the contouring accuracy. Contouring times were recorded for
efficiency comparison.
Results: The mean DSC, MSD, and HD values for our DL-based tool were
0.88/1.32 mm/21.60 mm for dCTV1, 0.70/2.42 mm/22.44 mm for dCTV2, and
0.86/1.15 mm/20.78 mm for pCTV1. Only minor modifications were needed for
63.5% of auto-segmentations to meet the clinical requirements. The contour-
ing accuracy of the DL-based tool was comparable to that of senior radiation
oncologists and was superior to that of junior/intermediate radiation oncologists.
Additionally, DL assistance improved the performance of junior radiation oncol-
ogists for dCTV2 and pCTV1 contouring (mean DSC increases:0.20 for dCTV2,
0.03 for pCTV1; mean contouring time decrease: 9.8 min for dCTV2, 28.9 min
for pCTV1).
Conclusions: DL-based auto-segmentation improves CTV contouring accu-
racy, reduces contouring time, and improves clinical efficiency for treating cervi-
cal cancer.
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1 INTRODUCTION

Cervical cancer is one of the most common malignan-
cies in women worldwide and is second most com-
mon after breast cancer.Most cases occur in developing
countries, seriously impacting the health of women and
representing the leading cause of tumor-related death
in these countries.1 Unlike the declining incidence rates
owing to the popularization of cervical cancer screening
in Western countries, the incidence of cervical cancer in
China has continued to rise due to many factors such
as sociocultural factors, lack of awareness for physical
examinations, medical resource shortages, etc.2

Radiotherapy plays a critical role in treating cervical
cancer. For early-stage cervical cancer, radiotherapy is
usually administered as a postoperative adjuvant treat-
ment.For locally advanced or metastatic cervical cancer,
external beam radiation therapy (EBRT) and chemother-
apy followed by brachytherapy (BT) is recommended as
the standard treatment modality.3 Intensity-modulated
radiation therapy (IMRT) is the most commonly used
radiation technique for cervical cancer because it
delivers high-precision therapeutic doses to tumors
and reduced doses to organs at risk. To maximize the
therapeutic ratio, accurate contouring of the targets
and adjacent normal organs is essential in radiotherapy
planning for cervical cancer. Accurate segmentation
contributes to reducing late toxicities associated with
pelvic chemoradiation. This is particularly important
because late toxicities such as incontinence, fistulae,
and malabsorption may last for many years, causing
great harm especially for young patients.4,5

Generally, the clinical tumor volume (CTV) for cervical
cancer is delineated and confirmed manually by radia-
tion oncologists (ROs) based on gynecological exami-
nations, surgery reports, as well as computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and other
imaging evaluations. The definition of the target volume
depends on the doctor’s understanding of the clinical
guidelines,consensus,and experience.6–8 There remain
inter- and intraobserver variations regarding the qual-
ity, efficiency, and repeatability of segmentation. Addi-
tionally, segmentation of target volumes accounts for
the majority of time in radiotherapy planning and is
affected by the proficiency of the ROs. In our clinic, tar-
get definition typically takes 20–60 min. To overcome
these issues, automatic segmentation for radiotherapy
planning has become essential. Automatic segmenta-
tion has been demonstrated to be effective for improving
the consistency of contouring and saving labor.9,10

At present, atlas-based automatic segmentation
(ABAS) algorithms are widely used in commercial treat-
ment planning software.However, for organs and tumors
that lack clearly defined boundaries or exhibit complex
shapes, the results of atlas-based segmentation are
usually unsatisfactory.11–13 Kim et al.14 applied ABAS
on patients with endometrial and cervical cancers, the

dice similarity coefficient (DSC) and Hausdorff distance
(HD) of CTV were 0.79 and 9.7 mm, respectively. Based
on the convolutional neural networks (CNNs), artificial
intelligence based on deep learning (DL) has been
proven to be a promising technology for medical image
segmentation.Such DL-based segmentation algorithms
demonstrate significant advantages over classical med-
ical image segmentation methods.15,16 Several groups
have applied DL to auto-segment tumor targets that
are not amenable to accurate contouring via traditional
automatic methods. Lin et al.17 constructed and vali-
dated a DL contouring tool for auto-segmenting the pri-
mary gross tumor volume (GTV) of nasopharyngeal
carcinoma on magnetic resonance (MR) images. The
DL-generated contours demonstrated a high level of
accuracy when compared with reference contours (con-
tours reviewed and approved for radiotherapy by senior
ROs) in 203 patients (DSC,0.79;mean surface distance
(MSD), 2.0 mm). Furthermore, DL-based segmentation
has been confirmed to improve contouring accuracy,
reduce intra- and interobserver variation, and shorten
contouring time (by 39.4%). Men et al.18 applied a deep
deconvolutional neural network for segmentation of the
primary tumor GTV (GTV-nx), metastatic lymph node
GTV (GTV-nd), and the CTV of nasopharyngeal carci-
noma cases; the resulting DSC values for GTV-nx,GTV-
nd, and CTV were 80.9%, 62.3%, and 82.6%, respec-
tively, which compared favorably with those obtained by
both manual and previously applied automatic methods.
Trebeschi et al.19 applied DL assistance to the segmen-
tation of rectal cancer on multiparametric MR images
and obtained a DSC of 69%.

However, the role of DL-based tool on auto-
segmentation of CTVs in cervical cancer still remains
unexplored. Thus, we investigated the DL-based tool
for CTV contouring of cervical cancer, and compared
the accuracy, consistency, and workflow acceleration
between the DL-based auto-segmentation, DL-assisted
manual contouring, and manual contouring results.

2 METHODS

2.1 Criteria for data selection and
sketch

CT datasets for 535 cases were collected for cervi-
cal cancer patients who received radical or postopera-
tive radiotherapy at the First Affiliated Hospital of Soo-
chow University between January 2013 and June 2019.
These data are divided into: (1) dataset 1 consists of
200 patients who received radical radiotherapy and (2)
dataset 2 consists of 335 patients who received post-
operative adjuvant radiotherapy. Dataset 1 were ran-
domly divided into a training group (n = 157), a vali-
dation group (n = 20), and a testing group (n = 23).
Dataset 2 were randomly divided into a training group
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F IGURE 1 Details of the datasets

(n = 272), a validation group (n = 30), and a testing
group (n= 33).Besides,four patients in dataset 1 and six
patients in dataset 2 were randomly selected from both
testing groups to generate an evaluation group.All plan-
ning CT scans were obtained with a Philips Brilliance
Big Bore with slice thickness of 5 mm and field of view
of 500 mm. The details of the datasets are presented in
Figure 1.

In order to visualize the artery and other blood ves-
sels clearly in CT images, contrast agent is used in all
CT scans. The CT scans covered the drainage area
of pelvic lymph nodes (3-mm slices from L3 spine to
the middle of femur). The ROs contoured the CTVs
on the planning CT images according to guidelines
of cervical cancer including Radiation Therapy Oncol-
ogy Group (RTOG),20 Japan Clinical Oncology Group
(JCOG),21 and Federation International of Gynecol-
ogy and Obstetrics.22 For dataset 1, CTV of the pelvic
lymph drainage area (dCTV1) and the parametrial area
(dCTV2) were delineated,while CTV of the pelvic lymph
drainage area (pCTV1) was delineated in dataset 2. In
order to improve data consistency, only the upper third
of the vagina was delineated and para-aortic lymph
nodes contourings were omitted.Contours reviewed and
approved for radiotherapy by senior ROs were set as ref-
erence contours in this study.

2.2 Structure of DL network

VB-Net CNNs are employed at both segmentation
phases described above, but each implements a differ-
ent spatial sampling regime. While the traditional V-Net
algorithm23 has achieved good results in many auto-
matic segmentation studies, it often requires training a
model that contains a large number of parameters. A V-
Net model file is generally about 250 MB, which not only
leads to parameter redundancy,waste of storage space,
and reduction of calculation efficiency, but also hinders
the promotion and usage of automatic segmentation.

VB-Net, a new type of network structure, is proposed
as an improvement over V-Net. The structure of VB-Net
is shown in Figure 2. The residual module in V-Net was
designed using the concept of model compression. The
convolution,normalization,and activation layers in V-Net
are replaced by a bottleneck structure, which is the B in
VB-Net. A bottleneck in a neural network is a layer hav-
ing fewer neurons than its adjacent layers. Such a layer
encourages the network to compress feature represen-
tations to best fit in the available vector space. The bot-
tleneck structure consists of three convolutional layers.
The first and third convolutional layers, which utilize the
unit convolution kernel, match the second (bottleneck)
convolutional layer with the respective dimensions of
the preceding and succeeding layers. The second con-
volution layer performs spatial convolution on the fea-
ture image reduced in dimension by the first convolution
layer. Since the spatial convolution is performed on the
reduced dimension feature image, the number of model
parameters may be significantly reduced, and this may
lead to increased efficiency.

2.3 Process of DL automatic
segmentation

DL-based methods require an initial training stage
during which the neural network is provided with a large
number of labeled 3D images. The dCTV1 and dCTV2
models were, respectively, trained and validated in the
training cohort (n = 157) and the validation cohort
(n = 20) from the definitive radiotherapy datasets.
Similarly, the pCTV1 model was, respectively, trained
and validated in the training cohort (n = 272) and the
validation cohort (n = 30) from the postoperative radio-
therapy datasets. During the network training process,
we applied the multi-scale strategy with a 3D network,
by which we first trained a coarse-scale network for
rapid positioning of target area and then a fine-scale
segmentation model for precisely delineating targets’
contours based on previous coarse-scale network out-
put. In pre-processing, global normalization was used.
We chose window level 40 and window width 700.
The minimum and maximum CT values are -310 and
390, respectively. CT values between them are linearly
normalized into the range [−1, 1]. CT values less than
the minimum are set to -1 and those greater than the
maximum are set to +1. For coarse model training, the
images are resampled to [5 mm, 5 mm, 5 mm]. During
fine model training, the images are resampled to [1 mm,
1 mm,1 mm].No data augmentation was applied.During
post-processing, the maximum connected domain was
extracted for dCTV1 and pCTV1, while the connected
domains larger than 5 cm3 were extracted for dCTV2.
The learning rate is 1e–4, batch size is 6, patch size
is [96, 96, 96], and the optimizer is Adam. The training
hardware is Intel Xeon E5-2683 v3 with 64 GB memory
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F IGURE 2 Schematic of the network architecture (a) and flow chart of the bottleneck structure (b)

and 4 NVIDIA Titan Xp. For the definitive radiotherapy
group, we trained 3000 epochs for 50 h. For the postop-
erative radiotherapy group, we trained 3000 epochs for
86 h. The predicting time is less than 1 s for one case.

2.4 Quantitative evaluation of
algorithm accuracy

For the radical radiotherapy datasets, the dCTV1 and
dCTV2 models constructed by the DL-based algorithm
in the training cohort were applied to the testing cohort.
For the postoperative radiotherapy datasets, the pCTV1
model was applied to the corresponding testing cohort.
According to previous studies, the segmentation results
were evaluated by the DSC that measures the target
overlap between the DL-based auto-segmentations and
the manual contours,24 the MSD that measures the MSD
between two contours (mm),25 and the HD and HD 95%
that calculates the largest distance between two contour
surfaces (mm).26

2.5 Clinical evaluation of DL-based
auto-segmentation

ROs assessed the results from the evaluation group.
Nine ROs were classified as junior, intermediate, or
senior according to their qualifications. The interob-
server variation was calculated by DSC and MSD

between different ROs. Notably, the senior ROs in the
evaluation group were not the senior ROs who gener-
ated the reference contours. The assessment included
three aspects:

1. RO assessment: the clinical applicability of DL-based
auto-segmentation was graded according to four lev-
els, defined below:
a. Grade 1: The segmentation result does not need

to be modified and can be used in clinical practice.
b. Grade 2: The algorithm can be used as an auxil-

iary contouring tool, since the segmentation result
can be used in clinical practice after minor modifi-
cations.

c. Grade 3:The algorithm can be used as an auxiliary
contouring tool, and the segmentation result can
be used in clinical practice after significant modifi-
cations.

d. Grade 4:The algorithm has no auxiliary contouring
value. In addition, perceived errors in the segmen-
tation results have been identified.

2. Comparison of the DL-based auto-segmentation
results with the contours by the ROs: images for
four patients randomly selected from the testing
group of definitive radiotherapy and six patients
randomly selected from the testing group of post-
operative radiotherapy were distributed to the nine
ROs for manual contouring. In addition, the DL-
based auto-segmentations were edited blindly by
these ROs. The DSC, MSD, and HD were calculated
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TABLE 1 Performance of deep learning (DL)-based auto-segmentation models (compared with the reference contours)

DL-based models for
different targets DSC MSD (mm) HD (mm) HD 95 (mm)

dCTV1 0.88 ± 0.03 1.32 ± 0.48 21.60 ± 7.50 4.86 ± 0.56

dCTV2 0.70 ± 0.09 2.42 ± 1.62 22.44 ± 8.49 6.47 ± 1.92

pCTV1 0.86 ± 0.03 1.15 ± 0.38 20.78 ± 6.22 4.11 ± 0.65

Abbreviations: dCTV, clinical tumor volume for definitive radiotherapy; DSC, dice similarity coefficient; HD, Hausdorff distance; HD 95, Hausdorff distance 95%; MSD,
mean surface distance; pCTV, clinical tumor volume for postoperative radiotherapy.

to assess the contouring accuracy and varia-
tions.

3. Evaluation of time consumption: times spent on man-
ual, only DL-based automatic, and DL-assisted con-
touring were recorded for efficiency comparison.

2.6 Statistical analysis

The paired t-test was used to compare the DSC, MSD,
and HD values between different models. The data are
presented with mean ± standard deviation. All analyses
were performed using SPSS statistical software (IBM
SPSS, version 20.0; New York, NY, USA). Statistical sig-
nificance was determined by a two-tailed p-value < 0.05.

The years of experience of the nine ROs are as fol-
lows:
1. Junior RO: Chang Cai (2 years), Jing Zhao (4 years),
Fei Sun (6 years).
2. Intermediate RO: Wei Gong (8 years), Yi-Ming Yao (9
years), Yuan Xu (14 years).
3. Senior RO: Qi Zhao (13 years), Li-Li Wang (21 years),
Xiao-Ting Xu (22 years).

3 RESULTS

3.1 Performance of DL-based
auto-segmentation

As for the test cases, the results for the accuracy of
the DL-based auto-segmentations for dCTV1, dCTV2,
and pCTV1 are presented in Table 1. As shown in Fig-
ure 3,one case with definitive radiotherapy and one case
with postoperative radiotherapy were randomly selected
from the corresponding testing groups for assessment
of the level of concordance for the CTVs between the
DL-based auto-segmentations and the reference con-
tours. We observed DSCs of 0.88 ± 0.03, 0.70 ± 0.09,
and 0.86 ± 0.03 for the dCTV1, dCTV2, and pCTV1,
respectively. The MSDs for the dCTV1, dCTV2, and
pCTV1 contours were 1.32 ± 0.48, 2.42 ± 1.62, and
1.15 ± 0.38 mm, respectively. All values were less than
the accepted 3–5 mm margin of systematic and ran-
dom error for radiation therapy for cervical cancer. The
HDs for the dCTV1, dCTV2, and pCTV1 contours were
21.60 ± 7.50, 22.44 ± 8.49, and 20.78 ± 6.22 mm,

respectively. These results indicate strong consistency
between the DL-based auto-segmentation and the ref-
erence contours by senior ROs.

Three cases in the test sets were randomly selected
for contouring dCTV1, dCTV2, and pCTV1 to detect the
limitation of the DL-based algorithm, acquiring DSCs
of 0.796, 0.435, and 0.807, respectively. The differ-
ences between the reference and the DL-based con-
tours mainly exist in superior and inferior boundaries,
small intestine, rectum, and bladder.

3.2 Evaluation of the clinical value of
DL-based auto-segmentation

According to the grading standard for contour accuracy
described above, 2.4%, 63.5%, and 34.1% of the DL-
based auto-segmentations were scored as grades 1, 2,
and 3, respectively. These results indicated that most
segmentations still needed to be modified in order to be
considered clinically acceptable. However, the majority
of them (63.5%) required only minor modifications. The
main deficiencies of the auto-segmentations were clas-
sified as inaccuracies in the top and bottom boundaries,
contouring range, vascular expansion distance, and the
muscle rectum compared with the reference contours.

To evaluate the clinical application value of the DL-
based auto-segmentation, we compared the DL-based
tool with nine qualified ROs with different levels of qual-
ification (junior, intermediate, and senior) in Figure 4.
For dCTV1,DL-based auto-segmentation achieved con-
touring results comparable to the manual contours from
ROs, as shown by the similar values for DSC, MSD,
and HD.For dCTV2, the DL-based tool outperformed the
junior ROs as shown by a higher DSC value, was found
to be superior to junior and intermediate ROs in terms
of MDS, and performed better than all ROs in terms of
HD.For pCTV1, the DL-based tool was superior to junior
ROs in terms of MSD and superior to intermediate ROs
in terms of HD. Additionally, we observed a similar per-
formance of the DL-based tool to manual contouring by
senior ROs in terms of DSC, MSD, and HD.

Next, we conducted a comparison between manual
contours and DL-assisted manual contours from junior
ROs to see whether the DL assistance could enhance
the accuracy of manual contouring (shown in Figure 5).
As shown in Table 2, DL assistance achieved higher
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F IGURE 3 Comparison of the results between automatic segmentations and reference contours. (a and b) clinical tumor volume for
definitive radiotherapy (dCTV)1 and dCTV2 in different cross-sections, (c) coronal view, and (d) sagittal view. dCTV1 and dCTV2 of the
reference are in red and yellow, respectively. dCTV1 and dCTV2 of the automatic segmentation are in blue and green, respectively; (e and f)
clinical tumor volume for postoperative radiotherapy (pCTV)1 in different cross-sections, (g) coronal view, and (h) sagittal view. pCTV1s of the
reference and automatic segmentation are in red and blue, respectively

DSC values both for dCTV2 and pCTV1 contouring
(both p-values < 0.05). Table 3 shows the interobserver
variation between ROs. We calculated DSC and MSD
between different ROs and the reference contour. The
variation of each contour shows the interobserver vari-
ation.

With regard to the contouring efficiency, times
required for manual contouring by ROs with differ-
ent qualifications and for DL-assisted contouring were
recorded and further compared in Table 4. Our data
revealed that the DL-based tool significantly reduced the
average time spent on the contouring, taking less than
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F IGURE 4 Comparison the results of manual contouring with automatic segmentation, in terms of the distribution of dice similarity
coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) (*p < 0.05). Red boxes represent variations between deep
learning (DL)-based auto-segmentations and the reference contours; green/dark blue/light blue boxes represent variations between the
junior/intermediate/senior and the reference contours

F IGURE 5 A median case with the reference, deep learning (DL) and all radiation oncologists (ROs) contours. (a and b) Three
cross-sections, (c) coronal view, and (d) sagittal view. Reference clinical target volumes (CTVs), DL contours, and all ROs contours are in red,
blue, and other colors, respectively
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1 s versus 9–48 min for manual contouring by ROs, for
dCTV1, dCTV2, and pCTV1. Specifically, for junior ROs
after DL assistance, the average contouring time was
reduced from 19.9 to 10.1 min (49.2%) for dCTV2 con-
touring and from 43.6 to 14.7 min (66.2%) for pCTV1
contouring.

4 DISCUSSION

The typical CTVs for cervical cancer radiotherapy plan-
ning are usually large. CTV position and shape are
greatly affected by the filled state of the bladder, rectum,
and other adjacent organs, which poses a challenge for
the training of DL-based auto-segmentation models.27

In the current study, we evaluated the clinical value of
DL-based auto-segmentation for CTV (dCTV1, dCTV2,
and pCTV1) contouring of cervical cancer. We demon-
strated that the DL tool achieved contouring results com-
parable to those of senior ROs and outperformed junior
and intermediate ROs in the contouring of dCTV2 and
pCTV1. In addition, the contouring accuracy of junior
ROs was enhanced after initial contours were gener-
ated with DL assistance. Furthermore, the DL-based
auto-segmentation greatly reduced the time required to
delineate the CTVs. Our study confirmed the promising
capability of DL-based auto-segmentation in delineating
CTVs for cervical cancer.

The DL-based auto-segmentation performed well,
achieving high DSC and low MSD values. However,
the HD values could not be restrained to a low level
(mean values > 20 mm). In view of the high HD val-
ues observed in this study, a portion of the results
were selected to compare the differences between
the auto-segmentation and the reference contours.
The inconsistencies were generally located around the
small lymph nodes at the level of the femoral head.
During the manual contouring process, ROs must refer
to the diagnosis information to determine whether these
targets should be included, whereas auto-segmentation
cannot distinguish them. Performance in this regard
may be improved by: (1) increasing the diversity of
the training data (with and without potential positive
lymph nodes) and (2) improving the consistency of the
training data (e.g., all lymph nodes are included or none
are included). Meng et al.28 improved the HD value of
automatic segmentation results via a method of post-
processing. In their study, the HD value for automatic
liver segmentation decreased from 89.2 to 29.2 mm,and
the HD value for automatic liver cancer segmentation
decreased from 65.4 to 7.7 mm. In another report, the
direct HD value was used to represent the maximum dif-
ference between two contours,which is very sensitive to
abnormal contouring.29 For the automatic segmentation
of CTV, post-DL manual contouring and confirma-
tion are generally needed to modify some abnormal
points. In some studies,30,31 95% HD was used to

TABLE 2 Dice similarity coefficients (DSCs) of contours
provided by unassisted junior radiation oncologists (ROs) or deep
learning (DL)-assisted junior ROs

DSC

Models
Unassisted
junior ROs

DL-assisted
junior ROs p

dCTV2 0.57 ± 0.11 0.72 ± 0.08 <0.05

pCTV1 0.82 ± 0.03 0.85 ± 0.04 <0.05

Abbreviations:dCTV,clinical tumor volume for definitive radiotherapy;pCTV,clin-
ical tumor volume for postoperative radiotherapy.

evaluate the accuracy of automatic segmentation, and
the results were on the order of several millimeters,
indicating that 95% HD value may be a more suitable
parameter for clinical evaluation of automatic segmen-
tation results.

For the evaluation of the clinical value of DL-based
auto-segmentation, the consistency between the auto-
matic segmentation results and the manual contours
provided by ROs was compared. We detected no signif-
icant differences between these contouring results for
dCTV1; that is to say, the DL tool performed comparably
to ROs with all qualifications for contouring dCTV1.How-
ever, for dCTV2 and pCTV1, the automatic segmenta-
tion results were roughly similar to the manual contours
provided by senior ROs, but better than those provided
the junior and intermediate ROs. In the current clinical
workflow, radiotherapy planning is usually manually con-
toured by junior and intermediate ROs first, whereafter
the contours are reviewed and modified by senior ROs.
Thus,improving the target contouring skills of junior ROs
in a comprehensive, systematic, and effective way is a
key goal for achieving standardized radiotherapy train-
ing. Our results suggest that the DL tool can be used
by junior and intermediate ROs to improve the consis-
tency and accuracy of their contouring, so that the time
spent by senior ROs on modifying the contours can be
reduced.

The proficiency analysis showed that the times
required for the manual contouring of CTVs ranged from
9 to 48 min in one case,shown in Table 2. In comparison,
the DL-based automatic segmentation method required
not even 1 s. It is obvious that the automatic segmen-
tation algorithm has a significant advantage over man-
ual contouring. As we known, the complexity of targets
and the experience of ROs determines the duration of
the manual contouring process. If the DL-based auto-
matic segmentation model could be used as an assis-
tance tool, the time required for the contouring of tar-
get volumes will be significantly reduced. However, the
number of the evaluation cases is relatively small in our
study. Record and compare the times required for man-
ual contouring by ROs with different qualifications and
for DL-assisted contouring in cohorts with more evalua-
tion cases is warranted.
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TABLE 3 Interobserver variation of radiation oncologists (ROs) and the comparison with deep learning (DL) results

dCTV2 pCTV1
Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

DSC DL 0.767 0.686 0.732 0.837 0.830 0.867 0.826 0.871 0.885 0.870

RO1 0.474 0.474 0.498 0.529 0.811 0.840 0.794 0.867 0.858 0.840

RO2 0.525 0.429 0.491 0.522 0.746 0.815 0.768 0.853 0.873 0.846

RO3 0.695 0.741 0.662 0.751 0.765 0.834 0.812 0.821 0.820 0.824

MSD
(mm)

DL 1.586 2.878 1.867 0.934 0.928 1.008 1.487 1.110 0.833 1.039

RO1 3.982 4.632 3.019 3.592 1.090 1.180 1.392 1.080 0.959 1.263

RO2 5.520 7.127 6.001 4.286 1.523 1.416 1.472 1.074 0.854 1.115

RO3 1.792 1.805 2.190 1.411 1.404 1.231 1.502 1.366 1.301 1.396

Abbreviations: dCTV, clinical tumor volume for definitive radiotherapy; DSC, dice similarity coefficient; MSD, mean surface distance; pCTV, clinical tumor volume for
postoperative radiotherapy.

TABLE 4 Average time requirement for deep learning
(DL)-based auto-segmentation and manual contouring by radiation
oncologists (ROs) with different qualifications

Time (mean ± SD)
Targets dCTV1 dCTV2 pCTV1

Auto-
segmentation

0.8 ± 0.102 s 0.43 ± 0.083 s 0.93 ± 0.117 s

Junior ROs 48 ± 4.56 min 14 ± 6.94 min 44 ± 12.70 min

Intermediate
ROs

31 ± 11.61 min 9 ± 1.42 min 36 ± 8.07 min

Senior ROs 26 ± 7.25 min 14 ± 4.88 min 20±1.82 min

Abbreviations:dCTV,clinical tumor volume for definitive radiotherapy;pCTV,clin-
ical tumor volume for postoperative radiotherapy; SD, standard deviation.

The DL-based auto-segmentation appears to be well-
suited for CTV contouring for cervical cancer, because
the large CTVs usually span many CT slices, each
of which would otherwise need to be manually con-
toured. Additionally, we found that only minor mod-
ifications were needed for more than half of auto-
segmentations (63.5%) and significant modifications
were needed for 34.1% of auto-segmentations to meet
the clinical requirements. This is mainly because the
automatic segmentation algorithm is currently not capa-
ble of following some known fixed rules related to spe-
cific boundaries. One possible solution is to include as
many of the identified normal tissues and boundaries
as possible in the training data, so that the neural net-
work is able to learn more anatomic spatial relation-
ships. Alternatively, a hybrid algorithm that combines
DL with logical target area contouring rules can be
developed.

Our results showed that the DL-based tool performed
worse at the superior and inferior boundaries. We used
a 3D DL model and demonstrated that the contouring
would tend to be a smooth 3D structure when the CTVs
suddenly appeared or disappeared in ground truth, and
our algorithm should be optimized to solve this issue.No
final conclusion has been reached on the other three
items (intestine, rectum, and bladder). The output of the

algorithm tends to follow a clear and definite rule, which
infers some deviations in the consistency of the con-
tours. This is the motivation for using an algorithm to
improve the consistency.

Our study has several limitations that should be noted.
Firstly, the current approach was not evaluated by an
external test set. In theory,our model may work for other
clinical centers which follow the same guidelines of tar-
get volume delineation. Secondly, we did not include
dosimetric assessment for auto-contouring evaluation,
which is another important part in radiotherapy. We sug-
gest ROs use this model to generate CTV contours, then
review and correct these contours according to the clin-
ical situation. After that, ROs can generate planning tar-
get volume by adding margins to CTV as usual, and the
radiotherapy plans can be generated manually or auto-
matically according to the confirmed contours.

5 CONCLUSIONS

In summary, our study verified the feasibility of the
DL-based automatic segmentation of CTVs for cervi-
cal cancer. We showed that a DL tool achieved com-
parable contouring accuracy to manual contouring by
senior ROs and was superior to that provided by junior
and intermediate ROs. Additionally, DL assistance can
effectively enhance the contouring accuracy by junior
ROs.Furthermore, the contouring time required was sig-
nificantly reduced with the DL assistance for all ROs.
Hence, the DL tool may serve as a promising method for
improving the therapeutic effects of radiation for cervical
cancer.
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